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Abstract
Lung segmentation algorithms play a significant role in segmenting theinfected regions in the lungs. This work aims to

develop a computationally efficient and robust deep learning model for lung segmentation using chest computed

tomography (CT) images with DeepLabV3 ? networks for two-class (background and lung field) and four-class (ground-

glass opacities, background, consolidation, and lung field). In this work, we investigate the performance of the

DeepLabV3 ? network with five pretrained networks: Xception, ResNet-18, Inception-ResNet-v2, MobileNet-v2 and

ResNet-50. A publicly available database for COVID-19 that contains 750 chest CT images and corresponding pixel-

labeled images are used to develop the deep learning model. The segmentation performance has been assessed using five

performance measures: Intersection of Union (IoU), Weighted IoU, Balance F1 score, pixel accu-racy, and global accu-

racy. The experimental results of this work confirm that the DeepLabV3 ? network with ResNet-18 and a batch size of 8

have a higher performance for two-class segmentation. DeepLabV3 ? network coupled with ResNet-50 and a batch size of

16 yielded better results for four-class segmentation compared to other pretrained networks. Besides, the ResNet with a

fewer number of layers is highly adequate for developing a more robust lung segmentation network with lesser compu-

tational complexity compared to the conventional DeepLabV3 ? network with Xception. This present work proposes a

unified DeepLabV3 ? network to delineate the two and four different regions automatically using CT images for CoVID-

19 patients. Our developed automated segmented model can be further developed to be used as a clinical diagnosis system

for CoVID-19 as well as assist clinicians in providing an accurate second opinion CoVID-19 diagnosis.
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1 Introduction

Recent report from WHO reports that lung disorders are the

third prominent cause of death and about three million

people across the globe lose their lives each year due to

different types of lung disorders [1]. Lung diseases are

mostly caused due to infections by either bacteria or

viruses. Also smoking, air pollution and genetic factors

affect the lung. If the lungs that have been negatively

affected by a bacterial or viral infection are not treated

within a short time frame, the lungs can suffer severe

consequences. More recently, Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) has been shown

to be an emerging human infectious disease that can have

detrimental consequences on the lungs and has a significant

infectious rate. Early diagnosis of lung infections through

advanced clinical diagnosis systems using artificial intel-

ligence (AI) methods could save people before more

damage to the lungs have can occur. In recent years, due to

the lack of medical specialists, there is a huge demand for

developing intelligent computerized clinical diagnosis

systems (CCDS) using AI methods to assist physicians in

an accurate clinical diagnosis and treatment. Medical

imaging tools (i.e., chest x-ray (CXR), computerized

tomography (CT), and magnetic resonance imaging (MRI))

play a vital role in CCDS for diagnosing lung diseases.

They provide more valuable information about lung

infection with higher precision and accuracy [2]. Such

imaging modalities are very helpful for the diagnosis of

lung diseases. Specifically, CT images give clearer and

more detailed information about the lungs than CXR [3].

To develop CCDS, it is essential to segment the lungs from
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medical images such as CXR or CT scan for better clinical

interpretation. Hence, the segmentation process is impor-

tant, and it is used for diagnosing different types of

pathologies and severity levels of lung diseases. In the

segmentation process, the researchers are interested in

investigating the infected regions in the lungs using the

region of interest (ROI). There are several lung segmen-

tation algorithms proposed using conventional approaches,

namely gray-level co-occurrence matrix (GLCM), water-

shed method, thresholding method, edge-based method,

local binary patterns (LBP), region-based method, and

others have been proposed in the literature [4, 5]. In the

thresholding method, different types of thresholding algo-

rithms are used for segmentation such as global thresh-

olding, Otsu’s binarization, adaptive thresholding [6].

These methods have several limitations and one of the most

evident limitations is that some of the most vital infor-

mation in the images related to diagnosis can be eliminated

due to improper selection of threshold values. Up to this

work and for the most part, researchers have used either a

biased or heuristic approach to select the threshold values

[7]. Region-based methods like region growing, region

merging and splitting, etc. are computationally inefficient

and are highly sensitive to noise [8]. The region-based

methods and edge-based methods are not successful in

segmenting the lungs using noisy images. Clustering-based

techniques such as fuzzy C-means and K-means are unable

to find an optimal value of cost function to perform effi-

cient lung segmentation. Also, in water-shed methods, it is

complex to calculate the gradient for ridges. Some of the

major limitations in the conventional segmentation algo-

rithms are: (a) Highly challenging to select the exceptional

thresholding value (or) hyperparameters, (b) Different

assumptions and approximations are used in threshold

parameter selection, (c) Lack of expertise and intelligence

in understanding the image descriptions, and (d) Segmen-

tation for the most part is accomplished using a preferred

number of features. In some cases, the process of seg-

mentation also segments the unwanted information and

highly sensitive to noise. Statistical methods and descrip-

tors are mostly utilized by the researchers to wrest features

from the lung regions in MRI and CT images [9]. Conse-

quently, the above-mentioned approaches require more

processing time, and can lead to, many times, extraction of

irrelevant and redundant information.

Recently, deep neural networks attracted many

researchers and they proposed different types of deep

learning algorithms for semantic lung segmentation

[10, 11]. To achieve better segmentation, deep neural

networks with encoder and decoder overcome the over-

lapping issue of the model gets trainedwith both forward

and backward propagation and hence checks twice to

reduce the loss value. Some of the major advantages of

DNN are [5]: (i) fewer numbers of required images can be

sufficient to design a network, as well as provide better

performance than many conventional methods. (ii) There is

no need to feed all points and edge features for segmen-

tation. (iii) Convolutional nets can extract deep features to

effectively segment the images. (iv) The input of the DNN

architecture looks like a contracting path to extract high-

level information, and the output has a symmetric

expanding path to precisely localize the information, and

(v) annotated lesions can be extracted without handcrafted

features and labeling. Unlike conventional methods, the

DNN can be used todirectly segment the lungs using either

CXR or CT images by extracting deep features without

prior knowledge requirement.

In the literature, lung segmentation using medical ima-

ges have been mostly performed using Convolutional

neural networks (CNNs) than other DNNs [12, 13]. In

general, segmentation can be performed either semanti-

cally or instance-based. In instance segmentation, multiple

objects of the same class are treated as distinct individual

instances, which is unlike objects of the same class which

are considered as the same entity in semantic segmentation

[14]. In clinical diagnosis, semantic segmentation is widely

used. Some of the most used segmentation networks

besides CNN are, DeepLabv3, U-Net, SegNet, andFully

Convolutional Network (FCN) [9, 13, 15]. DeepLabv3 was

developed by Google, it gives exceptional performance in

semantic segmentation compared to other segmentation

networks and it assigns semantic labels to each pixel inthe

image [16]. Recently, DeepLabV3 performed better than

other DNNs for segmentation using MRI images [17]. The

DeepLabV3 architecture consists of an atrous encoder and

can encode multi-scale contextual information. As well as

having the ability to decode for concatenation of lower-

level features. Their four versions of DeepLab network

have been developed by Google, DeepLabv1, DeepLabv2,

DeepLabv3, and DeepLabv3? [18]. DeepLabv3? is one of

the faster and stronger DNN’s compared to its earlier

version. The major differences between different DeepLab

networks are given in Table 1.

Though the performance of the DeepLabV3? network

is highly competitive than other DNNs and also with the

other versions of DeepLab, the network has Xception

network as a pretrained network with nearly 23 million

parameters and has 71 layers. Hence, the computational

efficiency of the model is lower compared to other DNN’s.

Hence, it is highly essential to investigate theDeepLabV3?

model with different pretrained networks to improve its

computational efficiency without affecting its performance.

