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Non-empirical identification of 
trigger sites in heterogeneous 
processes using persistent 
homology
Masao Kimura   1,2, Ippei Obayashi   3, Yasuo Takeichi1,2, Reiko Murao4 & Yasuaki Hiraoka3,5,6

Macroscopic phenomena, such as fracture, corrosion, and degradation of materials, are associated 
with various reactions which progress heterogeneously. Thus, material properties are generally 
determined not by their averaged characteristics but by specific features in heterogeneity (or ‘trigger 
sites’) of phases, chemical states, etc., where the key reactions that dictate macroscopic properties 
initiate and propagate. Therefore, the identification of trigger sites is crucial for controlling macroscopic 
properties. However, this is a challenging task. Previous studies have attempted to identify trigger sites 
based on the knowledge of materials science derived from experimental data (‘empirical approach’). 
However, this approach becomes impractical when little is known about the reaction or when large 
multi-dimensional datasets, such as those with multiscale heterogeneities in time and/or space, are 
considered. Here, we introduce a new persistent homology approach for identifying trigger sites and 
apply it to the heterogeneous reduction of iron ore sinters. Four types of trigger sites, ‘hourglass’-
shaped calcium ferrites and ‘island’- shaped iron oxides, were determined to initiate crack formation 
using only mapping data depicting the heterogeneities of phases and cracks without prior mechanistic 
information. The identification of these trigger sites can provide a design rule for reducing mechanical 
degradation during reduction.

Trigger sites are specific regions or features of heterogeneity in a material where key reactions initiate and take 
place in systems. In addition, the macroscopic properties of materials are determined by heterogeneous reactions, 
such as fractures, corrosion, and degradation. Previous studies have attempted to determine the locations of the 
trigger sites of heterogeneous processes on the basis of materials-science knowledge derived from experimen-
tal data. These ‘empirical’ approaches successfully identified trigger sites in a simple system such as metals. For 
example, the fracture behaviour of metallic materials has been studied by identifying the links between their 
microstructure, dislocation mechanisms, and fracture properties1,2. Grain boundaries impede dislocation move-
ment, and large-grain microstructures weaken the grain boundaries (trigger sites), deteriorating the mechanical 
properties of the material1,2. These studies generally rely on the structural information provided by experi-
mental techniques such as transmission electron microscopy (TEM) or scanning electron microscopy (SEM). 
Fundamental materials-science notions such as dislocation theory and micromechanics are used to analyse these 
microscopic data and empirically identify the trigger sites. However, these empirical approaches become imprac-
tical in more complicated systems such as composite materials (e.g. iron ore sinters and carbon fibre reinforced 
plastics (CFRP)), batteries, and catalysts, where the heterogeneity of the microstructure and/or chemical states 
are substantially different depending on their locations in a material, and the features evolve during a period of 
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operation. Thus, a conventional analysis of the heterogeneity, such as fractions of co-existing phases averaged over 
material, is not sufficient, but their distribution or spatial correlation is indispensable.

The understanding of heterogeneous processes can be particularly important for materials with industrial 
applications, such as iron ore sinters. An iron ore sinter is a starting material for iron-making processes and used 
in blast furnaces in most countries. Iron ores with a weight of 3 × 1012 kg are used for the production of sinters 
every year worldwide, and even a small increase in the reduction efficiency of iron ore sinters has an enormous 
impact on environmental and energy issues as well as costs. The required property for iron ore sinters is not 
only a high reducibility but also a low mechanical degradation during reduction in order to support iron ore 
sinters above themselves (weighing few 106 kg) in a blast furnace with few tens of meter in height. A sinter is 
formed by liquid sintering at T > 1500 K, in which iron oxide grains (mainly α-Fe2O3) are sintered with bonding 
layers composed of various types of calcium ferrites3–5. Porous networks are then formed during the solidifica-
tion of the molten Ca–Fe–O (Fig. 1a). The intrinsic differences in the reduction rates of the individual phases 
(Fig. 1b), together with the effect of the porous structure on the reductive gas flow, control the heterogeneous 
reduction and—because the reduction involves a large volume decrease—lead to the formation of microcracks6. 
These complex effects complicate the empirical prediction of how the heterogeneous reduction evolves using only 
data related to the reduction rates of each phase. The determination of the trigger sites of crack formation dur-
ing reduction is even more difficult because the heterogeneous progress of reduction (and the ensuing increase 
in the local stress that results in crack formation) is due to both the nature and microstructure of the phases 
involved. Furthermore, the identification of trigger sites using conventional computational techniques such as 
finite-element methods to calculate the stress field7,8 is not a feasible option. This is because such calculations 
require parameters such as the Young’s moduli and Poisson’s ratios of all phases as well as the details of the micro-
structure, and both change from their initial values according to the progress of the process. Because of these 
difficulties, the trigger sites of crack initiation during reduction have not been identified so far, although they 
are indispensable information for achieving industrial targets to attain a high reducibility and low mechanical 
degradation during reduction.

