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Abstract

Intestinal worms, or soil-transmitted helminths (STHs), affect hundreds of millions of people

in all tropical and subtropical regions of the world. The most prevalent STH is Ascaris lumbri-

coides. Through large-scale deworming programs, World Health Organization aims to

reduce morbidity, caused by moderate-to-heavy intensity infections, below 2%. In order to

monitor these control programs, stool samples are examined microscopically for the pres-

ence of worm eggs. This procedure requires well-trained personnel and is known to show

variability between different operators interpreting the slides. We have investigated whether

ABA-1, one of the excretory-secretory products of A. lumbricoides can be used as a

coproantigen marker for infection with this parasite. Polyclonal antibodies were generated

and a coproantigen ELISA was developed. Using this ELISA, it was found that ABA-1 in

stool detected Ascaris infection with a sensitivity of 91.5% and a specificity of 95.3%. Our

results also demonstrate that there is a correlation between ABA-1 levels in stool and A.

lumbricoides DNA detected in stool. Using a threshold of 18.2 ng/g stool the ABA-1 ELISA

correctly assigned 68.4% of infected individuals to the moderate-to-heavy intensity infection

group, with a specificity of 97.1%. Furthermore, the levels of ABA-1 in stool were shown to

rapidly and strongly decrease upon administration of a standard anthelminthic treatment

(single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was

found that ABA-1 remained undetectable until day 28 and was detected at day 42 or 56, con-

current with the appearance of worm eggs in the stool. This report demonstrates that ABA-1

can be considered an Ascaris -specific coproantigen marker that can be used to monitor

infection intensity. It also opens the path for development of point-of-care immunoassay-

based tests to determine A. lumbricoides infection in stool at the sample collection site.

Author summary

Intestinal worms are one of the most common infections in tropical and subtropical parts

of the world. The roundworm Ascaris lumbricoides is the most prevalent and efforts are

ongoing to use preventive chemotherapy to reduce both prevalence and intensity of this
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infection. To monitor these programs, stool-based microscopy is currently used. We have

investigated the possibility of using ABA-1, an abundantly secreted protein from the

worm, as a biomarker in stool of infected individuals. We have developed an ELISA and

using this assay determined that ABA-1 as stool biomarker had a sensitivity of 91.5% and

a specificity of 95.3% to detect infection with A. lumbricoides. We also showed that ABA-1

in stool rapidly and strongly decreased upon administration of a standard anthelminthic

treatment. The main asset of this novel stool biomarker is its potential to be used in point-

of-care immunoassay-based tests to determine A. lumbricoides infection in stool at the

sample collection site.

Introduction

According to the World Health Organization (WHO), approximately 1.5 billion people, or

24% of the world’s population, are infected with soil-transmitted helminths (STH) worldwide

[1]. This group of parasites comprises the intestinal worms Ascaris lumbricoides, Trichuris tri-
chiura, and the hookworm species Ancylostoma duodenale and Necator americanus. They pose

a major threat to public health in large parts of the world. Children and women of childbearing

age are at highest risk of developing morbidity, which is mainly associated with moderate-to-

heavy intensity (M&HI) infections [2]. It is therefore the goal of the WHO to reduce the preva-

lence of preschool and school-aged children with STH infections of M&HI below 2% by 2030

[3]. To reach this goal, so-called preventive chemotherapy (PC) programs have been imple-

mented in which anthelminthic drugs (e.g. mebendazole or albendazole) are administered to

school-aged children, regardless of their infection status [4]. Global control efforts for soil-

transmitted helminthiasis are an essential part of the Sustainable Development Goals (SDGs)

put forward by the WHO where it contributes to achieve goal # 3: good health and well-being.

Monitoring of the current programs and decision-taking is currently based on the detection

and quantification of STH eggs in a stool smear using a compound microscope, the so called

Kato-Katz thick smear technique [5–8]. This procedure however lacks standardization, is

time-consuming and requires trained personnel and specific laboratory infrastructure. New

diagnostic tools are therefore highly desired. Target Product Profiles (TPPs) describing the

specific requirements for such new diagnostic approaches required for different use-cases

were published and the identification of so-called coproantigens (i.e. antigen biomarkers pres-

ent in stool) will enable the development of novel diagnostic tools to assess progress against

program goals (use-case 2) [5].