For the most part, earlier work focused on segmenting the

lung using CT images without considering different sub-

regions of lungs during segmentation. The changes in lung

segmentation network architecture do not improve the
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quality of segmentation and occasionally give the bad

performance [19]. Most of the semantic lung segmentation

algorithms proposed in the literature are focused on seg-

menting lungs from the background using CXR and chest

CT-scan images for diagnosis. A very limited number of

the literature has focused on multi-class segmentationusing

medical images. To develop an intelligent clinical diag-

nosis system, it is highly essential to segment different

regions of the lungs to identify the level of infec-

tion/severity through automated methods [20]. This work

aims to design and develop a lightweight and computa-

tionally efficient DNN architecture for multi-class lung

segmentation using chest CT images. The DeepLabv3?

network is used with four pretrained networks (ResNet,

Xception, MobileNet-v2, and Inception-ResNet) to com-

pare its performance in lung segmentation using chest CT

images. The input images fed to the network are segmented

into two class (lung and background) and four-class (lung,

ground-glass opacities, background, and consolidation).

The performance of the network is also tested with two

different image sizes, namely 256 9 256 and 512 9 512

to compare the performance of the networks for lung

segmentation. The deep neural network hyperparameters

are selected basedon empirical analysis and finally, the

DeepLabV3? with the best-pretrained network has been

reported in this work for two-class and four-class auto-

mated lung segmentation tasks.

The major contributions of this present work are given

as follows:

1. Investigated the DeepLabV3? DNN with different

transfer learningapproaches and proposed a Dee-

pLabV3? network with ResNet-18 that requires a

lesser number of layers than conventional Dee-

pLabV3? net-work. The proposed network requires

fewer network parameters and achieved higher accu-

racy in semantic segmentation compared to the orig-

inalDeepLabV3? network.

2. Two different image sizes of chest CT images with

different transfer learning approaches are investigated

and employed grid search method to identifythe

optimal network parameters for

DeepLabV3 ? network.

3. Proposed a unified segmentation model to delineate the

two (lung andbackground) and four different regions

(lung, background, ground-glassopacities, and consol-

idation) automatically using CT images for CoVID-

19detection system.

The rest of the paper is organized as follows. Literature

review of earlier works related to semantic lung segmen-

tation from chest CT-images is presented in Sect. 2.

Detailed methodology of the present work is provided in

Sect. 3. The experimental results obtained, discussion,

limitations, and future works are described in Sect. 4.

Finally, the conclusion of the present work is given in Sect.

5.

2 Related work

This section reviews the related work of lung segmentation

methods developed using conventional and deep learning

methods. One work describes that Optimal thresholding

methods based lung segmentation in cancer CT scan ima-

ges for developing a computer-aided diagnosis (CAD)

system. The value of the threshold for segmenting the lung

region and background was computed using the mean pixel

values in the specific region. After thresholding, the region

growing, and connectivity analysis was performed for lung

segmentation [21]. Gray-level thresholding was used to

segment the lung region, a dynamic programming method

is employed to select the right and left lungs, and finally,

morphological operations are performed to smoothen the

irregular boundaries around the lungs. In this work, they

extracted the lung region using gray-level thresholding. In

recent work, watershed thresholding based on markers

approach was used for semantic lung segmentation in chest

CT-scan images using DeepLabV3 network with Mobile-

NetV2 as a backbone for binary classification (CoVID-19 /

non-CoVID-19). A set of statistical features such as cir-

culatory area and perimeter of the segmented area was

computed from Gray Level Co-occurrence Matrix (GLCM)

and the optimal features used for classification were

selected through the use of a genetic algorithm (GA) [22].

Moreover, Wang et.al have designed and developed a fully

convolutional network (FCN) based deep learning model

for semantic segmentation. The proposed FCN achieved

approximately 5% improvement compared to conven- tio-

nal U-Net for the same application [23]. The texture

analysis method has been used for segmenting the lung

field from chest CT images of patients with interstitial lung

disease (ILD) [24]. The authors have proposed a thresh-

olding method for lung segmentation and then the abnor-

mal regions in the lung field have been identified through

texture-feature images derived from the co-occurrence

matrix. More recently, researchers have utilized the

Gaussian mixture models (GMMs) to improve the graph

cuts algorithm for lung field segmentation in chest CT

images [19]. The expectation-maximization (EM) algo-

rithm is used to compute the weight or probability of a

pixel that belongs to the lungor background. Graphs cre-

ated using those weights and minimum cut theory were

used to perform the segmentation.

After the CoVID-19 pandemic, many researchers in the

field focused effortson identifying the effect of CoVID-19

using medical images. The severity level of infection could
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be easily diagnosed if the system effectively segments

different infected regions in the lungs such as consolida-

tion, ground-glass opacities (GGO), multiple ground-glass

opacity (mGGO), pleural effusion. In an article published

recently, researchers used a multiple instance learning

approach to identify three classes of x-ray images, namely,

viral pneumonia, bacteria pneumonia, and healthy people

[25]. In recent years, researchers have mostly preferred the

deep learning algorithms due to the self-learning ability to

learn the input image features and segment the infected

lung regions as accurately as possible to develop an intel-

ligent CAD. Consequently, a heat map has been generated

by utilizing the average of the weights of the filters in the

last convolutional layer to identify the most infected

regions. The authors have reported a mean accuracy of

98% in detecting CoVID-19 and non-CoVID-19 classes.

Recently, multi-level classification of 14 chest diseases

including CoVID-19 using ResNet50 deep learning net-

work is proposed [26]. Maximum accuracy of 92.52% for

three classes (normal, CoVID-19, other chest diseases) and

66.34% for 14 classes is achieved.

Also more recently, a novel AI system has been devel-

oped for CoVID-19 detection using chest CT images and

CNN [23]. Pu et.al have proposed to perform lung seg-

mentation, disease detection, and progression analysis of

CoVID-19 using serial chest CT-scan images [27]. The

authors have used U-Net for automatic lung segmentation

and elastic lung registration using a bidirectional elastic

registration algorithm. Their proposed system achieved a

maximum sensitivity of 95% and specificity of 84%. To

overcome the limitation of handcrafted features-based lung

segmentation, a Residual U-net with a false-positive

removal algorithm is proposed in [28]. The algorithms have

been developed by using the concept that a DNN with

residual units extractsmore discriminative features com-

pared to other lung segmentation techniques including

conventional U-Net architecture. The use of residual block

in U- Net reduced the issues related to performance

degradation and different augmentation methods are used

to improve the robustness of the network. An FCN with

conditional random fields (CRF) is proposed for lung

segmen- tation and the accuracy of segmentation is asses-

sed through dice coefficient [29]. Deng et.al have proposed

a novel lung infection segmentation network for CoVID-19

using CT images. The authors have proposed a fully

supervised and semi-supervised network to segment the

lung infected regions in CoVID- 19 CT images of labeled

and unlabeled data [30]. In [31], the researchers have

investigated four deep learning models such as Dee-

pLabV3?, U-Net, Dilated Residual U-net, and Residual

U-net, for automatic lung segmentation and U-Net gave an

optimal performance compared to other models for seg-

mentation by giving a dice score of 0.98%.

Munusamy et.al have proposed FractalCovNet archi-

tecture for segmentation of covid infected regions using

chest CT-scan images and CXR [32]. The performance of

the FractalCovNet has been compared with five different

transfer learning approaches namely Segnet, U-net,

ResNet-UNet, FCN, and DenseUNet. The CNN-LSTM

network is used for CoVID-19 detection using chest CT

images and classified the input CT images into three

classes namely, CoVID-19 pneumonia, normal, and other

pneumonia with a sensitivity of 94.9, 84, and 93.9%,

respectively [33]. The Inception-V3 network is used to

classify the input CXR and CT scan images into two

(CoVID-19 pneumonia/non-CoVID-19) and four classes

(viral pneumonia, bacteria pneumonia, CoVID-19, and

normal) and achieved a maximum mean classification rate

of 99.4 (two-class), and 98.1% (four class). Consequently,

the authors have classified the CoVID-19 into three classes

such as GGO, consolidation, and pleural effusion using

DeepLabV3? network with Xception-V2 as a backbone

network [34]. Most of the works proposed have developed

an efficient lung segmentation algorithm using deep neural

networks and used different performance measures to

assess the performance of segmentation. However, most of

the earlier works focused on segmenting the lung region

alone from the background CXR/CT scan images and a

limited number of works performed multi-class segmen-

tation. The detailed methodology of the proposed multi-

class segmentation is given in Sect. 3.

