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Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington’s disease by

targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evi-

dence regarding the feasibility of neurofeedback training in Huntington’s disease by examining two different methods, activity and

connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington’s disease gene-carriers completed 16 runs of

neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two

treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving

neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback train-

ing), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during

neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the par-

ticipants’ ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining

change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at

2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the

training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group

compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support

of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is

evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions

in the brain, evidence regarding transfer of learning and clinical benefit was not robust.
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Introduction
Neurofeedback training (NFT) is a non-invasive interven-

tion used to train participants in a closed-loop design to

regulate their own brain activity (Sitaram et al., 2017).

The underlying principle is that by regulating different

aspects of their brain activity, e.g. regional activation or

inter-regional connectivity, participants would implicitly

regulate associated cognitive function. Huntington’s dis-

ease is a genetic neurodegenerative condition character-

ized by progressive motor, psychiatric and cognitive

impairment, as well as early striatal atrophy, cortical and

cortico-striatal connectivity loss (Tabrizi et al., 2011;

Poudel et al., 2014; McColgan et al., 2015; Novak et al.,

2015). There are currently no treatments for cognitive

impairment in Huntington’s disease and the effect of dis-

ease-modifying therapies, such as antisense-oligonucleotide

approaches (Tabrizi et al., 2019b), on cognitive function

is, at present, unknown. Our motivation for testing NFT,

is that it, if successful, it could be used as an adjunct

treatment to invasive, disease-modifying therapies (Linden

and Turner, 2016; Tabrizi et al., 2019a). However, there

are several challenges in designing effective NFT trials

and testing their efficacy, including the choice of an ap-

propriate NFT target for the specified clinical population.

Because striatal atrophy and cortico-striatal connectivity

loss appear early on in Huntington’s disease and correlate

with cognitive and psychomotor impairment (Tabrizi

et al., 2009, 2011; Poudel et al., 2014; McColgan et al.,

2015; Novak et al., 2015), striatal activity and cortico-

striatal connectivity would be the obvious targets for

NFT. NFT could therefore be used to ‘boost’ the activity

or connectivity of the striatum in Huntington’s disease

gene-carriers at pre-symptomatic or early stages of the

disease, i.e. while levels of atrophy are still low. In a re-

cent proof-of-concept study, we used the supplementary

motor area (SMA) as a target for real-time functional

MRI (fMRI) NFT in Huntington’s disease patients
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(Papoutsi et al., 2018). We selected BOLD fMRI signal

from the SMA because it can be reliably measured in

real time (Subramanian et al., 2011, 2016), and its func-

tion and connectivity to the striatum is disrupted by

Huntington’s disease (Klöppel et al., 2009). Previous

studies have also shown that NFT-induced changes are

not just localized to the target region, but extend to a

wider network of regions (Horovitz et al., 2010; Ruiz

et al., 2013; Emmert et al., 2016), suggesting that a

proxy region would be appropriate. We found that

Huntington’s disease patients can be trained to increase

the level of SMA activity and that improvement in cogni-

tive and psychomotor behaviour after training related to

increases in activity of the left Putamen and SMA—left

Putamen connectivity during training. This suggested that

SMA-striatum connectivity could be a more appropriate

NFT target than SMA activity in Huntington’s disease.

The aim of the current study is to compare the two

NFT approaches, SMA activity and SMA-striatum con-

nectivity, and to collect rigorous evidence on the feasibility

of the method in Huntington’s disease. We used BOLD

fMRI signal change from the SMA as the target for activ-

ity NFT and correlation between the signal from the SMA

and left striatum during upregulation as the target for con-

nectivity NFT (Megumi et al., 2015; Yamashita et al.,

2017). In addition, we used a single-blind, randomized,

sham-controlled, parallel design and employed an opti-

mized real-time fMRI processing pipeline using a prospect-

ive motion correction system (PMCS; Zaitsev et al., 2006;

Todd et al., 2015) for real-time head motion correction

and real-time physiological noise filtering (Misaki et al.,

2015) to ensure that we obtain high-quality evidence.

Finally, to ensure participant blinding and control for ex-

perimental exposure and motivation, participants that were

randomized to the control group were yoked to a partici-

pant in the treatment group, and received feedback based

on the NFT target levels of their yoked participant from

the treatment group, rather than their own (Thibault

et al., 2016; Sorger et al., 2019). This setup enables us to

collect high-quality evidence regarding the use of real-time

fMRI NFT for the treatment of cognitive impairment in

Huntington’s disease.

Materials and methods

Participants

Thirty-four adults with HTT gene CAG expansion

greater than 40 were recruited to the study between

February 2016 and September 2017. One participant

withdrew from the study due to claustrophobia at the

first NFT visit. The participant had been randomized to

the activity NFT treatment group and was replaced.

Another participant was excluded, because a large num-

ber of trials were contaminated with motion-related arte-

facts. This participant was randomized to the connectivity

treatment group and was replaced. Details on the remain-

ing 32 participants who were included in the analyses are

shown in Table 1. There were no statistically significant

differences between the treatment and control groups for

the two types of NFT (using a non-parametric Mann–

Whitney test all P> 0.2). All participants provided writ-

ten informed consent according to the Declaration of

Helsinki and the study was approved by the Queen

Square Research Ethics Committee (05Q051274; ISRCTN

ID: ISRCTN35734205). All testing took place in testing

rooms at the Queen Square Institute of Neurology and

MRI scanning took place at the Wellcome Centre for

Human Neuroimaging (WCHN).

Information regarding sample size calculations prior to

the start of the study are provided in the Supplementary

materials. Briefly, the present study was powered in order

to be able to detect, previously reported, very large differ-

ences (Cohen’s d effect size ¼ 1.65 and 1.60; see

Supplementary materials) between treatment and sham

NFT control groups in near transfer. As this was a feasi-

bility study, we chose to power on near transfer and not

far transfer effects. Although near transfer effects are not

clinically relevant, they do allow us to test NFT learning

transfer and as such can serve as a suitable endpoint for

this feasibility study. If the findings from this study are

promising, then the effect sizes estimated from this study

could be used to power a future randomized controlled

trial focusing on efficacy.