In the veterinary world, the use of coproantigen detection to diagnose helminth infection

has become widely adopted [9–11]. Diagnosis of human helminth infections based on

coproantigen detection has also been investigated for e.g. Fasciola species, Strongyloides ster-
coralis and Taenia solium [12–14]. To our knowledge, assays to detect roundworm coproanti-

gens have been limited to Toxocara species and no specific proteins have been identified that

are used as coproantigen for Ascaris species, such as A. suum in pigs and A. lumbricoides in

humans [11, 15].

A few studies have explored the excretory-secretory products from different stages of A.

suum [16–18]. These analyses were however based on isolated worms or larvae and to our

knowledge no reports have described whether the identified proteins were readily detectable

in feces of individuals with active infections. We have therefore investigated whether ABA-1, a

protein that is known to be released by adult Ascaris worms and some larval stages, could be

detected in fecal samples using a coproantigen ELISA [19]. ABA-1 is a well-known allergen of
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approximately 14 kDa and is among the most abundant proteins synthesized by the nematode

parasite Ascaris [19–22].

Materials and methods

Ethics approval and consent to participate

Human samples from Kenya were collected as part of a field study in Kenya. The study was

approved by the KEMRI Scientific and Ethics Review Unit (SERU), Nairobi, Kenya (Protocol

# KEMRI/SERU/CGHR/102/3554). Since all study participants were minors, informed con-

sent forms were signed by parents/guardians of the study participants, and verbal assents were

obtained from all study participants.

All animal experiments were conducted in accordance with the E.U. Animal Welfare Direc-

tives and VICH Guidelines for Good Clinical Practice. Ethical approval to conduct the studies

was obtained from the Ethical Committee of the Faculty of Veterinary Medicine, Ghent

University.

Human study samples

Plasma and urine samples from Kenya were collected as part of a field study. The study was

approved by the KEMRI Scientific and Ethics Review Unit (SERU), Nairobi, Kenya (Protocol

# KEMRI/SERU/CGHR/102/3554). Since all study participants were minors, signed informed

consent forms were obtained from their parents/guardians, and verbal assents were obtained

from all study participants. This study was undertaken in the former Nyanza province, in the

southwest part of Kenya, with collections in the Kisumu county (high S. mansoni prevalence

area) and Siaya county (high STH prevalence area). Stool samples were collected in order to

determine the STH and Schistosoma mansoni infection status, based on qPCR-based quantifi-

cation of helminth DNA present in stool. A total of 474 participants that donated stool samples

were included in this study. Of these participants, 71 were found to be positive for A. lumbri-
coides, 30 for T. trichiura, 16 for hookworm, and 82 for S. mansoni, based on qPCR detection

of helminth DNA in stool (see below). After the cross-sectional collection of samples, a total of

22 A. lumbricoides infected individuals were treated with a single dose of albendazole (400mg)

and stool samples were collected at day 6, day 12 and day 24 post-treatment. Infection status at

each timepoint was determined by qPCR-based quantification of helminth DNA present in

stool.

Pig study samples

Twenty-five pigs were selected for this study. A total of 5 pigs served as uninfected controls. A

first group of 10 pigs received a trickle infection of 20 infective A. suum eggs for a total of 3

times per week. A second group of 10 pigs received a dose of 100 infective A. suum eggs three

times per week. Doses were administered orally in a food bolus to each pig individually in

order to mimic a low natural exposure. Pigs received infection doses for a total of 6 weeks. In

total this corresponded with 360 or 1800 infective eggs given to each pig over the course of the

trial depending on their respective infection group. On day 0, 14, 28, 42 and 56, stool was col-

lected. These samples were used to determine the number of A. suum eggs per gram of feces

using the Mini-FLOTAC method and to assess ABA-1 coproantigen levels [23].

Stool-based assessment of helminth infection

Helminth infection in humans was assessed on stool samples using the Kato-Katz procedure

and/or qPCR analysis, as described before [24, 25]. Briefly, stool samples stored in ethanol
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were first subject to centrifugation at 9,000 g for 1.5 minutes and the resulting pellet was used

for DNA extraction using the DNeasy PowerSoil Kit (Qiagen, Germany) according to the

manufacturer’s instructions. A. lumbricoides DNA was quantified by qPCR using primers and

probe targeting the A. lumbricoides ITS1. In case of a discordant infection status (positive vs.
negative) between egg count and qPCR analysis, qPCR was repeated on a second stool aliquot

from the same individual and qPCR results were confirmed. It was therefore decided to use

the qPCR data as the reference data set.