In order to consider differences in heterogeneity in complex systems, we must effectively manage large 
multi-dimensional datasets in which various types of heterogeneities are observed over multiscales in time 
and/or space. For example, recent advances in X-ray microscopy (XRM) techniques9,10 have enabled the 
three-dimensional quantification of the heterogeneity of the chemical states and microstructures in a material 
with spatial resolutions as small as 30 nm. In these cases, the final dataset can reach up gigabytes when we meas-
ure X-CT images including a spectrum for each voxel using different X-ray energies. Empirical determination 
of trigger sites is almost impossible in these cases and the task is even further complicated when only limited 
information regarding the actual reaction mechanism is available.

Image analysis and machine learning could become a very powerful and effective approach for analysing the 
large datasets recorded during a heterogeneous reaction. For this approach to be successfully applied to heter-
ogeneous reactions, we must define accurate descriptors of the evolution of the heterogeneity which are closely 
correlated with the macroscopic properties. However, present techniques11–15 do not yet provide good descrip-
tors of the heterogeneity of our interests. A key contribution towards this goal may come from topological data 
analysis16,17.

The rapid development of this research field has produced several tools for analysing the multi-scale data 
generated in the physical and biological fields18–25. A particularly important approach in topological data analysis 
is persistent homology26,27, which takes a multi-scale approach to measure topological features. There are two 
characteristics—one geometric, assigning a function to a space, and the other algebraic, turning the function into 
measurements. Thus, persistent homology provides an appropriate descriptor for quantitatively characterizing 

Figure 1.  Reduction of iron ore sinters. (a) Schematic of an iron ore sinter before reduction. (b) Iron reduction 
rates for the Ca–Fe–O phases corresponding to the main phases in the sinters, which were measured using bulk 
powder samples in the previous studies28,29.
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the evolution of heterogeneity during reactions of our interests in which both the microstructure and chemical 
states of iron in iron-ore sinters change during reduction and the change of heterogeneity in both is closely corre-
lated with macroscopic properties. Once we accurately describe the evolution of chemical states and microstruc-
tures during reduction, machine learning can be used to identify the trigger sites of crack formation caused by 
their evolution.

Here, we introduce a persistent homology approach for determining the trigger sites of crack initiation in 
iron ore sinters only using mapping data depicting the heterogeneities of the chemical states and phases involved 
without prior knowledge such as the reaction mechanism; in so doing, we enable the ‘non-empirical’ identifica-
tion of trigger sites. The iron ore system is of great importance for industrial applications, as mentioned above, 
and possesses one of the clearest heterogeneous processes to examine our approach because it is accompanied by 
a sharp change in the oxidation state of iron in the oxide phase from Fe(III) to Fe(II). The distribution of chemical 
states (Fe(III) and Fe(II)) evolves heterogeneously according to the progress of reduction28,29, and its evolution 
is expected to be closely related to crack initiation. The trigger sites obtained by the proposed approach without 
information about the reaction mechanism are discussed in terms of materials-scientific knowledge based on 
reported experimental data such as the iron reduction rates for the individual iron oxide and Ca–Fe–O phases 
measured using bulk powder specimens (Fig. 1b)28,29.

Results
Chemical states and phase mapping.  Sinter specimens were prepared by liquid sintering from mixture 
of iron ore and limestone. Then, the specimens were heated up to 1473 K in a CO/CO2 reducing gas atmosphere. 
Different degrees of reduction were obtained by quenching specimens at different temperatures from 873 K to 
1373 K. (see Methods, Section 1 and Supplementary Information, Note S1). The iron oxide states (Fe(III) and 
Fe(II)) and oxide phases in samples corresponding to different stages of the reduction process were mapped in 
two dimensions using X-ray absorption near-edge structure (XANES) and X-CT measurements (see Methods, 
Section 2 and Supplementary Information, Note S2). The bonding region around the iron oxide grains (indicated 
by the dotted square in Fig. 1a) was mapped with a higher resolution because cracks were considered to form 
more often in the bonding region than in the oxide grains themselves3,5.