3 Materials and methods

This section presents the detail about the database and

methods employed to develop the automated lung seg-

mentation using deep learning models.

3.1 Chest CT-scan database

The CoVID-19 chest CT images developed by China

National Center forBio-information is used in this work for

developing an automated lung segmentation algorithm

[36]. It is one of the largest publicly available lung

CTimage databases with three different classes namely;

CoVID-19 (NCP), normal control (NC), and Common

Pneumonia (CP). Database of CT images and metadata are

constructed in different cohorts from the China Consortium

of Chest CT Image Investigation (CC-CCII). It includes CT

images of 929 NCP patients, 932 CP patients, and 818 NC

subjects. Also, it contains the meta-data of this dataset

which includes patient ID, sex, critical illness stage, scan

ID, lung function, liver function, age, and time of

progression.
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3.2 DeepLabv3 1 architecture

In this work, to develop automated lung detection,

DeepLabv3?, which uses Atrous Spatial Pyramid Pooling

(ASPP) module and encoder-decoder structure, is

employed [18]. This type of convolution is proposed to

eliminate the issues of the computational complexity of the

deep neural network without affecting its performance. In

DeepLabV3?, the performance of deep feature extraction

has been improved by implementing the two-stage con-

volution called point-wise convolution and depth-wise

convolution. This convolution method for a 2D image can

be represented as Eq. 1 [18]

b i½ � ¼
X

x

ai þ r:x½ �cðxÞ ð1Þ

Here, i represents the pixel location in an image, the

output of a convolution and convolution filter are repre-

sented as b, c(x), respectively. The r represents the atrous

rate (stride) of convolution. In general, r = 1 is used in

standard convolution, and further adjustments can be done

to enlarge the field of view of filters. In this network, the

ASPP module is used to extract rich contextual information

through pooling operations and encoder-decoder structure

is used to capture the sharper object boundaries by uni-

formly recovering the spatial information (Eq. 1). It offers

an efficient mechanism to control the field-of-view and

finds the best trade-off between accurate localization (small

field-of-view) and context assimilation (large field- of-

view). In this work, Eq. 1 has been implemented using

different atrous rates (6, 12, and 18) with a constant con-

volution filter size of 3 9 3 (Fig. 1). A higher atrous rate

allows the ASPP module to enlarge the field of view of

filters to extract more information from the input image.

As encoder-for the task of image classification, the final

feature map spatial resolution is usually 32 times smaller

than the input image resolution. Hence, the output stride is

maintained to 32 in the DeepLabV3? architecture. The

proposed architecture significantly improved the following

factors: (i) feature extraction ability of the CNN, (ii) inte-

gration of contextual information, (iv) training procedures,

and (iii) object scale modeling, [15]. DeepLab-V3? is an

extended version of DeepLab-V3 by adding a decoder

module to refine the segmentation results, especially along

object boundaries. Besides, it utilizes the depth-wise sep-

arable convolution to both ASPP [18] and decoder mod-

ules. Thereby, the DeepLabV3? network is faster and has

a stronger encoder- decoder network for automated

semantic segmentation tasks compared toother deep neural

networks.

The architecture of the DeepLabv3? DNN use for

automated lung segmentation is shown in Fig. 1. Several

parallel atrous convolutions with different rates are applied

to get multi-scale contextual information. The decoder

module helps in the detailed object boundary recovery. In

our work, the encoder features are bilinearly upsampled by

a factor of 4 and concatenated with low-level features.

After concatenation, 393 convolutions were applied to

refine the features followed by another simple bilinear

upsampling by a factor of 4.

3.3 Proposed methodology on lung
segmentation

This section describes the design methodology of a novel

DeepLabv3? network using different pretrained networks

for lung segmentation. Figure 2 shows theproposed

methodology of lung segmentation using chest CT images

(Table 1).

3.3.1 Database

In this work, we have utilized 750 images and corre-

sponding pixel labeled images collected from 150 patients

for developing the DNN based segmentation model, and

the output images of the DNN are compared with pixel

annotated images (masks) to estimate the performance of

our proposed DNN in lung segmentation. A set of standard

metrics are used to analyze the performance of the DNN.

The details of the CT images database are presented in

Table 2. All the images have different resolutions; varying

from 512 9 512 to 2592 9 2592 and the images are saved

in.jpg or.png format. In this work, we only considered the

CT images and pixel-labeled images for automated lung

segmentationusing the DeepLabV3 ? network. The data-

base contains many chest CT scan images from three dif-

ferent classes, but the radiologists only manually

annotate750 images from 150 patients. Later, we grouped

the pixel-labeled images and CoVID-19 images into two

different groups such as two classes (background and

lung), and four classes (background, lung, GGO, and

consolidation). In the case of a two-class problem, pixel-

labeled images are annotated as zero for background and

one for lungs. Similarly, for four class segmentation, the

pixels are annotated as zero for background, one for lung

field, two for consolidation (CL), and three for ground-

glass opacity (GGO) [35]. Hence, we utilized the 750

images and corresponding pixel-labeled images for this

proposed segmentation model. Among them, 600 images

(80%) (120 subjects) were chosen for training, 75 (10%)

(15 subjects) images for validation, and 75 (10%) (15

subjects) images as test datasets. The ratio of data used for

training, validation, and testing is 80:10:10. We have

carefully grouped and verified that the training and testing

images do not belong to the same subject to prevent bias.
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Fig. 1 Architecture of DeepLabv3 ? deep neural network used for automated lung segmentation

Fig. 2 Proposed methodology

used for automated lung

segmentation using chest CT

images
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3.3.2 Preprocessing

Furthermore, we have developed a deep neural network to

perform the automated lung segmentation with two dif-

ferent resolutions such as 256 9 256 and 512 9 512.

Pretrained models such as ResNet-18, ResNet-50, and

MobileNet-v2 networks require the input image size to be

224 9 224. However, the input image size of 229 9 229 is

required for Xception and Inception-ResNet-v2 networks.

To maintain the consistency between the DeepLabV3?

with different pretrained networks, in this present work, we

considered two image sizes such as 256 9 256 and 512 9

512. Hence, we performed an image resize operation in the

preprocessing stage to generate the images with standard

two dimensions (256 9 256 and 512 9 512) without

affecting its texture information. To maintain uniformity,

we have used the above two sizes for all the transfer

learning approaches to evaluate its performance for auto-

mated lung segmentation. Similarly, we also performed the

image resize operation on the pixel-labeled data for further

analysis.

3.3.3 DeepLabV3 1 network

The DeepLabV3? DNN is used for lung segmentation in

our work. Compared to other deep neural networks, Dee-

pLabV3? is the most efficient for segmentation and clas-

sification tasks. To investigate the performance of the

DeepLabV3? network in lung segmentation, we have used

four different pretrained networks with a different number

of layers such as ResNet [36], Inception [37], MobileNet-

V2 [38], and Xception [39]. These pretrained networks are

the best suitable for performing image segmentation and

classification tasks using smaller datasets and have been

trained with a huge number of images from the ImageNet

database [39]. In our work, ResNet-18 with 18 layers,

ResNet-50 with 50 layers, MobileNet-v2 with 53 layers,

Xception with 71 layers, and Inception-ResNet-v2 with

164 layers are used with DeepLabV3? for performance

comparison of automated lung segmentation. Using the

grid search method, the optimal hyperparameters are

selected to obtain the best performance for lung segmen-

tation. The detailed list of hyperparameters used is given in

Sect. 4. The above process has been repeated for both two-

class and four-class segmentation with two different image

sizes to investigate the relationship between image size,

network tuning parameters, semantic segmentation per-

formance, etc.

3.3.4 Semantic segmentation performance measures

The following statistical measures are used to examine the

performance of the DeepLabV3 ? deep neural network in

lung segmentation with different transferlearning

approaches.