For determination of a qPCR-based cut-off for moderate infection, linear regression analy-

sis was performed on log-transformed qPCR data (in cps/rxn) and Kato-Katz data (in epg).

Based on this analysis, a qPCR result of 700 cps/rxn was found to correspond to 5,000 epg, i.e.

the boundary for moderate infection intensity for A. lumbricoides (S1 Fig).

Preparation of stool samples for coproantigen ELISA

Stool sample aliqouts—frozen at -80C - were allowed to thaw at room temperature and an ali-

quot of approx. 250 mg was transferred to a Powerbead tube (Qiagen, Germany). Samples

were further processed by addition of 1 mL of ice-cold PBS followed by bead beating in a tissue

homogenizer (Bertin, France) for 1 minute at 6,500 rpm. Stool extracts were centrifuged at

23,000 x g for 15 minutes at 4˚C and supernatant was transferred to a protein LoBind tube

(Eppendorf, Germany) and stored at -20˚C till further use. Where indicated the bead beating

step was omitted from the procedure.

Preparation of pseudocoelomic fluid of A. suum and a protein extract of

adult A. suum worms

Adult A. suum worms were collected from naturally infected pigs at the local slaughterhouse.

Collected adult worms were washed three times in tap water and the pseudocoelomic fluid was

collected after cutting of the posterior tip off the worm. The pseudocoelomic fluid was then

centrifuged for 15 min at 10,000 × g and 4˚C and the supernatant filtered (0.22 μm) and stored

at -80˚C until use. Adult worm protein extracts were produced as described before [26].

Briefly, extracts were prepared by grinding the adult worms with a mortar and pestle that was

placed in a bath of liquid nitrogen. The worm powder was transferred to a 15 ml tube and

mixed with PBS and proteinase inhibitor cocktail (1:100) (Sigma, Diegem, Belgium). The

homogenate was then thoroughly mixed by inversion at 4˚C for two hours followed by centri-

fugation for 30 min at 10,000 x g at 4˚C. The supernatant (PBS extract) was removed and steril-

ized by filtration (0.22μm) and stored at -80˚C until use. Protein concentration was

determined by the BCA method (Pierce, Rockford, USA).

Production of recombinant ABA-1

An expression vector with the ABA-1 sequence (GenBank ID: AAD13651.1) was constructed

and used to produce recombinant his-tagged ABA-1 in a bacterial expression system (Euro-

gentec, Belgium). The produced recombinant protein was purified using chromatography

His-tag based column under denaturing conditions. After elution, to remove urea and imidaz-

ole, the purified fraction was dialyzed at 4˚C against a refolding buffer containing decreasing

concentrations of urea and finally against PBS buffer. Approximately 13 mg of the purified

His-tagged protein was obtained and this purified protein was found by SDS-page to have a

molecular weight of approximately 32 kDa, similar to the theoretical Mw (S2 Fig). A total vol-

ume of 11.9 mL at a concentration of 1.16 mg/mL was stored at -20˚C. This stock solution was

further diluted to 10 μg/mL in PBS, followed by a 1:2 dilution with glycerol to a final concen-

tration of 5 μg/mL. Aliquots of this working solution were stored at -20˚C till further use.
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Generation of anti-ABA-1 polyclonal antibody

For the preparation of the polyclonal antibody, rabbits were immunized using 4 different

injections with 100 μg of the recombinant ABA-1 with a non-Freund adjuvant, based on the

Speedy 28-day program (Eurogentec, Belgium). Antibodies were purified from 70 mL serum

of the animal with the highest titer using an antigen-specific affinity purification. A total of

24.3 mg of affinity purified IgG was dissolved in 6.2 mL of PBS with 0.01% thimerosal and

0.1% BSA. Aliquots of the purified antibodies, 1:2 diluted with glycerol were stored at -20˚C.

HRP conjugated polyclonal antibody was produced (Eurogentec, Belgium) by covalently

conjugating Horse Radish Peroxidase (Sigma, USA) using NaIO4. A total of 5 mg of antibody

coupled to HRP was obtained in a volume of 2 mL PBS. Aliquots of the HRP conjugated anti-

bodies, 1:2 diluted with glycerol were stored at -20˚C.