The mapping of the valence states of iron oxidation reveals the heterogeneous dynamic evolution of the chem-
ical states from Fe(III) to Fe(II) during the reduction process (Fig. 2). At an early stage of reduction (sample 
S-1), most areas were populated with Fe(III) states (red), mainly corresponding to α-Fe2O3 and calcium ferrite 
phases (Ca2(Ca,Fe,Al)6(Fe,Al,Si)6O20 (SFCA) and Ca3(Ca,Fe)(Fe,Al)16O28 (SFCA-I)), as determined by X-ray dif-
fraction (see Supplementary Information, Note S1). At an intermediate stage of the reduction process (sample 
S-2), approximately half of the iron oxide areas were in a reduced chemical state, and the spatial distribution of the 
changes in the reduced areas was heterogeneous rather than homogeneous, showing that reduction took place at 
different rates for different areas (heterogeneous reaction) (Fig. 2b). Reduction initially occurred only in regions 
with a low calcium concentration, wherein the iron chemical state changed from Fe(III) (red) to Fe(III) + Fe(II) 
(white) or Fe(II) (blue), whereas the iron ions maintained their Fe(III) oxidation state in regions with high cal-
cium concentrations. At the final stage of the reduction (S-3, Fig. 2c), the oxidation state of iron was Fe(II) (blue) 
in most areas, even though some areas maintained a Fe(III) + Fe(II) state (as shown by the blue lines in Fig. 2c,d). 
The Fe(II) states correspond to Fe3O4 and FeO phases, which were formed by the reduction of Fe2O3 and/or the 
decomposition of Ca–Fe–O into Ca–O and Fe–O phases that precedes the reduction of calcium ferrites28,29.

It was observed that reduction was more likely to proceed in areas with a low calcium concentration, which 
can be explained by the experimental results obtained from powder specimens of individual phases, in which iron 
oxides are more easily reduced than calcium ferrites (Fig. 1b)28,29. However, it was also shown that reduction pro-
gressed heterogeneously within the same calcium ferrite or iron oxide phase, as exemplified by the black arrows 
in Fig. 2c. This shows that the heterogeneous reduction was not just the result of the different reduction rates of 
the individual phases. Other factors would have also contributed, such as the porous structure of the calcium 
ferrite phase, which affects the flow of the reductive gas. Because the gas flow is more effective in porous regions, 
reduction is accelerated there.

In order to relate the change in chemical state with crack formation, the changes in the bonding regions during 
reduction were investigated by X-CT (see Methods, Section 2). As reduction progresses, the iron chemical state 
changed from Fe(III) to Fe(III) + Fe(II) and finally to Fe(II). This change corresponds to the formation of the 
Fe3O4 and FeO phases mentioned above, and their formation could be clearly observed by X-CT because of the 
large difference in the densities of calcium ferrites and iron oxides (see Supplementary Information, Note S3). 
In a data set, a 2 × 2 × 10 mm3 specimen was divided in voxels of 4 × 4 × 4 μm3, and each voxel was identi-
fied as (a) initial pores, (b) microcracks formed during reduction, (c) calcium ferrite phases, and (d) iron oxide 
phases formed during reduction. It was clearly observed that small iron oxide regions are formed in the bonding 
region of the calcium ferrite matrix as reduction progresses and that the number of cracks increases. However, the 
change in the microstructure (i.e. the heterogeneity of the phase mapping) is very complicated; thus, we cannot 
determine how the progress of heterogeneous reduction causes crack formation nor empirically identify trigger 
sites.