3.3.4.1 Accuracy The accuracy measure is defined as a

ratio of correctly classified pixels to the total number of

pixels in that class, according to the ground truth. The pixel

accuracy of each class can be computed by using Eq. 2.

The average value of accuracy of all classes in all images is

referred to as Mean Accuracy (ACC). Pixel accuracy

(PA)/Global accuracy (GA) is the ratio of correctly

classified pixels, regardless of class, to the total number of

pixels and it can be computed using Eq. 3 [40, 41].

ACC ¼ TP

TPþ FN
ð2Þ

PA=GA ¼ TPþ TN

TPþ TNþ FPþ FN
ð3Þ

where TP-true positive, TN-true negative, FP-false posi-

tive, FN-false negative.

3.3.4.2 Boundary contour matching score This score is

mostly used to reflect the contour matching between the

segmented images and the ground truth images. Boundary

F1 (BF) score refers to the accuracy of contour matching

Table 1 Types of DeepLab deep neural networks used in automated segmentation

DeepLabV1 Convolutional neural nets and fully connected layersare used for semantic image segmentation

DeepLabV2 Convolutional neural nets, Atrous convolution, and fully connected layers,are used for semantic image segmentation

DeepLabV3 Rethinking Atrous convolution is performed for semantic imagesegmentation

DeepLabV3 ? Encoder and decoder design with Atrous separable convolutionis used for semantic image segmentation

Table 2 Details of CT images database for three classes

Category CP NCP Normal

Total number of patients 932 929 818

Total number of scans 1524 1544 1069

Total number of CT slices 153,211 156,071 92,853

Number of CT slices with lesions 33,897 21,872 N/A1

1Not available

Neural Computing and Applications (2023) 35:15343–15364 15349

123



between the predicted boundary of each class concerning

its ground truth boundary (pixel-labeled image boundary)

[11]. The average value of BF score of all classes in all

images is referred as Mean BF Score (BFS). The numer-

ical value of BF score in the range [0,1] and in the form of

either scalar or vector. A score of 1 reflects the perfect

match of the contours of the corresponding class in pre-

diction with its ground truth contour. BF score can be

calculated using the precision and recall values with a

distance error tolerance [11]. The BFS can be computed by

using the given Eq. 4 [11].

BFS ¼ 2� Precision� Recall

Precisionþ Recall
ð4Þ

where

Precision ¼ TP

TPþ FP
ð5Þ

Recall ¼ TP

TPþ FN
ð6Þ

3.3.4.3 Intersection over union/Jaccard similarity coeffi-
cient IoU is the ratio of correctly classified pixels to the

total number of pixels in the ground truth and predicted

pixels in that class and it can be computed using Eq. 7 [11].

For the given dataset, MeanIoU is the mean IoU score of

all the images in all classes. Weighted-IoU shows the

average IoU of each class, weighted by the number of

pixels in that class.

IoU ¼ TP

TPþ FPþ FN
ð7Þ

4 Results and discussion

This section presents the experimental results of lung

segmentation using our proposed DeepLabV3? network

with various transfer learning approaches. In this present

work, we performed a semantic segmentation using a

transfer learning approaches by utilizing the DeepLabv3?

model which is trained using various pretrained networks

that are trained on the ImageNet database. The Dee-

pLabV3? network for lung segmentation has been trained

using various transfer learning approaches (MobileNet-v2,

ResNet-18, Xception, ResNet-50, and pretrained Inception-

ResNet-v2) of two different image sizes (512 9 512 and

256 9 256). The Xception and pretrained Inception-

ResNet-v2 models did not give a higher accuracy in

semantic segmentation. Hence, the results of these net-

works are not reported in this paper. The accuracy of

segmentation has been computed using five performance

measures. The pixel counts used for training, validation,

and testing are given in Table 3. The number of pixels in

the background of CT images contributes 87%, and the

lung field contributes 13% of total pixels for two classes.

Besides the above-mentioned regions, the numberof pixels

in GGO and consolidation contribute 1.11, and 0.75%,

respectively, in the four-class segmentation. It is evident

that the number of pixels used for training the network for

different classes is highly unbalanced and there is no

additional framework proposed in this present work for

balancing the pixels in each class. The complete set of

pixels in each class is fed to the network for training,

validation, and testing, and the results obtained are given in

this present section (Table 4).

In this work, we have trained the deep learning model

with different ranges of hyperparameters. The optimal deep

neural network hyperparameters were selected based on the

grid-search method. Table 4 shows a set of hyperparame-

ters selected for the fine-tuning, range of values used, and

the optimal value of each hyperparameter that yielded the

maximum segmentation accuracy. The values of the

hyperparameter for each model are finalized after evalu-

ating its performances in lung segmentation through per-

formance measures. In this work, we used two optimizers,

namely, ‘sgdm’ and ‘Adam’ in the output layer. However,

the performance of the Stochastic Gradient Descent with

Momentum(sgdm) optimizer did not perform satisfactorily

as compared to the ‘Adam’ optimizer. Hence, we have only

used the ‘Adam’ optimizer for all the networks. Also,

various deep neural network models used gave the best

performance for lung segmentation with an epoch value of

100 with a learning rate of 0.001. Besides, L2 regulariza-

tion is applied to keep the weights and bias values smaller

to prevent the models from over-fitting. The value of the

regularization factor is assumed to be 0.0001 to reduce the

network weights slowly.

We have trained the proposed model using 600 CT

images and corresponding 600 pixel labeled images. The

graphs of accuracy and loss versus a number of iterations

obtained for our proposed DeepLabv3? network during the

training with ResNet18 and ResNet50 is shown in Fig. 3.

4.1 Two-class semantic segmentation using
pretrained networks

Table 5 presents the summary of semantic segmentation

performance measures obtained for two-class segmentation

with an image size of 512 9 512. The ResNet-50 with a

batch size of 8 gave a maximum value of Mean IoU, and

Mean BF score of 0.9887 and 0.9901, respectively. Besides

the MobileNet-v2, all other transfer learning approaches

are limited to train the model with abatch size of either 8 or

16. This is mainly due to the limitations in the computation

power of the computing system and input image size.
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Increasing the value of batch size above 16 in most of the

pretrained networks causes mem- ory error during imple-

mentation. The maximum value of pixel accuracy after

segmentation reached 0.9962 for ResNet18. The ResNet-50

network also gave a maximum global accuracy (0.9974)

and weighted IoU (0.9950) compared to other pretrained

networks. Though the ResNet50 network required more

time compared to other networks, it gave the highest per-

formance for two-class lung segmentation compared to

other pretrained networks. The Xception and Inception-

ResNet-V2 did not give a good performance for two-class

segmentation with the image size of 512 9 512 and

required more time (approximately 600 min) for training

compared to other pretrained networks. Hence, the results

obtained by the above two networks are not included in

Tables 5 and 6. The best-performing performing model for

an image size of 512 9 512, and 256 9 256 is highlighted

by BOLD in Tables 5 and 6, respectively. The summary of

the best-performing model and the segmentation perfor-

mance measure of two different image sizes are given in

Tables 8 and 9, respectively.

Table 6 shows the summary of semantic segmentation

performance measures obtained for two-class segmentation

with an image size of 256 9 256. In the case of smaller

image size (256 9 256), the ResNet-18 pretrained network

with a batch size of 16 gave an optimal performance in

semantic lung segmentation compared to other pretrained

networks. The experimental results also indicate that the

ResNet18 with a batch size of 32 required less training time

compared to other pretrained networks. Hence, it is highly

evident that the increase in batch size reduces the training

time of the deep neural network, and it is possible by using

smaller size images during training. The maximum value

of mean IoU is 0.9876, and the mean BF score is 0.99 for

ResNet-18. Besides, the same network gave the highest

global accuracy of 0.9972 and weighted IoU value of

0.9944 compared to other pretrained networks. During

validation, the maximum accuracy of 99.71% is achieved

using MobileNet-v2. Comparing the experimental results

of two class semantic segmentation with two different

image sizes, the values of the performance measures such

as mean accuracy (pixel accuracy), mean IoU, mean BF

score, and global accuracy obtained for smaller size images

(256 9 256) are approximately closer to the values of

largersize images (512 9 512). Besides, the training time

required for smaller size images in ResNet-18 is much

lesser than larger size images using the ResNet-50 network.