Preparation of ABA-1 calibration curve

A stock solution of the recombinant ABA-1 was prepared at a concentration of 5 μg/mL in

PBS. Calibration samples were generated by first diluting this stock solution in block buffer

(Superblock + 0.05% Tween) to a concentration of 100 ng/mL and then 1/3 serial dilutions

were generated in block buffer till a concentration of 0.137 ng/mL. Also, a blank sample con-

taining only block buffer was included.

Enzyme linked immunosorbent assay

The ELISA for coproantigen detection was performed as follows. Flat bottomed polystyrene

plates (Maxisorp Immuno Plate, Nunc, Denmark) were coated with purified rabbit anti-ABA-

1 IgG diluted to 0.8 μg/mL in PBS and incubated for 2 hours at room temperature. Next, after

washing with PBS-T (PBS with 0.05% Tween-20) the plate was blocked with block buffer

(Superblock + 0.05% Tween) for 1 hour at room temperature. Calibration samples or stool

extracts, diluted 5-fold in block buffer, were added and incubated for 1 hour at room tempera-

ture. Subsequently, plates were washed 3 times with PBS-T and purified rabbit anti-ABA-1

IgG conjugated with HRP was added at a concentration of 2.5 μg/mL and incubated for 1 hour

at room temperature. Plates were washed 5 times with PBS-T and color development was done

using Sureblue TMB (KPL, the Netherlands). The reaction was stopped after 10 minutes using

1N HCl and optical density was measured at 450 nm.

Calibration curves were analyzed using 5-parameter logistic regression in SoftMax Pro ver-

sion 7.1 and concentrations in the sample extracts were determined by back-calculating the

values obtained in the ELISA using this calibration curve and correction for the dilution. Con-

centrations of ABA-1 in stool were expressed as ng ABA-1 / g stool by multiplying the concen-

tration in the 5-fold diluted extract (in ng/mL) by 20 (based on an estimated 250 mg in 1 mL

of extraction buffer).

Statistical analysis

Calibration curves for ABA-1 were generated using 5-Parameter Logistic regression and ABA-

1 concentration in unknown and calibration samples were back-calculated using this calibra-

tion curve. Accuracy and precision were determined by analyzing 4 calibration curves on 3

consecutive days (also called runs). Accuracy at each calibration point was determined by

dividing the average back-calculated value by the nominal value. For each calibration point,

the within-run coefficient of variability (CV) was calculated by dividing the average standard

deviation (sd) of the three days by the average concentration for that point. The between-run

CV was calculated as the sd of the average of each day divided by the average concentration for
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that point. For evaluation of the correlation between ABA-1 coproantigen ELISA and qPCR-

based detection of A. lumbricoides DNA in stool, linear regression analysis was performed on

log-transformed data. For determination of the association between ABA-1 positive stool and

a specific infection, contingency tables were prepared, Fisher’s exact test was performed, and

Odds ratio was calculated. For association with A. lumbricoides, all data were used, for associa-

tion with any other infection, only data from A. lumbricoides negative subjects were used. All

analyses were performed using GraphPad Prism version 7.00.

Results

An ELISA was developed using affinity-purified anti-ABA-1 polyclonal rabbit antiserum (Fig

1A). Performance characteristics of the ELISA are presented in S1 Table. The lower limit of

quantification (LLOQ) of the assay was defined at 0.137 ng/mL, the upper limit of quantifica-

tion (ULOQ) was found to be 11.1 ng/mL. Since stool extracts were prepared by resuspending

approximately 250 mg stool in 1 mL extraction buffer, and extracts were diluted 5-fold before

being analyzed, this corresponded to an LLOQ of 2.74 ng/g stool and an ULOQ of 222 ng/g

stool. In order to demonstrate that the ELISA was able to detect native ABA-1 produced in
vivo by the worm, pseudocoelomic fluid of A. suum and a protein extract of adult A. suum
worms were tested in the ELISA (Fig 1B). Both samples were found to have very high levels of

ABA-1, with the worm extract about 1 mg/mL and the pseudocoelomic fluid about 10 mg/mL.

To assess whether ABA-1 could be detected in stool and whether this was associated with

eggs or excreted by the worm, a subset of four A. lumbricoides qPCR positive stool samples

were tested. An aliquot of each sample was processed either with or without a bead beating

step in the procedure (Fig 1C). This analysis revealed that bead beating results in a strong

increase in the amount of ABA-1 protein detected in the stool supernatant by the coproantigen

ELISA.