Persistent homology analysis of image data to identify trigger sites.  The correlation between the 
type and microstructure of the phases involved in the reduction of iron ore sinters and the formation of cracks 
was investigated using persistent homology23,26,27. Having determined the most representative topological features 
characterizing the reduction process by a persistence diagram (PD), the trigger sites for crack formation were 
identified using least absolute shrinkage and selection operator (LASSO) regression techniques to determine the 
correlation between the evolution in the topological features in the calcium ferrite and iron oxide phases compris-
ing the iron ore sinters and the microcracks formed during reduction (see Methods, Section 3).



www.nature.com/scientificreports/

4ScIEnTIFIc RepOrTs |  (2018) 8:3553  | DOI:10.1038/s41598-018-21867-z

The first and most important step in our approach involves transforming each image into a PD. We ana-
lysed the persistent topological features of the image datasets of calcium ferrites and iron oxides for all slices 
of specimens S-1, S-2, and S-3 having dimensions of 2 mm × 2 mm × 4.0 μm3 (thickness) (in volumes of 
2 mm × 2 mm × 10 mm). Here, PDs are calculated as follows (see Supplementary Information, Note S4); we 
enlarge or contract each domain in the image data step-by-step and trace the changes in topological features 
between each step. Enlargement corresponds to positive steps while contraction corresponds to negative steps. 
We define the values b and d as the step of ‘birth’ and ‘death’ of each domain, respectively. That is, the domain 
appears at the bth step and is merged into another domain at the dth step. Hence, the value d indicates the maxi-
mum distance between adjacent domains, whereas b indicates the size of the domains. Then, a PD is constructed 
as a two-dimensional histogram of topological features plotted at those corresponding birth and death values on 
the (b,d)-plane. We note that the positive and negative regions on the d-axis in the PDs denote ‘island’- and ‘hour-
glass’-shaped features in the real-space maps, respectively (see Supplementary Information, Note S4).

The evolution of the topological features in the phase maps of the calcium ferrite and iron oxide phases were 
well-captured using PDs. Figure 3 shows examples of mapping images of calcium ferrites and iron oxides with 
their corresponding PDs. The PDs of calcium ferrites in Fig. 3 show a shift of a highly populated region from the 
region near (b, d) = (0, 0) to a region of negative b and d as the reduction progresses from the early stage to middle 
and final stages, suggesting that large matrices of calcium ferrites change into many narrow hourglass-shaped 
grains. In contrast, the PDs of iron oxides show a highly populated region scattered around (0, d) (d > 0) in the 
early stage and that the scattered range of d becomes smaller as reduction progresses, suggesting that large islands 
of iron oxide domains change into small ones. The PDs in Fig. 3 suggest that the heterogeneous progress of the 
reduction process resulted in the gradual formation of iron oxide islands and calcium ferrite hourglass shapes as 
reduction progressed.

We, then applied machine learning to identify statistical signatures between crack formations and topolog-
ical features extracted by persistent homology for phase mapping of calcium ferrites and iron oxides. The PDs 

Figure 2.  Chemical state mapping of an iron ore sinter. The fraction ratio of Fe(II)/(Fe(II) + Fe(III)) is color-
coded: blue for 1 and red for 0. (a) Early (sample S-1), (b) intermediate (S-2), and (c) final (S-3) stages of 
reduction. The top and bottom rows show the maps for different fields of view of the same specimen for each 
stage. In each half-panel, the left panel illustrates the elemental distribution of iron (blue) and calcium (yellow), 
whereas the right panel maps the oxidation states of iron, with the Fe(III) and Fe(II) states coloured red and 
blue, respectively. The blue lines exemplify regions where the reduction proceeded faster than in other areas, 
whereas the red lines exemplify regions where the reduction was slower. Even within an area with the same 
calcium concentration, the reduction progressed heterogeneously, as indicated by the black arrows in Fig. 2c, 
where the reduction proceeded slower than the rest. (d) XANES spectra for standard samples.
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were converted into a vector representation termed persistence image (PI) and analysed using principal compo-
nent analysis (PCA) (see Supplementary Information, Note S5). The results of the PCA clearly showed that the 
S-1 (early stage) dataset is separated from the intermediate and final datasets, S-2 and S-3. The main difference 
between the early- (S-1) and later- (S-2, S-3) stage data was the number of small iron oxide island shapes and 
calcium ferrite hourglass shapes, which increased from the early stages to the later stages but did not change very 
much between the intermediate and final stages (see Supplementary Information, Note S5).

The LASSO was applied to the vector representation of the PDs. Since each element of the vector corresponds 
to a grid in the histogram, we can identify a subset of grids in the histogram which has the largest impact on the 
dependent variable: the area of the microcracks; this subset corresponds to the dominant birth–death pairs that 
have the closest correlation with the areas containing microcracks (see Supplementary Information, Note S5 and 
S6). To demonstrate the simplicity and validity of our approach, we utilized the macroscopic mechanical property 
for each slice in the volume data using the sum of crack volume. Alternatively, we might directly measure the 
mechanical properties of specimens in sufficient detail to conduct machine learning and determine trigger sites 
using our new approach.