Study structure

As part of the study, participants completed one screen-

ing, one baseline, four neurofeedback training and three

follow-up sessions. The first follow-up was within

2 weeks from the last training visit, the second between

4 and 6 weeks and the third between 8 and 10 weeks

(also see Supplementary Table 2). A diagram of the

study design is shown in Fig. 1. A PMCS was used to

correct head motion during scan acquisition (Zaitsev

et al., 2006; Todd et al., 2015). Using the PMCS

allowed us to recruit participants with moderate chorea

without substantial data loss due to head motion.

Details of the PMCS are provided in the Supplementary

materials. Participants who consented to the use of the

PMCS had teeth impressions acquired during the screen-

ing visit by a qualified orthodontist (N.H.). The teeth

impressions were used to create a small retainer on

which the optical marker for the PMCS was mounted.

During the screening session, participants completed the

Montreal Cognitive Assessment test (Nasreddine et al.,

2005) and a number of cognitive and psychomotor

tasks. The purpose of the testing on the screening visit

was to familiarize the participants with the tests and

minimize practice effects during follow-up. The same

measurements were repeated during the baseline and fol-

low-up sessions.
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To assess change in cognitive and psychomotor func-

tion following NFT, we calculated a composite score

using the same procedure and measures as in our previ-

ous study (Papoutsi et al., 2018). In summary, these

measures were selected a priori based on previous work

showing that they are sensitive to disease progression

(Tabrizi et al., 2009, 2011, 2012, 2013; Poudel et al.,

2014; McColgan et al., 2015; Novak et al., 2015), they

were converted to z-scores and summed to create the

composite score. The measurements included were: num-

ber correct for Stroop Word Reading, number correct for

Symbol Digit Modalities Test (SDMT), annulus length for

Indirect Circle Tracing (log transformed), number correct

for negative Emotion Recognition, inter-tap interval and

Table 1 Demographic information

Activity NFT Connectivity NFT

Treatment group Control group Treatment group Control

group

Number of participants 8 8 8 8

Gender 6F, 2M 6F, 2M 6F, 2M 5F, 3M

Handedness 7RH, 1LH 7RH, 1LH 7RH, 1LH 8RH, 0LH

Age, mean (SD) 46.4 (11.3) 50 (12.3) 52.3 (11.9) 50.1 (10.3)

CAG repeat length, median (SD) 43 (3.7) 42.5 (2.1) 43 (2.5) 43.5 (1.4)

CAP score, mean (SD) 92.7 (14.2) 97.6 (11.7) 105.6 (23) 101.9 (18.3)

UHDRS

TMS, mean (SD) 8 (12.7) 8.5 (4.3) 9 (10.1) 11.5 (14.1)

TFC, mean (SD) 11.6 (1.5) 12.5 (1.1) 12.5 (0.5) 11.6 (1.9)

MoCA, mean (SD) 26.1 (4.2) 27.6 (1.1) 25.4 (3.3) 25.5 (3.0)

HADS

Anxiety, mean (SD) 4.0 (2.3) 3.5 (3.9) 4.3 (3.3) 4.6 (4.9)

Depression, mean (SD) 1.8 (0.7) 1.9 (1.9) 3.6 (4.8) 3.6 (3.0)

Composite Score, mean (SD) �0.52 (0.75) �0.21 (0.37) �0.82 (0.67) �0.95 (1.33)

CAP ¼ normalized CAG-Age Product Score; HADS ¼ Hamilton Anxiety and Depression Score; MoCA ¼ Montreal Cognitive Assessment; NFT ¼ Neurofeedback training; TFC ¼
Total Functional Capacity; TMS ¼ Total Motor Score.

Figure 1 Diagram of study structure. NFT ¼ Neurofeedback training; PMCS ¼ Prospective motion correction system; TMS ¼ Total Motor

Score; UHDRS ¼ Unified Huntington’s disease Rating Scale.
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standard deviation of inter-onset interval (log trans-

formed) during speeded tapping with the non-dominant

index finger, and standard deviation of mid-tap interval

deviation from target rhythm (log transformed) for paced

tapping with the non-dominant index finger at 1.8 Hz.

The baseline and follow-up sessions included: (i) repeti-

tion of the cognitive and psychomotor testing (only on

the first and third follow-up), (ii) structural MRI meas-

urements and (iii) two fMRI runs assessing the partici-

pant’s ability to upregulate the target NFT measures

without neurofeedback. The fMRI runs consisted of five

upregulation blocks (30 s each), six rest blocks (30 s each)

and five response blocks (18 s each; Supplementary Fig.

2B). Similar to our previous study (Papoutsi et al., 2018),

we used a simple attention task during the rest blocks,

whereby participants monitored changes in the luminance

of a white bar. After the baseline session participants

were randomized to one of four groups: activity NFT

treatment and control groups, and connectivity NFT

treatment and control groups. Randomization was based

on the Unified Huntington’s Disease Rating Scale

(Huntington Study Group, 1996) (UHDRS) Total Motor

Score (TMS). More details regarding the randomization

procedure are provided in the Supplementary materials.

NFT sessions started with a fist-clenching run used to

select the target regions of interest (ROIs). Participants

were instructed to clench their left fist during the active

blocks (10 blocks, 20.4 s duration) and rest during the

rest blocks (11 blocks lasting 20.4 s each; Supplementary

Fig. 2A). Using Turbo-Brain Voyager (Brain Innovation,

The Netherlands) the fMRI run was analysed in real time

and the resulting statistical map was used to define the

ROIs for the subsequent NFT runs. Participants com-

pleted four NFT sessions on different days and each ses-

sion included four NFT runs (two participants completed

three runs on one of the NFT sessions, because of fa-

tigue). The activity NFT runs were structured as blocks

of rest (30 s block duration), response (18 s) and upregu-

lation blocks (30 s) repeated five times, with the addition

of a rest block at the end to ensure that the

Hemodynamic Response Function (HRF) for the last

upregulation block is not cut-off (Supplementary Fig.