Using this ELISA, including the bead beating procedure, the concentration of ABA-1 was

determined in a stool sample set of 474 individuals from the Kisumu region in Kenya, an area

that is endemic for A. lumbricoides. Of the 71 individuals that were qPCR positive for A. lum-
bricoides, 65 had ABA-1 levels in stool supernatant above LLOQ, corresponding to a sensitivity

of 91.5% (Fig 2A). Of the 403 A. lumbricoides qPCR negative individuals, 19 were found

Fig 1. A. Calibration curve for the ABA-1 coproantigen ELISA. Yellow area indicates the dynamic range of the assay, left vertical dotted line corresponds to the

LLOQ (0.137 ng/mL), right vertical dotted line to the ULOQ (11.1 ng/mL), the horizontal dotted line corresponds to the background signal detected in blanks. B.

Analysis of a serial dilution of pseudocoelomic fluid (blue circles) and an adult worms extract (red circles) on the ABA-1 ELISA. C. ABA-1 coproantigen ELISA using

stool extracts with and without bead beating indicates that a cell destruction step is needed to release ABA-1 in the stool supernatant.

https://doi.org/10.1371/journal.pntd.0008807.g001
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positive in the ABA-1 coproantigen ELISA, corresponding to a specificity of 95.3%. Although

18 subjects of the A. lumbricoides negative group were found to be positive for T. trichiura, 9

for hookworm and 75 for S. mansoni, there was no association with ABA-1 detection in stool

and either hookworm or S. mansoni infection (P > 0.05), while a weak association was found

with T. trichiura infection (P = 0.046). To assess whether possible cross-reaction with a T. tri-
chiura protein was causing this, blast analysis was performed on the T. trichiura proteome, but

no homologs could be found (S1 Data). The association with A. lumbricoides infection, how-

ever, was highly significant (P< 0.0001). Odds ratio for a positive ABA-1 result was 219 (95%

CI: 84.7–540) for A. lumbricoides infection, while this was 4.61 (95% CI: 1.30–16.4) for T. tri-
chiura, 2.61 (95% CI: 0.224–16.2) for hookworm and 0.501 (95% CI: 0.113–2.07) for S. man-
soni. Furthermore, there was a highly significant positive correlation between A. lumbricoides
DNA copies, and ABA-1 levels found in stool (R2 = 0.7484, P< 0.0001, Fig 2B).

Since A. lumbricoides morbidity is mainly attributed to M&HI infections (> 5,000 epg), we

used this correlation to determine a morbidity cut-off for ABA-1. Based on the linear regres-

sion between ABA-1 levels and DNA copies in stool, a morbidity cut-off for ABA-1 of 18.2 ng/

g stool was determined, being the minimal ABA-1 concentration that corresponds to M&HI

infection. Of the 71 A. lumbricoides infected individuals studied here, 19 were found to have a

M&HI infection based on qPCR. Of those, 13 had ABA-1 levels above this cut-off, correspond-

ing to a sensitivity of 68.4%. Of the 455 samples with no or low intensity infection, only 13

were found to have ABA-1 levels above this cut-off, corresponding to a specificity of 97.1%.

Interestingly, 12 false positives had low intensity infection, and only one was negative for A.

lumbricoides, reconfirming the high specificity of the ABA-1 ELISA.

To further establish the role of ABA-1 as a biomarker for A. lumbricoides infection, stool

samples were analyzed from 22 patients with A. lumbricoides infection who were treated with

albendazole. Samples were collected at 0, 6, 12 and 24 days after treatment. qPCR analysis on

these stool samples showed complete disappearance of STH DNA in all subjects, indicating

killing or expulsion of the parasite (S3 Fig). The quantification of ABA-1 levels in the different

stool samples revealed a strong reduction in ABA-1 levels, most of them dropping below

LLOQ already at 6 days post treatment. Only 3 out of 22 (13.6%) subjects had ABA-1 levels

above the LLOQ at day 12 and 2 out of 22 (9.1%) were positive at day 24 (Fig 2C). These results

further establish the value of ABA-1 as a means to monitor A. lumbricoides infection.

Fig 2. A. Assessment of ABA-1 coproantigen levels in stool samples from a cohort of 474 subjects collected in Kenya, stratified according to their A. lumbricoides qPCR

result. Open circles indicate subjects with M&HI infection. B. Correlation between ABA-1 coproantigen levels and A. lumbricoides DNA detection in stool collected in

Kenya (expressed in A. lumbricoides copies/reaction). Based on the linear regression, a cut-off of 18.4 ng/g stool was defined to identify subjects with M&HI infection.