Figure 4a,b show 2D histograms corresponding to the learned vectors obtained from the LASSO analysis on 
the images of the calcium ferrite and iron oxide phases and of the microcrack regions. The histograms highlight 
specific regions characterized by the high values of the learned vectors (marked as TS: trigger sites in the figures). 
Four types of dominant birth–death pairs were identified, two for calcium ferrites (TSCF1 and TSCF2) and two for 
iron oxides (TSIO1 and TSIO2), each of which are highly correlated with crack formation. These highly correlated 
components were transformed back into the corresponding real-space locations in specimens (Fig. 4c). In this 
way, we successfully identified the locations in real space that correspond to the highly correlated birth–death 
pairs in Fig. 4a,b, i.e. the trigger sites that induced crack formation during the heterogeneous reduction. It should 

Figure 3.  Examples of phase maps (bottom image in each panel) and the corresponding persistence 
diagrams (upper image in each panel) for (a–c) calcium ferrites and (d–f) iron oxides during the (a,d) early 
(S-1), (b,e) intermediate (S-2), and (c,f) final (S-3) stages of reduction. The blue circles show the centres of 
the representative shapes in each image (calculated using a PCA analysis) that became predominant as the 
reduction progressed.
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be stated again that the key to the identification of trigger sites is the high correlation between the main topologi-
cal features corresponding to the calcium ferrite and iron oxide phases and the microcracks.

Herein, we briefly explain the advantages of our method compared to other strategies. First, we can use other 
simpler descriptors of images such as mean, variance, and higher order moments of pixel values, Gray-Level 
Co-Occurrence Matrix (GLCM) statistics, connected component counting, and others14,15. However, the selection 
of appropriate descriptors requires prior knowledge for selecting appropriate one, a disadvantage that has been 
overcome using our data-driven method. Another strategy for image analysis involves directly applying standard 
machine learning methods, such as bag-of-keypoints with kernel support vector machine and deep neural net-
works11–13. However, these methods naturally create a black box, which prevents inverse analysis of the original 
real-space. In contrast, our method provides a pipeline for statistical inverse analysis, which provides satisfactory 
insights into the reaction mechanism; one of the significant advantages to others. Other groups have reported the 
successful combination of machine leaning with PDs in materials science21,22,25. These works construct descriptors 
for machine leaning from persistent homology, which works well if given prior knowledge or intuition about the 
data set as mentioned above, which is unfortunately unavailable for our application. Several performance com-
parisons showing the advantages of our method are given in Supplementary Information, Note S5.

It should be noted that the macroscopic mechanical properties of a sinter are not simply the sum of mechan-
ical properties of local areas (in the order of tenths of μm2). This case differs from that of functional properties 

Figure 4.  Results of the LASSO analysis and identified trigger sites. (a,b) Results of the LASSO analysis for 
the calcium ferrites and iron oxides, respectively. (c) Trigger sites in the calcium ferrites (TSCF1 and TSCF2) and 
iron oxides (TSIO1 and TSIO2), corresponding to the topological features in Fig. 4a and b, respectively, which 
are highly correlated with crack formation. The pink and blue matrix-regions represent the calcium ferrite and 
iron oxides phases, respectively. The black and blue ones show the initial pores and the cracks formed during 
reduction. (d) Schematic of the reduction process and the trigger sites employed: ‘hourglass’-shaped features of 
calcium ferrites (TSCF) and ‘island’- and ‘hourglass’-shaped features of iron oxides (TSIO).
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such as electronic or heat conductivity. Thus, simple comparisons between the locations of microcracks with the 
microstructures of calcium ferrites and/or iron oxide phases are insufficient because the locally correlated features 
do not necessarily correspond to the trigger sites which deteriorate the whole sinter. For example, cracks and 
certain microscopic features correlating (or coinciding) with cracks do not necessarily lead to the deterioration of 
macroscopic mechanical properties when they are arranged homogeneously within a specimen. Microstructural 
features can become trigger sites when they cause a regional or heterogeneously distributed increase in stress in 
a sinter sample. For this reason, we focus on microstructural features that correlate with the overall microscopic 
mechanical properties by using a homological approach and machine learning rather than a direct comparison 
between the distribution of cracks and phases.