2C). The rest and response blocks were identical to those

of the near transfer runs and included a simple attention

task as a control condition similar to our previous study

(Papoutsi et al., 2018). During the rest blocks partici-

pants monitored changes in the luminance of the white

bar, if the white bar flickered to grey (for 1 s in three out

six blocks), they would clench their left fist once, when

the question mark appeared on screen (response block).

During the upregulation blocks feedback was presented

continuously in the form of a red bar, similar to our pre-

vious pilot study (Papoutsi et al., 2018) which showed

promising results. In the treatment group the height of

the red bar represented the per cent signal change at a

given point during the upregulation block versus the

mean activation during the preceding rest block. Once

the upregulation blocks started, there was an average

delay of 2 s until the red bar appeared and then it was

updated every 1.2 s.

In the connectivity NFT runs feedback was presented

intermittently at the end of the upregulation blocks in the

form of a red bar. We selected intermittent instead of

continuous feedback for the connectivity NFT because it

provided reliable estimates of the ROI correlation by inte-

grating over 30 s consistent with previous research

(Zilverstand et al., 2014; Megumi et al., 2015;

Yamashita et al., 2017). The connectivity NFT runs were

structured as blocks of rest (30 s block duration), upregu-

lation (30 s), feedback (3 s) and rest (15 s to allow the

HRF to return to baseline) repeated five times

(Supplementary Fig. 2D). Despite the differences in the

runs structure, the number and duration of upregulation

blocks (5 blocks, 30 s each), as well as the interval be-

tween upregulation blocks (48 s) was the same for both

the activity and connectivity NFT runs. In the treatment

group, the height of the red bar was calculated using the

Pearson’s correlation coefficient between the SMA and

left striatum ROI time-series during the upregulation

blocks only (Megumi et al., 2015). In both cases (activity

and connectivity NFT), the feedback provided to the

sham control groups was calculated using data from a

yoked participant in the corresponding treatment group.

More details on the sham neurofeedback setup and the

real-time fMRI setup are provided in the following

paragraphs.

Similar to our previous study, we used shaping in both

cases in order to facilitate learning and motivation

(Weiskopf et al., 2004; Linden et al., 2012; Papoutsi

et al., 2018), whereby the difficulty in increasing the

height of the feedback bar was adjusted according to the

participants’ performance in the preceding block.

Target ROI selection

The NFT target ROIs were drawn at the start of each

NFT session using Turbo-Brain Voyager. For the activity

NFT sessions, the SMA was selected as the target ROI.

For the connectivity NFT sessions, the SMA and the left

striatum (including putamen, globus pallidus and caudate)

were selected as the target ROIs. Similar to our previous

study (Papoutsi et al., 2018) and comparable to other

studies (Subramanian et al., 2011; Paret et al., 2014,

2016; Nicholson et al., 2017), the ROIs were re-drawn

at each session ensuring that only voxels with high acti-

vation are selected. The ROIs from the first visit were

used as a reference, when drawing the ROIs for the sub-

sequent visits to ensure that the position was similar, al-

though the exact voxels selected might be different. For

the SMA, the statistical map was thresholded at t-value

¼ 3 and a rectangle was drawn around the SMA cluster

for the active versus rest contrast. The mean (SD) number

of voxels for the SMA ROI was 207 (82) and 156 (51)

voxels for the activity and connectivity groups,
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respectively. The mean (SD) size of the rectangles drawn

was 8.5 (1.7) � 10.3 (3.1) � 9 and 7.7 (1.4) � 8.8 (1.7)

� 9 voxels for the activity and connectivity groups, re-

spectively. There was a significant difference between the

two groups in the size of the ROI (two-sample t-test

t(30) ¼ 2.12, P¼ 0.042). This was incidental, since the

ROIs were drawn around significant clusters during the

localizer.

The location of the striatum was identified visually on

the first echo-planar imaging (EPI) scan of the localizer

run using landmarks and the EPI contrast. Due to high

iron concentration, the putamen and globus pallidus ap-

pear darker on an EPI scan and are therefore easy to

identify on EPI scans. A rectangle was drawn around the

striatum including the putamen, globus pallidus, caudate

and ventral striatum. Because of the rectangular shape,

the striatal ROI, also included surrounding white matter.

However, the ROI was centred around the striatum and

most of the recorded signal originated from the grey mat-

ter of the striatum. The mean (SD) number of voxels for

the striatal ROI was 92 (83) and the mean (SD) size of

the rectangle drawn was 4.9 (0.7) � 7.1 (1.5) � 9 vox-

els. A heat map showing the overlap of the ROIs across

all participants is shown in Fig. 2A and B. We chose to

define our ROIs using a functional localizer and anatom-

ical landmarks, rather than creating an anatomical mask,

because it was not always possible to acquire a structural

MRI volume during the baseline visit due to patient

fatigue.

Sham neurofeedback

We chose to use a sham neurofeedback for the control

groups in order to control for potential placebo effects as

a result of recruiting participants to an interventional

study (Foroughi et al., 2016; Thibault et al., 2016;

Sorger et al., 2019). By choosing the ‘yoked’ approach,

we ensured that the feedback control participants received

was biologically plausible and matched to that of the

treatment group. We chose not to use the approach of

using a different ROI for the control group, because of

potential problems with the spread of training effects

across other brain regions. We do not yet understand the

mechanism underlying NFT in Huntington’s disease and

how widespread any effects could be, therefore, we were

not certain which other regions in the brain would be ap-

propriate to use as control targets (Mehler et al., 2018).