Hence, the average performance of semantic segmentation

fortwo-class with smaller size images is superior to larger

size images. Table 7 presents the summary of semantic

segmentation performance obtained for individual classes

during two-class segmentation. ResNet-50 net- work effi-

ciently segmented the lung field and background from the

input chest CT images compared to other pretrained net-

works using an image size of 512 9 512. The ResNet50

network with a batch size of 8 gave the highest value of

IoU for lung and background segmentation of 0.9803 and

0.9971, respectively compared to other networks. Simi-

larly, the value of BF score for lung and back- ground field

segmentation in chest CT image using ResNet-50 network

is 0.9853 and 0.9950, respectively. However, the ResNet-

18 network with a batch size of 16 gave better performance

in lung field segmentation from a background using a

Table 3 Details of a number of pixels used in each class of chest CT image database

CT imageinformation Trainingpixel counts Validationpixel counts Test pixelcounts Total numberof pixels

in percentage (%)

Two Class

Background 1.3715e ? 08 1.7296e ? 07 1.7073e ? 07 87.195

Lung field 2.0139e ? 07 2.3653e ? 06 2.5878e ? 06 12.868

Four Class

Background 1.3718e ? 08 1.7246e ? 07 1.713e ? 07 87.21

Lung field 1.8306e ? 07 2.1934e ? 06 2.2644e ? 06 11.67

GGO 1.2554e ? 06 1.4908e ? 05 1.9326e ? 05 1.11

Consolidation 5.4433e ? 05 72,747 72,943 0.75

Table 4 Details of optimal hyperparameters used for lung

segmentation

Parameter Hyperparameters Optimal values

Maximum epochs 20, 50, 100 100

Batch size 8,16,32 8, 16, 32

Momentum factor 0.9 0.9

Learning rate 0.001, 0.0001 0.001

L2 Regularization 0.0001 0.0001

Optimizers ‘sgdm’, ‘Adam’ Adam
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Fig. 3 Graphs of accuracy and loss versus number of iterations obtained for our proposed DeepLabv3 ? network during training with ResNet18

[a Accuracy vs Iteration, b Loss vs Iteration] and ResNet50 [c Accuracy vs Iteration, d Loss vs Iteration]

Table 5 Summary of semantic segmentation performance measures obtained for two-class segmentation with an image size of 512 9 512

Pretrained

network

Batch

size

Global

accuracy

Mean

accuracy

Mean

IoU

Weighted

IoU

Mean BF

score

Validation accuracy

(%)

Elapsed

time

ResNet-18 8 0.9965 0.9926 0.9852 0.9931 0.9823 99.73 84 min 59 s

ResNet-18 16 0.9969 0.9962 0.9859 0.9939 0.9848 99.69 54 min 51 s

ResNet-50 8 0.9974 0.9955 0.9887 0.9950 0.9901 99.73 185 min
23 s

ResNet-50 16 0.9969 0.9935 0.9864 0.9940 0.9872 99.63 120 min

33 s

MobileNet-v2 8 0.9973 0.9930 0.9879 0.9946 0.9878 99.74 120 min

46 s

MobileNet-v2 16 0.9974 0.9922 0.9882 0.9948 0.9895 99.76 81 min 19 s

MobileNet-v2 32 0.9974 0.9931 0.9883 0.9948 0.9891 99.74 310 min

18 s
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smaller image size (256 9 256). The maximum mean IoU

of 0.9784 and mean BF score of 0.9852 are achieved in

lung segmentation. The highest value of pixel accuracy for

background and lung field is achieved using Mobilenet- v2

network with a batch size of 16, and ResNet18 network

with a batch size of 8. Besides, the ResNet18 network with

a batch size of 16 gave a maximum value of Mean IoU

(0.9968) for background segmentation. In conclusion, the

ResNet-18 with a batch size of 16 performed well for two-

class segmentation, and the higher resolution chest CT scan

images gave a higher performance for lung segmentation

compared to lower-resolution images. Specifically, there

are no key differences between the performance measure

values of higher and lower resolution images. Hence, the

lower resolution images can be considered to evade the

computational entanglement in image processing.

The summary of results obtained in Tables 5, 6, and 7

are given in 8 and Table 9, respectively. The segmentation

Table 6 Summary of semantic segmentation performance measures obtained for two-class segmentation with an image size of 256 9 256

Pretrained

network

Batch

size

Global

accuracy

Mean

accuracy

Mean

IoU

Weighted

IoU

Mean BF

score

Validation accuracy

(%)

Elapsed

time

ResNet-18 8 0.9970 0.9949 0.9869 0.9941 0.9883 99.57 63 min

55 s

ResNet-18 16 0.9972 0.9958 0.9876 0.9944 0.9900 99.57 34 min
17 s

ResNet-18 32 0.9958 0.9892 0.9816 0.9917 0.9823 99.51 19 min

33 s

ResNet-50 8 0.9967 0.9931 0.9842 0.9934 0.9857 99.41 184 min

12 s

ResNet-50 16 0.9952 0.9894 0.9776 0.9906 0.9770 99.52 135 min

15 s

MobileNet-v2 8 0.9968 0.9955 0.9854 0.9937 0.9900 99.70 92 min

35 s

MobileNet-v2 16 0.9965 0.9901 0.9835 0.9930 0.9807 99.53 48 min

47 s

MobileNet-v2 32 0.9970 0.9930 0.9862 0.9941 0.9852 99.71 28 min

38 s

Table 7 Summary of semantic

segmentation performance

obtained for individual classes

during two-class segmentation

Pretrained network Batch size Background Lung field

ACC IoU BFS ACC IoU BFS

Image Size: 512 9 512

ResNet-18 8 0.9979 0.9960 0.9905 0.9873 0.9743 0.9739

ResNet-18 16 0.9971 0.9965 0.9921 0.9952 0.9754 0.9775

ResNet-50 8 0.9982 0.9971 0.9950 0.9928 0.9803 0.9853

ResNet-50 16 0.9981 0.9965 0.9933 0.9889 0.9762 0.9812

MobileNet-v2 8 0.9988 0.9969 0.9934 0.9873 0.9790 0.9821

MobileNet-v2 16 0.9992 0.9970 0.9943 0.9852 0.9795 0.9847

MobileNet-v2 32 0.9989 0.9970 0.9941 0.9874 0.9797 0.9840

Image Size: 256 9 256

ResNet-18 8 0.9977 0.9966 0.9939 0.9921 0.9771 0.9828

ResNet-18 16 0.9977 0.9968 0.9947 0.9939 0.9784 0.9852

ResNet-18 32 0.9981 0.9952 0.9908 0.9804 0.9679 0.9738

ResNet-50 8 0.9978 0.9962 0.9924 0.9885 0.9722 0.9789

ResNet-50 16 0.9971 0.9946 0.9885 0.9818 0.9607 0.9656

MobileNet-v2 8 0.9973 0.9964 0.9949 0.9937 0.9744 0.9849

MobileNet-v2 16 0.9985 0.9960 0.9900 0.9818 0.9711 0.9712

MobileNet-v2 32 0.9983 0.9966 0.9925 0.9878 0.9757 0.9775
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performance measures of the best-performing deep learn-

ing model are highlighted by BOLD for an image size

of 512 9 512 and 256 9 256 as reported in

Table 7. Table 8 shows the details of the best-pretrained

network, and its mean accuracy obtained for two-class

segmentation of two different image sizes. Table 8 shows

the details of the best-pretrained network and individual

class accuracy obtained for two-class segmentation of two

different image sizes. Using IoU and BF score results,

ResNet-50 with a batch size of 8 gave an optimal perfor-

mance for two-class segmentation with a larger size images

compared to smaller-size images. The IoU and BF scores

are considered as the two most influential performance

measures in evaluating the accuracy of segmentation in

medical images compared to other performance mea-

sures.The summary of the best-performing model and the

segmentation performance measure of two different image

sizes are given in Table 9.