Discussion
Four types of trigger sites were identified by persistent homology in data-driven way without any prior knowl-
edge about the materials and the processes involved (Fig. 4c). The trigger sites labelled TSCF1 and TSCF2, located 
in negative death regions in Fig. 4a, were found in the hourglass-shaped features of the calcium ferrites with a 
narrow width of 8–14 μm (TSCF1 has a smaller width than TSCF2) (Fig. 4d). Another set of trigger sites, TSIO1 and 
TSIO2, was found in the island- and hourglass-shaped iron oxide features, respectively (note: TSIO1 and TSIO2 are 
located in the positive and negative death regions in Fig. 4b, respectively); these sites had approximate sizes of 2 
and 8 μm, respectively (Fig. 4d).

The determined trigger sites are reasonable in terms of materials-scientific knowledge. The trigger sites popu-
lating the hourglass features of the calcium ferrites (TSCF1 and TSCF2), and the island (TSIO1) and hourglass (TSIO2) 
features of the iron oxides, were presumably formed as a result of the decomposition of Ca–Fe–O into the Ca–O 
and Fe–O phases before the reduction of the calcium ferrites, as found in a period from 0 to 3 min in CaFe2O4 
(Fig. 1b)28,29, leading to the formation of complex calcium ferrites and iron oxide microstructures. The correlation 
between these topological features and the formation of cracks is certainly reasonable because iron reduction in 
the calcium ferrite and iron oxide phases is accompanied by a large volume decrease6 and leads to an increase in 
the local stress (and then to crack formation) due to the different reduction rates of the calcium ferrites and iron 
oxides28,29.

The role of the trigger sites in the crack formation during reduction can be explained as follows (Fig. 4d). In 
the early stages of the reaction, only a few trigger sites were found because only a slight increase in the stress is 
expected at this time. At intermediate stages, large areas of iron oxides and calcium ferrites were separated into 
complex microstructures as a result of the progress of reduction. Larger numbers of trigger sites were found in the 
fine microstructures and not limited to the areas near the pores; the trigger sites occupying the iron oxide islands 
(TSIO1) and the hourglass-shaped regions of the calcium ferrites (TSCF1 and TSCF2) remained spatially separated 
from each other. In the final stage of the reduction process, the trigger sites spread across the entire specimen, 
and the two types of trigger sites overlapped, which makes small and isolated cracks aggregate and causes large 
macroscopic cracks resulting in fracture of the specimen.

It has been clearly demonstrated that the present method based on persistent homology and statistical anal-
ysis can identify the trigger sites of the reduction of iron ore sinters using only the image data of phase mapping 
and crack formation. The identification of the specific locations of crack formation during the reduction process 
has never been available using conventional and empirical approaches, although the type of microstructure has 
been believed to play important roles3–5. The identification of trigger sites can be used to quantitatively predict 
the fracture toughness or lifetime of iron ore sinters. For example, we may predict the fracture toughness of 
an iron ore sinter on the basis of the size and number distributions of hourglass-shaped calcium ferrites and 
island-shaped iron oxides. Furthermore, on the basis of our findings, the mechanical properties of iron ore sinters 
can be improved by changing the initial microstructures of calcium ferrites into finer ones, which may prevent 
an increase in the local stress from aggregating into a macroscopic stress. A change in microstructure may be 
achieved by controlling the heating pattern of sintering30 or the chemical compositions of calcium ferrites, such as 
silicon and/or aluminium31,32. This is expected to suppress the degradation of sinters during reduction, resulting 
in an increase in the process efficiency and reductions in energy and natural resources (iron ores).

This work showed the power of the proposed method to analyse a heterogeneous reaction without requiring 
specific data about the reaction mechanism involved. In the process, only image data depicting the heterogeneity 
of a material, such as a map of the chemical states and coexisting phases, and their relationship to a macroscopic 
property are required, which are analysed by persistent homology and machine learning. The proposed method 
can be applied to find trigger sites, as far as the features of heterogeneity governing the macroscopic properties. 
For studying the correlation among three or more co-existing phases, a naive approach is to apply pairwise anal-
ysis of two-phase correlations, although it may make the analysis complicated.