To confirm whether the feedback received by the partici-

pants was contingent to their own brain activity, we per-

formed confirmatory analyses after the end of the study

and found that the correlation between the control partic-

ipants’ true BOLD signal and the BOLD signal of their

yoked participant from the treatment group was very low

(see Supplementary methods).

Data processing and analyses

MRI acquisition parameters

All scanning was performed on a Siemens TIM Trio 3T

scanner using a standard 32-channel head coil. For the

fMRI tasks, we used a whole-brain multi-shot 3D EPI se-

quence (Lutti et al., 2013) with TR ¼ 1.2 s, TE ¼ 30 ms,

excitation flip angle ¼ 15�, bandwidth ¼ 2604 Hz/Px.

There were 60 slices per slab, acquired with sagittal

orientation and anterior to posterior phase encoding.

Image in-plane resolution was 64 � 64 and voxel size ¼
3 � 3 � 3 mm3. To allow fast whole-brain coverage, we

used GRAPPA parallel imaging in phase encoding and

partition encoding direction with 2 � 3 acceleration.

Quantitative Multi-Parameter Maps (Draganski et al.,

2011; Weiskopf et al., 2013; Callaghan et al., 2014) and

diffusion weighted imaging (DWI) scans were also

acquired during the baseline and three follow-up sessions.

The acquisition details are included in the Supplementary

methods. Because we did not find any significant differen-

ces in the fMRI data to suggest successful training and

transfer, we did not proceed with the statistical analysis

of the MPMs and DWI images.

Real-time fMRI setup.ó For the NFT sessions, the EPI vol-

umes were exported using Ice and Gadgetron (Hansen and

Sørensen, 2013). In-house scripts created using Gadgetron

and MATLAB (Mathworks) were used to reconstruct the

3D EPI data using SENSE (Pruessmann et al., 1999) such

that they could be read in near real time by Turbo-Brain

Voyager to produce the target ROI time-series. There was

a small delay at the start of each run to enable MATLAB

to start, but after about 15 s both the MRI scanner and

the Gadgetron pipeline were fully in-synch with �1 s la-

tency. To enable both systems to synchronize we intro-

duced a delay of 18 volumes at the start of each run.

During that time participants viewed a white cross on a

black background followed by a count-down (from 10 to

1) until the NFT paradigm started. In-house MATLAB

scripts were used to process the ROI time-series and record

participants’ responses, breathing and heart rate. For the

NFT runs, the ROI signal was regressed against head mo-

tion traces and physiological noise from respiration (Birn

et al., 2008) and cardiac rhythm using RETROICOR

(Glover et al., 2000). The ‘cleaned’ signal was then proc-

essed by in-house MATLAB scripts using Cogent toolbox

(http://www.vislab.ucl.ac.uk/cogent_2000.php, accessed 28

April 2020) to calculate and present the feedback to the

participant. The computer setup in the scanner is shown in

Supplementary Fig. 1B.

Data processing

All statistical analyses were performed after extensive

quality control and offline pre-processing of the fMRI

data. Supplementary Figs 3 and 4 show the evoked re-

sponse patterns and average correlation coefficients, re-

spectively, from the real-time processing pipeline. No

statistical analyses were performed on these data, but are
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presented here for completeness. Statistical Parametric

Mapping SPM12 (WCHN, London) was used for offline

pre-processing of the fMRI data. The first three volumes

were removed from all fMRI time-series apart from the

NFT runs, where we removed the first 18 volumes. The

images were then corrected for head motion with rigid-

body realignment using a two-step approach.

For the ROI analyses the re-aligned images were

smoothed in native space using an isotropic 8 mm

FWHM Gaussian smoothing kernel. First-level, within-

subject models included the condition of interest and

noise regressors. We used two regressors modelling the

upregulation and response (feedback blocks in the case of

connectivity NFT) blocks for the baseline, NFT and

transfer runs, and one regressor modelling the fist-clench-

ing blocks for the localizer runs. The baseline condition

was modelled implicitly. In addition, first-level models

included six head motion parameter regressors produced

by SPM and extracted from the PMCS (where applicable)

with their temporal derivatives, the quadratic expansions

of the movement parameters and their derivatives

(Friston et al., 1996; Ciric et al., 2017), spike regressors

(see Supplementary materials; Lemieux et al., 2007), as

well as 13 physiological noise regressors modelling the

heart rate using RETROICOR and respiration (Glover

et al., 2000; Birn et al., 2008; Hutton et al., 2011;

Misaki et al., 2015). Temporal autocorrelation was mod-

elled using SPM’s first-level autoregressive process

(AR(1)) and a high-pass filter with 128 s cut-off.

For the activity NFT group, contrast values for upregu-

lation versus baseline were extracted for the target ROI

for each session and the highest 10% of t-values (Todd

et al., 2017) were used to calculate the average ROI

value. For the connectivity NFT group, the time-series for

the target ROIs (SMA and striatum) was extracted using

a 6 mm sphere centred on the peak for upregulation ver-

sus baseline across all runs. The Pearson’s correlation co-

efficient of the time-series between the two ROIs within

the upregulation periods was then calculated and trans-

formed into Fisher z-scores.

Statistical analyses

Because the two NFT approaches use a different feedback

measure, i.e. contrast estimates in the case of activity

Figure 2 Learning effects in activity and connectivity NFT. (A and B) Heat maps showing the location and overlap of the target ROI

across all participants in the activity and connectivity NFT groups, respectively. Maps are superimposed on a group average MT image.