4.2 Four-class semantic segmentation using
pretrained networks

Table 10 presents the summary of semantic segmentation

performance measures obtained for four classes using an

image size of 256 9 256. The Mobilenet-V2 network with

a batch size of 16 gave a maximum value of Mean IoU,

Weighted Mean IoU, and Mean BF score of 0.7608,

0.9881, and 0.8985, respectively. The Mobilenet-v2

requires less training time (85 min 44 sec) compared to

other pretrained networks, as well as obtaining a maximum

mean global accuracy of 0.9935. The maximum batch size

for ResNet is limited to 16, and only the MobileNet-v2 is

used for training (with a batch size of 32). This is mainly

due to the limitations in the computation power of the

computing system used in this work, which is, in this case,

dependent on the input image size. The Xception and

Inception-ResNet-v2 did not yield good performance in

Table 8 Summary of best-pretrained model and its performance obtained for two class segmentation

Image Size Pretrained network Batch size Global accuracy Mean accuracy Mean IoU Weighted IoU Mean BF score

512 9 512 ResNet-50 8 0.9974 0.9955 0.9887 0.9950 0.9901

256 9 256 ResNet-18 16 0.9972 0.9958 0.9876 0.9944 0.9900

Table 9 Summary of semantic

segmentation performance

obtained for individual classes

during two class segmentation

Image size Pretrained network Batch size Background Lung field

ACC IoU BFS ACC IoU BFS

512 9 512 ResNet-50 8 0.9982 0.9971 0.9950 0.9928 0.9803 0.9853

256 9 256 ResNet-18 16 0.9977 0.9968 0.9947 0.9939 0.9784 0.9852

Table 10 Summary of semantic segmentation performance measures obtained for four classes using an image size of 512 9 512

Pretrained

network

Batch

size

Global

accuracy

Mean

accuracy

Mean

IoU

Weighted

IoU

Mean BF

score

Validation accuracy

(%)

Elapsed

time

ResNet-18 8 0.9931 0.8415 0.7547 0.9877 0.8956 98.72 210 min

19 s

ResNet-18 16 0.9929 0.8162 0.7420 0.9870 0.9079 98.95 220 min

14 s

ResNet-50 8 0.9913 0.8092 0.7510 0.9839 0.8844 99.27 195 min

44 s

ResNet-50 16 0.9911 0.6901 0.6538 0.9833 0.8651 98.90 125 min

42 s

MobileNet-v2 8 0.9919 0.8322 0.7180 0.9859 0.8920 99.11 124 min

36 s

MobileNet-v2 16 0.9935 0.8379 0.7608 0.9881 0.8985 99.16 85 min
44 s

MobileNet-v2 32 0.9935 0.8289 0.7594 0.9881 0.8929 99.17 315 min

9 s
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four class segmentation with the image sizes of 5129512

and 2569256. It requires more time (approximately 660

min) for training compared to other pretrained networks.

Hence, the results of the above two networks are not

included in Tables 10 and 11. It is unlikely that the ResNet

which performed superior for two-class segmentation did

not give optimal performance for four-class segmentation.

One of the major reasons for this may have to do with its

ability to handle highly unbalanced datasets. The best-

performing deep learning model for four class segmenta-

tion for two different image sizes (512 9 512, 256 9 256)

and its performance measures are highlighted by BOLD in

Tables 10 and 11.

Table 11 shows the summary of semantic segmentation

performance measures obtained for four classes using an

image size of 512 9 512. Among the pretrained networks,

ResNet-50 with batch size 16 gave higher accuracy for

four-class segmentation. The above network gave a maxi-

mum value of mean IoU, weighted mean IoU, and mean

BF score of 0.7655, 0.9873, and 0.8985, respectively. The

above network gave a maximum global accuracy of 0.9931

compared to other pretrained networks. The ResNet-18

with a batch size of 32 requires lesser training time com-

pared to other pretrained networks. Hence, an increase in

the batch size reduces the training time of the deep neural

network, and it is possible by using smaller size images

during training.

Table 12 shows the summary of semantic segmentation

performance measures obtained for each class during the

segmentation of four classes. The four classes presented in

the chest CT images are lung field (LF), background (BG),

ground-glass opacity (GGO), and consolidation (CL). The

number of pixels in each class is different, the background

has the largest number of pixels, and the consolidation

section has the least number of pixels. For the image size

512 9 512, the ResNet-50 network with batch size 8 gave

maximum mean pixel accuracy, background and GGO

reported 0.9993, and 0.6811, respectively, among the other

pretrained networks. The maximum mean pixel accuracy of

0.7802 is achieved for CL using ResNet-18 with batch size

16. Similarly, the ResNet-50 network with batch size 16

gave a maximum pixel accuracy of LFas 0.9908. The

MobileNet-V2 with a batch size of 32 obtained the highest

mean IoU for background and lung field as 0.9775, and

0.9559, respectively. MobileNet-V2 with a batch size of 16

gave the highest mean value of BF score for background

and lung field. The ResNet-50 with a batch size of 8

obtained the highest mean BF score for GGO and ResNet-

18 with a batch size of CL obtained the highest mean BF

score of 0.7649 for consolidation. Finally, the ResNet-18

with a batch size of 16 gave an optimal performance in

pixel accuracy, mean IoU, and mean BF score for seg-

menting consolidation region from CT images. However,

the ResNet-50 with a batch size of 8 presented the optimal

performance for segmenting background and GGO using

chest CT images. In CoVID-19 detection, the segmentation

of CL and GGO plays a significant role in detecting the

severity of CoVID-19 infection. Hence, the ResNet pre-

trained networks outperformed other pretrained networks

in yielding the highest performance measures in segment-

ing GGO and CL. It can be noted from IoU and BF score

Table 11 Summary of semantic segmentation performance measures obtained for four classes using an image size of 256 9 256

Pretrained

network

Batch

size

Global

accuracy

Mean

accuracy

Mean

IoU

Weighted

IoU

Mean BF

score

Validation accuracy

(%)

Elapsed

time

ResNet-18 8 0.9892 0.8722 0.7561 0.9815 0.8553 98.90 68 min

33 s

ResNet-18 16 0.9901 0.8420 0.7614 0.9819 0.8636 99.03 36 min

10 s

ResNet-18 32 0.9885 0.8003 0.7322 0.9790 0.8735 98.98 20 min

58 s

ResNet-50 8 0.9905 0.8254 0.7144 0.9836 0.8526 98.63 151 min

57 s

ResNet-50 16 0.9931 0.8561 0.7655 0.9873 0.8985 98.83 79 min
29 s

MobileNet-v2 8 0.9895 0.8438 0.7347 0.9820 0.8655 98.90 101 min

35 s

MobileNet-v2 16 0.9907 0.8607 0.7513 0.9840 0.8742 99.03 53 min

28 s

MobileNet-v2 32 0.9911 0.8326 0.7513 0.9842 0.8774 99.08 28 min

32 s
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that, MobileNet-v2 pretrained networks are best suited for

background and lung field segmentation.

Table 13 presents the summary of best performance

obtained using the pretrained network for semantic seg-

mentation of four classes. It can be noted from the exper-

imental results that, MobileNet-v2 with a batch size 16 is

best suited for large size images (512 9 512), and ResNet-

50 with batch size 16 is bestsuited for lower resolution

images (256 9 256). 14 shows the summary of the best

individual class performance obtained using of best

pretrained network for semantic segmentation for four

classes. It can be noted that the background and lung fields

have been accurately segmented with large-size images

using MobileNet-v2 or ResNet pretrained networks.