The proposed method can be easily extended to various types of datasets with heterogeneity, even in the case 
of large and multi-dimensional datasets produced using current analytical methods such as in situ X-CT, XRM, 
and other techniques of mapping heterogeneity. It also has the potential to be a powerful tool for predicting trig-
ger sites in heterogeneous processes without any specific information about the reactions involved. For example, 
when macroscopic properties such as the electrical or thermal conductivity are determined by the heterogeneity 
of coexisting phases, this method could provide most important topological features or trigger sites without infor-
mation regarding the mechanism such as the interactions among the domains of coexisting phases. Hence, the 
proposed method could be applied to gain further insights into different systems for which no specific knowledge 
of the reaction mechanism is available.

Methods
Preparation of iron ore sinters.  Sinter specimens were prepared by liquid sintering from iron ore and 
limestone. Natural iron ore particles (mainly Fe2O3, a few millimetres in diameter) were mixed with limestone 
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flux (CaO, 7.4 mass%) and coke breeze (C, 4.0 mass%) and heated via the combustion of coke breeze, increasing 
the temperature from 1450 to 1600 K (above the eutectic temperature of CaO–Fe2O3, 1478 K). Iron ore sinter 
samples were prepared using natural iron ore and calcite minerals including silica and alumina as impurities. The 
chemical compositions of specimens are, Fe:30.9, O:59.2, Ca:5.6, Si:3.1, Al:1.2 by at%. Then, the specimens were 
heated up to 1473 K in a CO/CO2 (from 50:50 to 80:20, 10−1 MPa) reductive gas atmosphere for reduction, simu-
lating the iron-making process. Different degrees of reduction were obtained by quenching the specimen at differ-
ent temperatures and CO partial pressures: 873 K (early stage, sample S-1) to 1173 K (intermediate stage, sample 
S-2) and P1473 K (final stage, sample S-3). Specimens obtained with increasing reduction temperatures and CO 
partial pressures have a higher degree of reduction, which was confirmed by X-ray diffraction (Supplementary 
Information, Note S1 and Table S1).

Chemical state/phase mapping and X-CT measurements.  Chemical state mapping29 was carried 
out on the basis of X-ray absorption measurements at the synchrotron undulator beamline BL-15A133,34 of the 
Photon Factory, IMSS, KEK in Japan. A sinter was embedded in a resin and sliced into specimens with a thick-
ness of 20–30 μm. XANES spectra were measured using ion chambers located before and after the specimen to 
measure the incident and transmitted intensities (see Supplementary Information, Fig. S2). A XANES spectrum 
was expressed as a linear combination of the FeIIO and FeIII

2O3 components, and the ratio between the amounts 
of the two phases was determined by a least-squares fitting29. X-ray fluorescence spectra were also measured using 
a silicon drift detector (SDD) in order to determine the iron and calcium contents. The typical time required for 
chemical mapping using 30 photon energies was a few hours for a 1 mm square with an ‘on the fly’ mode.

The crack formation in and phase mapping of larger volumes (2 × 2 × 10 mm3) were investigated using X-CT 
measurements performed with an in-house X-ray source. For the persistent homology analysis, the X-CT datasets 
of the reduced sinter were deconvoluted into (a) the initial pores, (b) the microcracks formed during reduction, 
(c) calcium ferrite phases, and (d) iron oxide phases (see Supplementary Information, Note S3).

Persistent homology analysis.  The analysis involves (1) transforming each image into a PD and then (2) 
into a vector, (3) feeding the vectors together with the measured crack areas into the LASSO, (4) identifying the 
dominant birth–death pairs, and finally (5) mapping them back into the original image to reveal the real-space 
topological (persistent) features. (see Supplementary Information, Note S4 for (1) and Note S5 and S6 for (2), (3) 
and (4))

(1) PDs were computed from each slice with dimensions of 2 mm × 2 mm × 4.0 μm3 of a calcium ferrite and 
iron oxide phase image obtained by X-CT. (2) PDs were converted into a finite-dimensional vector representation 
called the persistence image (PI) in order to analyse them using machine learning. The PIs were then analysed 
using PCA, which found the lowest-dimensional representation of the vectors in the PIs. (3) The LASSO tool was 
used to detect the dominant birth–death pairs with the closest correlation with the areas of microcracks. (4) Four 
types of dominant birth–death pairs were identified, two for calcium ferrites and two for iron oxides. (5) They 
were mapped back into the original image, identifying the trigger sites in the reduction process.

Data availability.  The authors will make available, upon request, typical data described in this work. It is 
understood that the data provided will not be for commercial use.
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