(C) Change from baseline in the target NFT levels across all training sessions per subject (dotted lines). The group mean per session is shown

with thick continuous lines. Shown in red (group mean) and orange (individual participants) is the treatment group, whereas shown in black

(group mean) and grey (individuals) is the control group collapsed across both types of NFT. (D) Dot plots show the change in NFT target levels

from baseline across all NFT sessions for the four subgroups: activity treatment group (orange squares), connectivity treatment group (green

squares), activity control group (black circles) and connectivity control group (blue circles). The horizontal grey line in the dot plots shows the

baseline, data points above this line represent an increase compared to baseline. The small squares and circles are the individual data points,

whereas the larger squares and circles show the adjusted mean group effects. Error bars are 95% CI.
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NFT and correlation coefficients in the case of connectiv-

ity NFT, we converted the activity and connectivity esti-

mates to standardized scores in order to be able to

compare them directly. In more detail, the SMA activity

estimates and Fisher transformed SMA-striatum correl-

ation coefficients were converted into z-scores using the

mean and standard deviation from the baseline fMRI

runs in the activity and connectivity NFT groups, respect-

ively. The standardized activity and connectivity NFT tar-

get estimates were then used as outcomes in repeated-

measures analyses of covariance (ANCOVAs) with group

(treatment versus control), NFT type (activity versus con-

nectivity), session and their interactions as fixed effects.

Baseline level of the NFT target and its interaction with

NFT type were included as covariates in all analyses to

increase model sensitivity (Dimitrov and Rumrill, 2003).

Session was modelled as a repeated factor within subjects.

The primary endpoints for this study were NFT learning

and near transfer. For the analyses testing for learning,

session was modelled as a numerical factor, increasing

from 0 to 3, to test for a linear increase across the train-

ing sessions. For the analyses testing for transfer effects,

session was modelled as a categorical factor. Intersession

covariance was modelled using heterogeneous compound

symmetry, as this gave a reasonable approximation of

the observed within-subject covariance while using min-

imal degrees of freedom. Model residuals were visually

inspected using Q–Q plots and histograms for outliers

and to ensure residuals meet normality assumptions. We

used SAS 9.4 mixed approach to estimate the

ANCOVAs. Because we used standardized measures for

all the analyses, the model estimates provided are in units

of standard deviation.

For the exploratory ROI analyses testing the relation-

ship between learning and self-regulation ability in the

NFT target levels with behavioural change we used be-

tween-group ANCOVAs. To extract the learning slope

per participant we re-fitted the repeated-measure

ANCOVA described above specifying random slope and

intercept. As a measure of self-regulation ability we used

the difference in NFT target level at the first and third

follow-up sessions during upregulation without feedback

compared to baseline. Other factors included in these

models were group, NFT type and their interactions, as

well as the baseline measure of cognitive and psycho-

motor function using the composite score. The dependent

variable was the composite score at the first and third

follow-up session. All tests were two-tailed and the alpha

level used to determine significance was P< 0.05.

Data availability

All data are available from the authors. Raw data cannot

become publicly available due to lack of consent from

the study participants.

Results

Learning effects: increase across
training sessions

To examine differences in NFT learning between the

treatment and control groups and the two different types

of NFT we used repeated-measures ANCOVA testing for

between-group differences across all NFT sessions, as

well as a linear increase in the target NFT measure

(Hellrung et al., 2018) across sessions. The dependent

variable was the standardized NFT target estimates and

the model included as factors session (modelled as a con-

tinuous variable), group (treatment versus control), NFT

type (activity versus connectivity) and all their interac-

tions. The model was also adjusted for baseline NFT tar-

get levels and its interaction with NFT type. The main

effect of group tests for differences in the change from

baseline between the treatment and control groups across

all visits, whereas the group by session tests for differen-

ces in learning slope between groups. To test the main ef-

fect of group across all training sessions we used least

square mean testing and compared the NFT target esti-

mates across all NFT sessions between treatment and

control groups.

There was no evidence for a difference between the ac-

tivity and connectivity treatment groups in learning slope

(P> 0.6 for both group by NFT type and group by NFT

by session interactions. Linear increase across sessions

estimates 95% CI: activity treatment ¼ 0.078 (�0.190,

0.345); connectivity treatment ¼ �0.056 (�0.323,

0.211); activity control ¼ �0.057 (�0.324, 0.210); con-

nectivity control ¼ �0.519 (�0.319, 0.215); Fig. 2C).

However, there was a significant main effect of group,

where the treatment group had greater NFT target levels

overall compared to the control group across all visits

(t(29.1) ¼ 2.79, P¼ 0.009). Estimate 95% CI of group

difference across all sessions: 0.816 (0.22, 1.41). The unit

of the estimates is standard deviations; Fig. 2D). At base-

line, there was no difference in NFT target levels between

the groups (F(1,28) ¼ 0.20, P¼ 0.655; see Supplementary

materials), our findings therefore suggest that the effects

of receiving neurofeedback occurred within the first train-

ing session and were stable across training sessions.

Near transfer: upregulation without
feedback

After the four training sessions, participants returned for

three follow-up sessions. During those sessions, we exam-

ined the ability of the participants to self-regulate the

NFT target levels without receiving any feedback (i.e.

near transfer). Similar to our previous analyses examining

learning effects, we used a repeated-measures ANCOVA

with factors group, session (modelled as a categorical fac-

tor in this model), NFT type and their interactions,

8 | BRAIN COMMUNICATIONS 2020: Page 8 of 14 M. Papoutsi et al.

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa049#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa049#supplementary-data


adjusting for the baseline NFT target levels and its inter-

action with NFT type. The dependent variable was the

standardized NFT target contrast estimates (upregulation

without feedback compared to no upregulation). In this

case, we did not hypothesize any difference between ses-

sions and expected that transfer effects would remain sta-

ble for the three follow-up visits. Therefore, the effects of

interest were the main effect of group (treatment versus

control), which tested between-group differences in the in-

crease of the NFT target levels across all follow-up visits

from baseline, and the group by NFT type interaction

(treatment versus control by activity versus connectivity

NFT).