Moderate infection was defined as>700 cps/rxn (see Materials and Methods). C. Effect of treatment with albendazole on the presence of ABA-1 in stool. Stool samples

were collected before (Day 0) and at different timepoints (6, 12 and 24 days) after treatment with albendazole.

https://doi.org/10.1371/journal.pntd.0008807.g002
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Since trickle infection of pigs with A. suum is a good model to study A. lumbricoides infec-

tion [27], ABA-1 levels were determined in stool samples collected from 25 pigs during the

course of the infection: 5 pigs were uninfected (control), 10 pigs were experimentally inocu-

lated with 20 A. suum eggs/day (low trickle) and 10 pigs were experimentally inoculated with

100 A. suum eggs/day (high trickle). In all collected stool samples, both fecal egg counts (FECs)

and ABA-1 levels were determined (Fig 3). On day 0, 14 and 28 none of the pigs had detectable

ABA-1 levels in stool. However, on day 42, two pigs (10%) became positive for ABA-1 and on

day 56 this was further increased to 10 pigs (50%). These data might suggest that also in pigs,

ABA-1 is a biomarker for Ascaris infection. It might however require longer follow-up studies

or higher infection intensities to clearly determine the relationship between ABA-1 in stool

and Ascaris infection in pigs.

Discussion

The accurate detection of A. lumbricoides infection is crucial for epidemiologic studies as well

as for STH control and elimination programs [5]. Copromicroscopy for detection of Ascaris
eggs in fecal samples, as well as qPCR-based detection of worm DNA in fecal samples, are the

only currently applied techniques to diagnose this gastrointestinal infection [7, 25]. Micros-

copy lacks accuracy and is operator dependent, while qPCR requires specific laboratory infra-

structure and currently lacks standardization [25, 28–30]. Detection of specific serum

antibodies to A. suum has been evaluated using ELISA, but as for any serologic assay that

detects the presence of serum antibodies, such a test may not necessarily indicate a current

infection [31–33].

The main aim of this study was to develop a sensitive coproantigen ELISA test for A. lum-
bricoides, based on the detection of ABA-1 in stool. The ABA-1 ELISA had a LLOQ of 2.74 ng/

g stool. Evaluation of this test on a panel of stool samples from school-aged children in Kenya

with known parasitological status demonstrated a 95.3% specificity and a 91.5% sensitivity for

A. lumbricoides detection. The assay that was developed not only resulted in a qualitative

assessment of infection but was also shown to quantitatively reflect infection intensity. As

such, a cut-off of 18.2 ng ABA-1/g stool in this experimental set-up was determined to corre-

spond to the boundary between low and moderate infection intensity. This cut-off is of

Fig 3. Quantification of fecal egg count (A) and ABA-1 in stool (B) from A. suum infected pigs: control group (green), low (red) and high (blue) trickle infected pigs.

Stool samples were collected before infection (Day 0) and at different timepoints during trickle infection: 14 days, 28 days, 42 days and 56 days.

https://doi.org/10.1371/journal.pntd.0008807.g003
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particular interest as Ascaris-related morbidity is predominantly associated to M&HI infec-

tions [2]. This is also why the WHO has set the goal to reduce the prevalence of preschool and

school-aged children with STH infections of M&HI below 2% by 2030 [3]. Using this cut-off,

68.4% of the subjects with M&HI infection, as determined by qPCR, were correctly identified.

Although this might seem suboptimal, it is important to emphasize that in the current study

the number of M&HI infection was only 19, with most of them being just above the threshold

for moderate infection. Also, it is known that there is significant variability in egg counts

between different aliquots from the same stool sample [34]. Hence, there might also be signifi-

cant variation in ABA-1 levels. Besides this cross-sectional analysis, a longitudinal analysis was

performed on samples collected from A. lumbricoides infected subjects that were treated with

albendazole. This treatment typically results in high cure rates, with in most cases no more

eggs detected within 7 to 10 days after treatment, something that was observed in the current

study as well [35–37]. Similarly, ABA-1 levels also dropped strongly after treatment, with only

13.6% and 9.1% having ABA-1 levels above the LLOQ at 12 days and 24 days post-treatment,

respectively. The very low ABA-1 levels observed after 24 days in some subjects may be attrib-

uted to worms which survived treatment, but with reduced or cessated egg production (drug-

induced embryostasis), a phenomenon already demonstrated for Onchocerca volvulus and A.

suum [38, 39]. Alternatively, this could also be caused by some remaining ABA-1 in the gut or

possibly even from a new worm infection.