However, the GGO and consolidation are effectively seg-

mented with small-size images using ResNetpretrained

networks. For GGO and consolidation segmentation, the

small size images obtained better performance than large

size images. However, all the performance measures gave

an accuracy approximately closer and there is no huge

Table 12 Summary of semantic segmentation performance measures obtained for each class during the segmentation of four classes

Pretrained network Batch size Lung region ACC 512 9 512 IoU BFS ACC 256 9 256 IoU BFS

ResNet-18 8 BG 0.9982 0.9973 0.9946 0.9983 0.9962 0.9925

LF 0.9803 0.9539 0.9597 0.9489 0.9254 0.9176

GGO 0.6637 0.5125 0.6320 0.7486 0.5222 0.5788

CL 0.7240 0.5551 0.6937 0.7931 0.5805 0.6744

BG 0.9988 0.9972 0.9947 0.9988 0.9954 0.9909

ResNet-18 16 LF 0.9825 0.9523 0.9564 0.9627 0.9331 0.9324

GGO 0.5031 0.4381 0.6177 0.6479 0.5422 0.5938

CL 0.7802 0.5804 0.7649 0.7585 0.5748 0.6533

BG 0.9993 0.9957 0.9877 0.9982 0.9950 0.9877

ResNet-50 8 LF 0.9685 0.9446 0.9469 0.9553 0.9359 0.9258

GGO 0.6811 0.5613 0.6705 0.6936 0.4322 0.5233

CL 0.5877 0.5023 0.6194 0.6546 0.4945 0.6748

BG 0.9979 0.9962 0.9910 0.9976 0.9962 0.9946

ResNet-50 16 LF 0.9908 0.9398 0.9402 0.9823 0.9527 0.9598

GGO 0.3478 0.3143 0.4836 0.5992 0.5086 0.5745

CL 0.4239 0.3649 0.5762 0.8453 0.6047 0.7793

BG 0.9990 0.9967 0.9942 0.9986 0.9959 0.9924

MobileNet-v2 8 LF 0.9685 0.9481 0.9550 0.9537 0.9318 0.9337

GGO 0.5607 0.4514 0.5735 0.6506 0.4390 0.6043

CL 0.8007 0.4757 0.6570 0.7723 0.5721 0.7005

BG 0.9988 0.9974 0.9953 0.9982 0.9967 0.9943

MobileNet-v2 16 LF 0.9787 0.9551 0.9597 0.9650 0.9405 0.9440

GGO 0.6586 0.5212 0.6323 0.6587 0.4627 0.6293

CL 0.7154 0.5696 0.6965 0.8210 0.6052 0.7090

BG 0.9985 0.9975 0.9946 0.9987 0.9964 0.9930

MobileNet-v2 32 LF 0.9838 0.9559 0.9583 0.9697 0.9441 0.9474

GGO 0.6309 0.5102 0.6282 0.6217 0.4722 0.6348

CL 0.7025 0.5740 0.6765 0.7404 0.5924 0.7531

Table 13 Summary of best performance obtained using pretrained network for semantic segmentation of four classes

Image Size Pretrained network Batch size Global accuracy Mean accuracy Mean IoU Weighted IoU Mean BFS

512 9 512 MobileNet-v2 16 0.9935 0.8379 0.7608 0.9881 0.8985

256 9 256 ResNet-50 16 0.9931 0.8561 0.7655 0.9873 0.8985
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difference in the accuracy obtained among the pretrained

networks. In the case of individual class accuracy, there is

no consistency between the pretrained networks, and each

network performed better on a specific class. The detailed

results of the pretrained network which obtained the

highest performance in each class segmentation for four

classes are given in Table 14. Finally, the smaller size

images gave better performance for GGO, and CL seg-

mentation and larger size images presented a better per-

formance for background and lung field segmentation.

Though, there is no specific pretrained network that can be

chosen for all tasks, the ResNet-50 with a batch size of 16

presented optimal performance for segmentation of four

classes using chest CT images.

Tables 15 and 16 show the best results obtained for

segmentation using DeepLabv3? for the image size of 512

9 512, and 256 9 256 for two and four classes, respec-

tively. As part of this study, the images in the dataset have

already been annotated by expert radiologists [42]. We

have used two different types of annotation in this study

(i) two-class problem—the image pixels are labeled as zero

for the background and one for the lungs (ii) four-class

problem-the pixels are annotated as zero for the back-

ground, one for the lung field, two for consolidation (CL),

and three for the GGO. As the proposed Deeplab V3?

network has been trained using pixel labels, it automati-

cally annotates a test image based on the labels associated

with the pixels. The original, resized, segmented, and

ground truth images are shown. For two-class segmenta-

tion, the proposed DNN effectively segmented the lung

field from the background. Visually, there is no major

difference in the lung segmented images of 512 9 512, and

256 9 256 image sizes. Appendix (Tables 18 and

19) presents the semantic segmentation results of ten

sample images which show four classes: lung field, GGO,

consolidation, and background. The proposed DNN is able

to effectively segment the GGO and consolidation region

from CoVID-19 CT images. The performance comparison

of the presented work with the state-of-the-art methods

reported in the literature is presented in Table 17. In [35],

the authors have used the same database as we used in this

present work to perform lung segmentation using the

DeepLabV3 network with ResNet as a backbone.ENet,

U-net, and three-stage DNN framework have been used for

lung segmentation in [35]. The U-net gave a better per-

formance in lung segmentation ascompared to ENet [35]

and the other three DNNs proposed by the researchers.

They have achieved a maximum mean IoU of 0.7889, pixel

accuracy of 0.9490 (background lung field), 0.5875 (GGO),

and 0.6218 (consolidation). In their works, the DNNs have

been trained and tested with an input image size of 512 9

512 and batch size of 4 to perform four-class segmentation

(background, lung field, GGO, and consolidation). How-

ever, in [42], the authors have used more number of images

and developed an AI-based CoVID-19 detection model

(segmentation and classification). Five different types of

DNNs such as U- net, DRUNET, FCN, SegNet, and Dee-

pLabV3 have been used to segment the manually delin-

eated CT images into seven regions (BG, LF, GGO, CL,

pleural effusion, interstitial thickening, and pulmonary

fibrosis). There are two performance metrics, namely, dice

coefficient and pixel accuracy are computed to compare the

performance of segmentation of different DNN’s. But, they

have reported the performance of classification (two or

three class) and not reported any performance metrics of

segmentation. Finally, they concluded that the the Dee-

pLabV3 model yielded better performance in lungs seg-

mentation as compared to other DNN models.

In contrast with earlier works, we have employed the

DeepLabV3? networkusing different pretrained networks

with different image sizes, as well as proposed a novel

lightweight DNN model for performing two-class and four-

class lung segmentation together. Compared to DeepLab-

v3, the DeepLabv3? net-work decoder module is used to

Table 14 Summary of best individual class performance obtained using pretrained network (with batch size) for semantic segmentation for four

classes

Image

Size

Regions ACC IoU BFS

512 9 512 Background ResNet-50 (8) 0.9993 MobileNet-v2(32) 0.9975 MobileNet-v2(16) 0.9953

Lung field

GGO

ResNet-50 (16) 0.9908 ResNet-50

(8) 0.6811

MobileNet-v2(32) 0.9559 ResNet-

50 (8) 0.5613

MobileNet-v2(16) 0.9597 ResNet-

50 (8) 0.6705

Consolidation ResNet-18 (16) 0.7802 ResNet-18 (16) 0.5804 ResNet-18 (16) 0.7649

256 9 256 Background ResNet-18 (16) 0.9988 MobileNet-v2(16) 0.9967 ResNet-50 (16) 0.9946

Lung field

GGO

ResNet-50 (16) 0.9823 ResNet-18

(8) 0.7486

ResNet-50 (16) 0.9527 ResNet-18

(16) 0.5422

ResNet-50 (32) 0.9602 ResNet-50

(16) 0.7793

Consolidation esNet-50 (16) 0.8453 MobileNet-v2(16) 0.6052 ResNet-50 (16) 0.7793
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effectively obtain the segmentation results along the

boundaries. The application of depth wise separable con-

volution in pooling and decoder module was used in order

to obtain the segmentation results faster than conventional

methods. Moreover, our network has been trained with the

actual/original CT images instead of manually segmented

images used in [39] to train the DNN. In our work, we have

obtained maximum performance using DeepLab V3?