Although the treatment group increased NFT target lev-

els at the follow-up visits compared to baseline by 0.9

standard deviations (estimate 95% CI increase from the

baseline session: treatment group ¼ 0.929 (0.341, 1.518);

control group ¼ 0.186 (�0.407, 0.778)), this increase

was not significantly different from the control group

(F(1,26.4) ¼ 3.27, P¼ 0.082. Estimate 95% CI of the

group difference across all sessions ¼ 0.74 (�0.10, 1.59);

Fig. 3A). The connectivity treatment group was the only

group able to increase its NFT target levels at follow-up

compared to baseline (estimate 95% CI increase from

baseline across all follow-up sessions: connectivity treat-

ment ¼ 1.226 (0.389, 2.063); activity treatment ¼ 0.633

(�0.195, 1.460); activity control ¼ 0.322 (�0.505,

1.149); connectivity control ¼ 0.0492 (�0.799, 0.897);

Fig. 3A). However, the interaction between NFT type

and group was not significant (F(1,26.4) ¼ 1.11,

P¼ 0.30). There were no other significant effects or inter-

actions (all P> 0.29). Our results suggest that although

there is some evidence regarding a near transfer effect in

the treatment group, particularly in the connectivity treat-

ment group, it is weak and not significantly better than

the control group.

Far transfer: cognitive and
psychomotor performance

To assess the effect that NFT had on participants’ per-

formance in tasks unrelated to the training (far transfer),

Figure 3 Near and far transfer effects. (A) Dot plots show the change in NFT target levels from baseline across the three follow-up

sessions for the four subgroups: activity treatment group (orange squares), connectivity treatment group (green squares), activity control group

(black circles) and connectivity control group (blue circles). (B) Dot plots show the change in the behavioural composite score from baseline

across the two follow-up sessions for the four subgroups (same colour coding as above). The horizontal grey lines in both plots show the

baseline, data points above this line represent an increase compared to baseline. The small squares and circles show the individual data points,

whereas the larger squares and circles show the adjusted mean group effects. Error bars are 95% CI.
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we examined change from baseline after training in the

composite score comprising of measures previously shown

to be sensitive to Huntington’s disease progression

(Tabrizi et al., 2011; Papoutsi et al., 2018). We per-

formed a similar mixed linear model analysis to the one

described in the near transfer section above. The cogni-

tive composite score was the dependent variable and the

model was adjusted for the baseline level of the cognitive

composite score. The effects of interest were the main ef-

fect of group and the group by NFT type interaction,

which test for between-group differences in change from

baseline across all the two follow-up sessions.

Although the difference between treatment and control

groups is in favour of the treatment group (estimate 95%

CI increase from baseline: treatment ¼ 0.044 (�0.059,

0.146); control ¼ �0.005 (�0.102, 0.091)), it is not sig-

nificant (F(1,27) ¼ 0.63, P¼ 0.435) and the magnitude

of the change is small (estimate 95% CI difference ¼
0.049 (�0.077, 0.175) standard deviations). There was

also no evidence for a difference between the activity and

connectivity treatment groups (group by NFT type inter-

action F(1,27) ¼ 0.76, P¼ 0.39). Estimate 95% CI in-

crease from baseline: activity treatment group ¼ 0.108

(�0.023, 0.240); connectivity treatment ¼ �0.022

(�0.162, 0.119); activity control ¼ 0.006 (�0.120,

0.131); connectivity control ¼ �0.016 (�0.161, 0.130);

Fig. 3B). There were no other significant effects or inter-

actions (all P> 0.18). Our results therefore do not pro-

vide any evidence for a significant far transfer effect of

NFT.

A detailed description of the average change in the in-

dividual scores that comprised the composite score is pre-

sented in the Supplementary materials and can provide

more insight on the magnitude of change in the individ-

ual tests (Supplementary Fig. 5 and Table 3).

Association with change in
performance

As an exploratory analysis, we examined whether NFT-

related measures, specifically learning slope and/or self-

regulation ability (near transfer), predict improvement in

the cognitive composite score. If successful upregulation

has an effect on behaviour than we should see a relation-

ship between increasing ones NFT target levels and im-

provement in behaviour after training.

We first tested the relationship between training slope,

i.e. change from the first to the last NFT training session,

and behavioural performance at the first follow-up ses-

sion, i.e. within 2 weeks from the end of training. The

NFT learning slope for each participant was extracted

from a random slope and random intercept mixed linear

model testing for linear increase in NFT target levels

across visits. To test the effect of NFT learning on behav-

iour, we used an ANCOVA with factors NFT target level

slope (linear increase across NFT sessions), group (treat-

ment vsersu control), NF type (activity versus

connectivity) and their interactions. The model was also

adjusted for the cognitive score at baseline and the de-

pendent variable was the composite score at the first fol-

low-up. The effects of interest were the main effect of

learning slope and its interactions with group and NFT

type. The main effect of learning slope tests whether

there is a relationship between increase in NFT slope

across training sessions and improvement in behaviour at

follow-up across all groups. The interactions between

learning slope and group (and NFT type), test whether

there is a difference in the relationship between improve-

ment in behaviour across the different groups.

The relationship between NFT learning slope across all

groups and change in the composite score was not sig-

nificant (F(1,23) ¼ 2.67, P¼ 0.12) and negative (estimate

95% CI of change in the composite score per unit in-

crease in slope ¼ �0.59 (�1.35, 0.16)). There was also

no significant difference between treatment and control

groups in the relationship between NFT slope and com-

posite score change (F(1,23) ¼ 0.89, P¼ 0.36; estimate

95% CI of the between-group difference ¼ 0.71 (�0.74,

2.15)), or evidence of a positive relationship in the treat-

ment group (estimate 95% CI of change in the composite

score per unit increase in slope for the treatment group

¼ �0.24 (�1.24, 0.78); control group ¼ �0.94 (�2.00,

0.12); Fig. 4A). All other effects and interactions were

also non-significant (all P> 0.1).

