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Imaging has played an instrumental role in the diagnostic and 

prognostic assessment of cardiovascular diseases. Arterial Doppler 

ultrasound, echocardiography, myocardial perfusion imaging tests 

and angiography are now part of everyday clinical practice and 

represent a cornerstone of atherosclerosis management.1 During 

the past two decades, there has been an expansion of the available 

imaging techniques, some of which give us greater understanding of 

atherosclerosis in both coronary and peripheral arteries. This article 

summarises the current and potential role and limitations of emerging 

imaging techniques in demonstrating mechanisms of atherosclerosis, 

focusing on the potential translational role of theranostics in 

cardiovascular drug design and personalised cardiovascular medicine.

Cardiovascular Imaging: A Growing Field 
Acute cardiovascular events result from the multifaceted relationship 

between a patient’s atherosclerotic risk factors and local factors, 

such as the location, burden, metabolic and functional characteristics 

of atherosclerotic disease that go beyond simple lumen stenosis.2–4 

Consequently, scientific interest has moved from the degree of the 

lumen stenosis to investigating vessel wall structure, haemodynamic 

features, and the molecular and cellular mechanisms underlying 

atherogenesis, progression and thrombosis. Optical coherence 

tomography (OCT); coronary intravascular ultrasound (IVUS); coronary 

CT angiography; high-resolution MRI; nuclear imaging such as PET 

and spectroscopy; molecular imaging by contrast media for OCT, 

ultrasound and MRI; and fusion imaging have the potential to broaden 

our structural, functional and biological understanding of plaque.5–9 

Likewise, computational flow dynamics allows the appraisal of the 

biomechanical factors of atherosclerosis.10 

These invasive and non-invasive techniques are shedding light on 

the identification of vulnerable plaque, which is one of the greatest 

challenges in cardiovascular medicine. Cardiovascular imaging has 

provided the proof of concept for medical therapy such as the 

stabilisation and regression of atherosclerosis with statins and, 

more recently, by the use of the PKSK9 inhibitors.11,12 Notably, 

cardiovascular imaging may be able to anticipate the beneficial 

effect of pharmacological agents on clinical endpoints and patients’ 

potential responsiveness to these agents.13 However, this may not 

provide sufficient evidence to change clinical practice, since it should 

be supported by large-scale trials possibly assessing both imaging and 

clinical endpoints. This would allow a rationalisation of cardiovascular 

drug development.

Limitations and Perspectives
Currently, there is no consensus on the specific roles of different 

imaging modalities or the best targets for imaging in the clinical setting. 

Despite the expectations for being able to phenotype atherosclerosis 

by distinct features, imaging cannot predict clinical outcome with 

sufficient accuracy as a standalone technique. This is exemplified by 
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a randomised clinical trial of dalcetrapid, which failed to demonstrate 

a reduction in major cardiovascular events, despite initial encouraging 

results in MRI and PET/CT primary endpoints.14,15

An explanation may reside in the inability of the imaging’s surrogate 

endpoints to detect either the ancillary and/or systemic mechanisms 

of action of the drug being investigated or any genetic differences 

among patients that may affect the clinical outcome. The concept of 

the risk continuum in atherosclerosis is progressively taking over from 

the categorical classification of vulnerable plaque, and the vulnerable 

plaque (rupture- and erosion-prone) concept is being integrated with 

the vulnerable patient concept.16–19 Naghavi et al. have suggested a 

cumulative vulnerability index to assess total vulnerability burden 

and strengthening traditional risk assessment strategies with imaging 

and biological findings. This should include the consideration of local, 

systemic and haematic features and myocardial vulnerability.16 The 

scientific community must also consider the setbacks that hinder 

the translatability of the existing imaging techniques, particularly for 

radiation, contrast media exposure and high costs.20

Theranostics
Considering the complexity, rationalising cardiovascular drug 

development and moving towards personalised, preventive and 

therapeutic medicine should be a mainstay of future research. 

Theranostics could be used to help bridge the gap between 

experimental evidence and large-scale trials.

Theranostics combines imaging and therapeutic functions by using 

imaging-based therapeutic delivery systems. Studies have employed 

nanoparticles for contrast agent-assisted diagnostic imaging, 

therapeutic delivery and subsequent evaluation of therapeutic efficacy. 

Theranostics is a result of advances in multiple natural and material 

sciences, particularly nanotechnology. Primarily used in oncology, it has 

been gradually applied to early and late atherosclerotic lesions with 

encouraging results.21 In theranostics, drug delivery and subsequent 

action in a region of interest is controlled by an external energy field – 

mostly ultrasound, light, or a magnetic field – in an attempt to minimise 

systemic and local effects.22

Ultrasound’s intrinsic technical characteristics, including real-time 

imaging to avoid radiation, allowed its early implementation in 

theranostic. The Combined Lysis of Thrombus in Brain Ischemia using 

Transcranial Ultrasound and Systemic tPA (CLOTBUST) trial and a later 

meta-analysis demonstrated the efficacy of ultrasound-enhanced 

fibrinolysis.23,24 However, this was not supported by a recent multicentre 

randomised controlled trial, showing no benefit in sonothrombolysis 

delivered within 3 hours of symptom onset over classical thrombolysis 

by alteplase.25 Contrast-enhanced ultrasound-targeted microbubbles 

have been used to promote angiogenesis in a model of critical limb 

ischaemia, to attenuated arterial neointimal formation and reduce 

microvascular dysfunction after acute MI in a large animal model.26–29 

Based on a similar principle, MRI has been used for site-specific 

vascular intervention. A magnetic field attracts and activates 

metallic nanoparticles with a protective coating to detect and inhibit 

inflammatory processes in atherosclerosis.30,31 In another study, gold 

nanorods were synthesised to diagnose and attenuate macrophage 

activity and release by delivering photodynamic therapy.32,33 

Similarly, paramagnetic nanoparticles have delivered anti-proliferative 

drugs and micro-RNA to inhibit either proliferation of smooth muscle 

cells or angiogenesis.34,35 In the past 5 years, a variety of new 

nanoparticles targeting lipids, inflammation signalling, vascular growth 

factors, endothelial function, oxidative stress, platelets function 

and apoptosis signalling have been delivered in pre-clinical studies 

using MRI, nuclear imaging and novel technical advances such as 

photoacoustic imaging.36,37

The development of imaging systems specifically designed for 

theranostic use will improve its potential. However, unsolved issues 

related to potential harmful exposures and costs need to be addressed 

before application of theranostics in extended human research and 

clinical practice could be feasible.

Conclusion
Cardiovascular imaging of atherosclerosis is a useful instrument, 

which corroborates and expands pathophysiological evidence on 

cardiovascular disease, and provides proof of concepts for medical 

therapy. It might also be used to anticipate the beneficial effect on 

clinical endpoints and the responsiveness to medical therapy and 

can represent surrogate endpoints in clinical trials. Theranostics could 

further translate experimental evidence and large-scale trials assessing 

clinical endpoints, rationalising cardiovascular drug development and 

paving the way to more personalised medicine. 
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