Network with ResNet-50 with a batch size of 8 for two

class lung detection. Similarly, DeepLabV3? Network

with ResNet-50 and a batch size of 16 yielded optimum

performance for four class segmentation tasks. Our work

yielded a maximum mean accuracy of 0.9972, mean pixel

accuracy of 0.9958, mean IoU of 0.9876, and mean BF

score of 0.9900 for two-class segmentation using ResNet-

50. The present work, also, reported highly competitive

results for four-class segmentation using ResNet-50. The

maximum mean global accuracy of 0.9931, mean accuracy

of 0.8341, mean IoU of 0.7684, and mean BF score of

0.9008 is achieved using the ResNet-50. Hence, we have

proposed a unified model for two class and four class

segmentation tasks using DeepLab V3? Network with

ResNet-50 using a batch size of 8 (two classes) and 16

(four classes). To the bestof our knowledge, this is the first

work to propose a model for two and four classes together.

In a recent study, Kaheel et al. used simple image pro-

cessing (pre-processing, segmentation, feature extraction)

and deep neural networks(ResNet50) to distinguish

CoVID-19 from other viral pneumonia using chest CT scan

images based on Corona score [43]. The author proposes

simple machine learning algorithms (kNN, SVM) and deep

neural networks (ResNet- 50, MobileNetv2) based on the

detection of CoVID-19 using chest CT-scan images in [44].

In their study, the combination of DNN and SVM was

found to be more accurate in detecting CoVID-19 than

non-CoVID-19. Recently, Prakash et.al presented a method

for CoVID-19 detection from chest X-rays based on super

pixel-based segmentation and infection localization with

SqueezeNet [13]. Researchers have used different types of

deep learning algorithms to segment lungs from CT scan

images, localize infected regions, and differentiate severity

levels into four types, mild, moderate, severe, and critical

[45]. Based on chest X-ray images and clinical data, one

recent study differentiated CoVID-19 patients into low and

Table 15 Summary of semantic segmentation results obtained for two classes of image size 256 9 256 (Color figure online)

Original Image
1024 × 1024

Resized Image
256 × 256

Segmented Image
Background : blue,

Lung �ield: green

Ground truth Image
Background: black,

Lung �ield: white
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high-risk groups using machine learning algorithms,

resulting in a maximum mean F1 score of 92.88 [46].

However, the accuracy of our work is higher compared

to all the earlier reported efforts with regards to lung seg-

mentation. Also, we show how DeepLabV3 ? network

with ResNet pretrained network is highly efficient for two-

class and four-class segmentation.

The proposed framework was implemented in a Desktop

computer having Intel i7, an 8th generation processor with

a speed of 3.20 GHz of 6 cores with 64 GB DDR4 RAM

operating in the Windows operating system. The system is

also equipped with four 8GB RTX2080 Graphical Pro-

cessing Units (GPUs) for increased acceleration of the

computation process.

4.3 Limitations and future works

Though the proposed deep neural network architecture

yielded the highly accurate and promising lung segmenta-

tion performance, there are still some limitations to this

work.

1. Future work can compare other DNNs in lung image

segmentation. In particular, lightweight DNN for

CoVID-19 classification using chest CT-scanimages

[13, 44].

2. Future work can employ more CT scan images for

training, validation and testing.

3. Future work can compare performance using other

databases, respectively. To overcome the above-men-

tioned limitations, in the future we intend to design a

more robust DNN for lung segmentation with the

following experiments.

1. The performance of DeepLabV3? network results

will be compared withother networks such as

capsule networks, CNN, SegNet, and U-net to

gain7more insight into optimum efficiency, accu-

racy, and performance.

2. Investigate the performance of the proposed net-

work with multi-center/open-source lung CT

image databases.

Table 16 Summary of semantic segmentation results obtained for four classes of image size 512 9 512 (Color figure online)

Original Image
1024 × 1024

Resized Image
512 × 512

Segmented Image
Background : black,
Lung �ield: white,

GGO: blue,
Consolidation: green

Ground truth Image
Background : magenta,

Lung �ield: cyan,
GGO: red,

Consolidation: yellow
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3. Assess the performance of segmentation with other

performance measuresfor better benchmarking.

5 Conclusion

This work investigated the application of a Dee-

pLabV3 ? DNN with various pretrained networks for lung

segmentation using CT images. The four most common

types of pretrained networks such as ResNet-50, Mobile-

Net-v2, ResNet-18, and Xception are used with 512 9 512

and 256 9 256 image sizes. These networks are used to

perform two class (background and lung field) segmenta-

tion and four class (background, lung field, ground-glass

opacities, consolidation) segmentation tasks. Our results

confirm that there is no significant differences in lung

segmentation performance between two different images

sizes (256 9 256, 512 9 512) using the

DeepLabV3 ? network. We also show that the ResNet-50

with a batch size of 16 is best suited for four-class seg-

mentation, and ResNet-18 with a batch size of 8 for two-

class segmentation. The ResNet and MobileNet-v2 pre-

trained networks require less training time as compared to

other pretrained networks such as Xception and Inception-

ResNet-v2 networks. We proposed a novel unified seg-

mentation model to delineate the two and four different

regions automatically using CT images for COVID-19

detection. The proposed DeepLabV3 ? network is devel-

oped for efficient lung segmentation using chest CT-scan

images by selecting optimal pretrained network, image

sizes, network hyperparameter selection, and computation

time. The four-class segmentation of chest CT images can

be used to develop an automated computerized clinical

diagnosis system for CoVID- 19 to investigate the severity

levels of CoVID-19 infections by delineating the affected

lung region.

Appendix

See Tables 18 and 19.

Table 17 Summary of comparison of our work with state-of-the-art methods in the literature

Reference Network/method Dataset Classes Mean performance rate

[42] Two-stage segmentation using five DNN’s

(UNet, DRUNET, DeepLabV31, FCN,

and Segnet) and 3D classification is used

for CoVID-19 diagnosis

Manual lung segmentation

is performed on 4695

images to segment seven

lesions in lungs

7 No lung segmentation performance of

different DNNs is reported and only

classification accuracy is given: Two class

(CoVID /non-CoVID): 92.49% Three class

(CoVID/other pneumonia/ normal):

92.49%

[35] Three stage segmentation framework is

proposed for four-class lung

segmentation. Five different types of

DNN’s (ENet, U-net1, KISEG1, KISEG2,

KISEG3)

Adam Optimizer with a Batch size of 4

750 CT images from 150 CT

scans Image size: 512 X

512

4 Mean IoU:0.7889, Accuracy: 0.9490

(Background), 0.9490 (Lungs), 0.5875

(GGO), 0.6218 (Consolidation)

Ours DeepLab V3 ? Network with ResNet-50

with batch size 8

DeepLab V3 ? Network with ResNet-50

with batch size 16

Total images: 750

Training: 600;

Testing:75

Validation: 75

(Image size: 512 X 512, 256

X 256)

2

4

Background: Acc: 0.9982, IoU: 0.9971,

BFS:0.9950 Lung field: Acc: 0.9928,

IoU:0.9803, BFS: 0.9853

Background: Acc:0.9976, IoU: 0.9962,

BFS:0.9946 Lung field: Acc:0.9823, IoU:

0.9527, BFS: 0.9598 GGO: Acc: 0.5992,

IoU: 0.5086, BFS: 0.5745

Consolidation: Acc: 0.8453, IoU:0.6047,

BFS:0.7793

1best performance achieved
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Table 18 Sample images of semantic segmentation results obtained for the image size of 256 9 256 (Color figure online)

Original Image
512 × 512

Resized Image
256 × 256

Segmented Image
Background : black,
Lung field:white,

GGO:blue

Ground truth Image
Background : white,

Lung field: blue,
GGO: red
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Table 19 Sample images of semantic segmentation results obtained for the image size of 256 9 256 (Color figure online)

Original Image
512 × 512

Resized Image
256 × 256

Segmented Image
Background : black,
Lung field:white,

GGO:blue

Ground truth Image
Background : white,

Lung field: blue,
GGO: red
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