We then tested the relationship between volitional NFT

target upregulation ability and improvement in the com-

posite score at follow-up (first and third follow-up separ-

ately). We used ANCOVA with factors NFT target level

estimate (the difference between NFT target contrast esti-

mates at each follow-up versus baseline), group (treat-

ment versus control), NF type (activity versus

connectivity) and their interactions. The model was

adjusted for baseline performance in the composite score

and the dependent variable was the composite score at

the first and third follow-up. The effects of interest were

the relationship between behavioural change at follow-up

and self-regulation ability, as well as the interaction with

group and NFT type.

The relationship between NFT target upregulation abil-

ity across all groups and change in the composite score

was not significant for either of the follow-ups (first fol-

low-up: F(1,22) ¼ 0.28, P¼ 0.60; third follow-up:

F(1,22) ¼ 0.02, P¼ 0.90) and almost zero in both cases

(estimate 95% CI of change in the composite score per

unit increase in slope for the first follow-up ¼ �0.02

(�0.09, 0.05) and for the third follow-up ¼ �0.01

(�0.08, 0.07)). There was also no significant difference

between treatment and control groups in the relationship

between NFT slope and composite score change (first fol-

low-up: F(1,22) ¼ 0.56, P¼ 0.46; estimate 95% CI of

the between-group difference ¼ 0.08 (�0.09, 0.25); third

follow-up: F(1,22) ¼ 0.48, P¼ 0.50; estimate 95% CI of

the between-group difference ¼ 0.03 (�0.16, 0.22);
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Fig. 4B and C). All other effects and interactions were

also non-significant (all P> 0.1).

Discussion
The present proof-of-principle study examined the use of

NFT for the treatment of cognitive and psychomotor im-

pairment in Huntington’s disease patients. For this pur-

pose, we used two different NFT approaches (activity

and connectivity) in a single-blind, randomized controlled

trial study, with yoked sham NFT control groups, an in-

tensive training protocol consisting of 16 NFT trials over

four sessions, optimized real-time fMRI acquisition proto-

col and using objective, a priori defined, measures of cog-

nitive and psychomotor function. This enabled us to

collect rigorous evidence regarding the usefulness of NFT

in treating cognitive and psychomotor symptoms in

Huntington’s disease. We found strong evidence of a dif-

ference between treatment and control groups during the

NFT sessions, such that participants in the treatment

group increased the levels of the NFT target more than

participants in the control group, when receiving NFT.

However, evidence regarding the ability of the partici-

pants to volitionally upregulate their NFT target levels

after training was weak. It is therefore unclear whether

participants learned to regulate their brain activity and

were able to apply the learning in the absence of NFT.

We also did not find robust evidence of improvement in

cognitive and psychomotor function after training in the

treatment group, or of a relationship between NFT learn-

ing and change in cognitive and psychomotor function.

In more detail, we found a significant difference be-

tween treatment and control groups in terms of the in-

crease of their NFT target levels from baseline.

Participants in the treatment group increased their activity

and connectivity levels from baseline by 0.74 standard

deviations more than participants in the sham control

group. This difference was present from the first training

session until the last and we did not observe any further

increase in the subsequent training sessions. This finding

is in agreement with previous studies which have shown

that participants can learn to regulate the target NFT lev-

els within one visit (Hellrung et al., 2018; Kohl et al.,

2019).

It is important to note that our study was single-blind, it

is therefore possible that the difference observed between

treatment and control groups could have been because of

unconscious researcher bias. We believe that this is unlike-

ly, since the participants were in the MRI scanner during

NFT and they had minimal contact with the researchers.

In addition, if they were such effects, we would expect that

they would have been more pronounced during cognitive

and psychomotor testing, during which the researchers had

longer contact with the participants. However, we did not

find any evidence for a difference between the two groups,

treatment and controls. Therefore, we believe that the

measured difference between the two groups during NFT

training reflects the effect of providing feedback to the par-

ticipants on their NFT levels and them adjusting their be-

haviour accordingly.

After NFT we tested participants’ ability to increase the

levels of the NFT target without receiving neurofeedback.

Figure 4 Relationship between change in the composite score and change in NFT target levels. (A) Regression lines plot the

relationship between change in the composite score at the first follow-up from baseline and change in NFT target levels from the first to the last

NFT training visit adjusted for baseline levels. Shown in B is the relationship between change in the composite score at the first follow-up from

baseline and change in NFT target levels at the first follow-up session compared to baseline. Shown in C is the relationship between the same

measures as in B, but for the third follow-up. Regression lines and 95% CI for the treatment (red) and sham control (black) groups are averaged

across both NFT type groups.
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This way we can test whether participants have truly

learned to regulate the levels of the NFT target and are

therefore able to upregulate without receiving NFT.

Although the treatment group increased their NFT target

levels from baseline at follow-up by 0.9 standard devia-

tions, this increase was not significantly different from

the control group. Our results therefore suggest that al-

though there is some evidence regarding a near transfer

effect in the treatment group, particularly in the connect-

ivity treatment group, it is weak and at present ambigu-

ous and requires replication.

Furthermore, we did not find robust evidence of im-

provement in cognitive and psychomotor function after

NFT. To measure cognitive and psychomotor function,

we used a composite score comprised of a priori identi-

fied, objective measures of cognitive and psychomotor

function, sensitive to Huntington’s disease progression.

However, our study was powered to detect differences in

near transfer, not far transfer, therefore it is possible that

we were underpowered to detect significant group differ-

ences in behaviour. Analyses of the cognitive and psycho-

motor measures were exploratory, but important to

include in order to guide the design of future studies for

clinical efficacy. Although the between-group difference in

the change from baseline was in favour of the treatment

group, the magnitude of the improvement was very small

and clinically non-significant representing a change of

0.05 standard deviations in the composite score. We also

did not find any evidence that change in NFT-related

measures, specifically NFT learning slope and ability to

self-regulate, related to change in behaviour.

It is possible that by using a composite score we

obscured large effects in specific measures. In addition to

the composite score, we therefore also reported change in

the individual measures (Supplementary Table 3 and Fig.