Additional demonstration of the role of ABA-1 as biomarker for Ascaris infection was

achieved by assessing ABA-1 levels in pigs that were subjected to trickle infection with A.

suum, which is often used as a model to study the host-parasite relationship. Since in the ABA-

1 region that was used for the generation of the polyclonal antibodies there is only one amino

acid difference between A. suum and A. lumbricoides (99.6% identity), it was expected that the

antibodies would cross-react with A. suum ABA-1. It was found that at day 42 of the infection,

the first pigs started to shed eggs in their stool and similarly, the first ABA-1 positive stool sam-

ples were detected at day 42. Two weeks later, already 50% of the pigs were ABA-1 positive,

while 60% were positive by Mini-FLOTAC, indicating that ABA-1 appearance is closely related

to the appearance of eggs in stool. This latter observation, together with the observation that

bead beating was required to release ABA-1 from stool for ELISA testing, might support the

hypothesis that ABA-1 in stool is mainly associated with parasite eggs or egg fragments. The

concurrent appearance of ABA-1 and eggs in stool of A. suum infected pigs is different to what

was observed with the Trichuris vulpis porin coproantigen assay where coproantigen was

detected as early as 23 days post-infection while eggs were not observed before day 69 [9]. It

can’t be excluded that the current ABA-1 ELISA lacks sensitivity and that a more sensitive

assay might be needed for detection of prepatent infection. In order to further investigate

whether ABA-1 is associated to eggs, it could be of interest to study both male and female

worm extracts, or to investigate the presence of ABA-1 in stool from individuals that were

found to be infected only with male worms (as shown upon expulsion of the worms).

The biggest advantage of a coproantigen test could be its use at the collection site. When

school-based deworming programs are being executed, the teams on the ground could use

such a test to immediately assess the prevalence and intensity of A. lumbricoides infection in

that community. Integration of school-based surveillance for STH in the deworming programs

or other NTD surveillance programs, might be a very cost-effective approach [40, 41]. Target

product profiles for such use-case however describe increased reliability in lower transmission

settings compared to microscopy [5]. It will require further evaluation to determine whether

the coproantigen ELISA described here meets this criterium. The current protocol of the

ABA-1 coproantigen test is based on the release of ABA-1 in the fecal samples using bead beat-

ing, followed by ELISA to determine the presence and amount of ABA-1 in the extract.
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Although the bead beating step appears to be essential, it might be of interest to further investi-

gate how this procedure could be simplified and possibly performed in the field. Some simpler

technologies to replace the bead beating step are available and could be explored [42, 43]. To

release the ABA-1 from stool, we might use strong chaotropic reagents, such as guanidium

hydrochloride, which has been shown to be effective in lysing Mycobacterium tuberculosis and

even plant cell walls [44, 45]. The fact that ABA-1 is a lipid-binding protein might suggest that

certain detergents might enable the release of ABA-1 from the fecal samples without the need

of bead beating [19]. The second step in the protocol, the ELISA based detection could easily

be adapted to a lateral flow immunoassay (LFIA). Similar LFIA’s have been developed for

detection of M. tuberculosis antigens in sputum samples, for the circulating cathodic antigen

(CCA) in urine as diagnostic test for S. mansoni, and many more [46–49]. Also, the antibodies

used in the ELISA described here are polyclonal antibodies. The development of monoclonal

antibodies might result in an assay with even higher sensitivity and specificity. The current

data show that a coproantigen test is a viable option for detection of helminth infection in

man. Although we have shown that ABA-1 is a good coproantigen candidate for A. lumbri-
coides, there might also be other proteins with an even better sensitivity/specificity profile.

In conclusion, we developed a new sensitive coproantigen ELISA that detects Ascaris ABA-

1 in stool sample extracts. Using this ELISA, we demonstrated that ABA-1 in stool is a highly

sensitive and specific biomarker to detect infection with A. lumbricoides with ABA-1 levels

correlating to infection intensity. A user-friendly and field-adjusted method of this assay could

thus potentially be useful in monitoring infection prevalence and intensities in communities

during STH control programs.
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