5). The Stroop word reading task shows a large increase

in the first follow-up (mean (SD) ¼ 5.75 (4.7)) in the ac-

tivity NFT treatment group. This is in agreement with

the results reported in our previous work (Papoutsi et al.,
2018), where we also show a large improvement in this

measure. However, this is a post hoc finding and would

need to be verified in future research.

Taken together our findings are in agreement with re-

cent studies that showed differences between treatment

and controls groups during NFT, but weak evidence for

near or far transfer (Schabus et al., 2017). The failure to

find reliable evidence of clinical benefit could be because

we did not target the right regions or connections. In this

study, we used two different NFT targets, SMA activity

and SMA-striatum connectivity. The latter was selected

based on our previous work which showed that improve-

ment in cognitive and psychomotor function predicted

increased SMA-striatum connectivity across NFT sessions

(Papoutsi et al., 2018). In the present study, despite using

the same cognitive and psychomotor measures as in our

previous study and targeting the networks identified in

our previous study, we did not find any evidence to

suggest that SMA-striatum connectivity NFT relates to

improvements in cognitive and psychomotor function.

Therefore, we were not able to replicate this finding from

our previous work. It is possible that other regions and

connections, such as the left inferior parietal lobe, which

have been implicated in neural compensation in

Huntington’s disease (Klöppel et al., 2015), could have

been more appropriate. This remains to be tested.

Finally, in our study we did not find strong evidence to

suggest a difference between the two NFT methods, activ-

ity and connectivity. The connectivity treatment group

was able to increase the NFT target levels at follow-up

compared to baseline; however, there were no significant

group differences. Although targeting SMA-striatal con-

nectivity is theoretically motivated by knowledge regard-

ing the disease mechanism and was identified as a

potential target in our previous study (Papoutsi et al.,

2018), we did not find any reliable evidence that it was

better or worse than activity NFT. Both activity (Young

et al., 2017; Hellrung et al., 2018) and connectivity

(Megumi et al., 2015; Ramot et al., 2017; Yamashita

et al., 2017) NFT have been used successfully in other

studies, suggesting that both methods are effective.

A limitation of our study is that we could not dissoci-

ate the use of connectivity NFT from the use of inter-

mittent feedback. In our study, feedback was provided

continuously in near real time in the activity NFT

group, whereas in the case of connectivity NFT, correla-

tions were computed over 30 s and the feedback was

presented intermittently at the end of the upregulation

block. Therefore, the two elements, frequency of feed-

back presentation and NFT type, were intertwined and

could not be separated. A previous study comparing

continuous versus intermittent feedback using per cent

signal change in the amygdala in healthy young adults

showed that participants were able to learn to increase

the target NFT levels using both approaches, although

intermittent feedback was more effective than continu-

ous in that study (Hellrung et al., 2018). In our study,

we did not find any evidence for a difference between

the two approaches.

To conclude, in the present study we compared two

different NFT approaches in Huntington’s disease, SMA

activity and SMA—left striatum connectivity NFT

against sham NFT control groups, in terms of learning

and transfer. We used a randomized controlled trial de-

sign and an intense, optimized real-time fMRI NFT

protocol, to ensure that we can acquire rigorous evi-

dence regarding the role of real-time NFT in

Huntington’s disease. Our findings support previous

claims that using NFT participants can be guided to in-

crease their levels of cortical activity and cortico-striatal

connectivity using real-time fMRI NFT. However, evi-

dence regarding the transfer of learning to volitional

control of brain activity and behaviour are promising,

but at present weak.
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Klöppel S, Gregory S, Scheller E, Minkova L, Razi A, Durr A, et al.

Compensation in preclinical Huntington’s disease: evidence from the

track-on HD study. EBioMedicine 2015; 2: 1420–9.

Kohl SH, Veit R, Spetter MS, Günther A, Rina A, Lührs M, et al.

Real-time fMRI neurofeedback training to improve eating behavior

by self-regulation of the dorsolateral prefrontal cortex: a randomized

controlled trial in overweight and obese subjects. NeuroImage 2019;

191: 596–609.
Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D.

Modelling large motion events in fMRI studies of patients with epi-

lepsy. Magn Reson Imaging 2007; 25: 894–901.

Linden DEJ, Habes I, Johnston SJ, Linden S, Tatineni R, Subramanian

L, et al. Real-time self-regulation of emotion networks in patients

with depression. PLoS One 2012; 7: e38115.
Linden DEJ, Turner DL. Real-time functional magnetic resonance

imaging neurofeedback in motor neurorehabilitation. Curr Opin

Neurol 2016; 29: 412–8.
Lutti A, Thomas DL, Hutton C, Weiskopf N. High-resolution func-

tional MRI at 3 T: 3D/2D echo-planar imaging with optimized

physiological noise correction. Magn Reson Med 2013; 69:

1657–64.
McColgan P, Seunarine KK, Razi A, Cole JH, Gregory S, Durr A,

et al. Selective vulnerability of Rich Club brain regions is an organ-

izational principle of structural connectivity loss in Huntington’s dis-

ease. Brain 2015; 138: 3327–44.
Megumi F, Yamashita A, Kawato M, Imamizu H. Functional MRI

neurofeedback training on connectivity between two regions induces

long-lasting changes in intrinsic functional network. Front Hum

Neurosci 2015; 9: 160.
Mehler DMA, Sokunbi MO, Habes I, Barawi K, Subramanian L,

Range M, et al. Targeting the affective brain—a randomized con-

trolled trial of real-time fMRI neurofeedback in patients with de-

pression. Neuropsychopharmacol 2018; 43: 2578–85.
Misaki M, Barzigar N, Zotev V, Phillips R, Cheng S, Bodurka J. Real-

time fMRI processing with physiological noise correction—compari-

son with off-line analysis. J Neurosci Methods 2015; 256: 117–21.
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