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Abstract

Humans are able to track multiple objects at any given time in their daily activities—for

example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles.

Several past studies have examined how humans track targets simultaneously and what

underlying behavioral and neural mechanisms they use. At the same time, computer-vision

researchers have proposed different algorithms to track multiple targets automatically.

These algorithms are useful for video surveillance, team-sport analysis, video analysis,

video summarization, and human–computer interaction. Although there are several efficient

biologically inspired algorithms in artificial intelligence, the human multiple-target tracking

(MTT) ability is rarely imitated in computer-vision algorithms. In this paper, we review MTT

studies in neuroscience and biologically inspired MTT methods in computer vision and dis-

cuss the ways in which they can be seen as complementary.

Author summary

Multiple-target tracking (MTT) is a challenging task vital for both a human’s daily life and

for many artificial intelligent systems, such as those used for urban traffic control. Neuro-

scientists are interested in discovering the underlying neural mechanisms that successfully

exploit cognitive resources, e.g., spatial attention or memory, during MTT. Computer-

vision specialists aim to develop powerful MTT algorithms based on advanced models or

data-driven computational methods. In this paper, we review MTT studies from both

communities and discuss how findings from cognitive studies can inspire developers to

construct higher performing MTT algorithms. Moreover, some directions have been pro-

posed through which MTT algorithms could raise new questions in the cognitive science

domain, and answering them can shed light on neural processes underlying MTT.

Introduction

We are an intelligent, creative, and efficient species able to perform a large amount of process-

ing in a fraction of a second. For many years, artificial intelligence (AI) researchers have tried
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to replicate these capabilities in machines. However, AI uses different approaches than the

brain uses to fulfill this goal. One of these approaches focuses on general biological systems for

inspiration. Some successful methods include: ant-colony optimization (ACO), inspired by

how ants find their path in a colony; the bees algorithm (BA), inspired by the honey bee food-

foraging method; the genetic algorithm (GA), inspired by natural selection in evolution; parti-

cle swarm optimization (PSO), inspired by the movements of birds in a flock or fish in a

school; and the artificial immune system (AIS) algorithm, inspired by the vertebrate immune

system. These methods are widely used to solve a variety of problems in the field of AI ([1]

reviews bioinspired methods).

To develop algorithms based on the brain, we first need to understand how it works, i.e.,

how the brain performs particular tasks and the exact mechanisms underlying a particular

behavior. Second, we need to imitate brain functions in order to create algorithms that make

computers capable of performing a similar task. This approach has led to some publicly

known and powerful tools, such as artificial neural networks (ANNs) and its variations (e.g.,

deep neural networks [DNNs], inspired by the hierarchical layers of neurons in the brain; con-

volutional neural network [CNNs], inspired by the concept of receptive fields; and spiking

neural networks [SNNs], inspired by how neurons contribute to each other via spike trains).

Some areas of research, such as reinforcement learning (RL), incremental learning, attention,

and saliency detection, have also emerged to imitate brain functions, although the exact

approach they use may not completely align with the processes used by the brain. In addition

to understanding how the brain solves a particular task, some studies have focused on model-

ing the entire brain [2,3].

Visual information is one of the most important sensory inputs used to perceive and inter-

act with the environment. To fulfill all of its duties, our visual system must accomplish some

basic tasks, which can be combined to define more complex functionalities. These tasks corre-

spond to basic challenges in computer vision, such as object detection and recognition, object

tracking, and activity recognition. This paper focuses on object tracking as a key part of differ-

ent applications, such as video surveillance systems, video understanding, or human–com-

puter interaction.

Although object tracking in computer-vision literature usually refers to tracking a single

object in a video [4,5], MTT is something done by humans in the real world. Two-year-old

babies can track more than one target [6]. As they grow, human ability to track more objects

simultaneously increases [7]. Different examples in daily life include monitoring children on a

playground or in a swimming pool, tracking multiple vehicles and pedestrians while driving a

car, or watching a basketball game. MTT is a well-known paradigm in neuroscience; after [8],

a pioneer study on the human ability to track multiple visual targets, many researchers investi-

gated this phenomenon to identify the brain areas involved [9–11] and understand the factors

influencing it [12]. Most of these methods use psychophysical experiments and behavioral

data analysis, but in recent years more advanced techniques (such as functional MRI [fMRI])

have been utilized as well to uncover the neurobiological bases of MTT.

Two approaches are used in computer vision for MTT. The first defines multiple instances

of a single-object tracker (SOT) and assigns each instance to one target independently. Here,

the same strategy is used to track multiple objects, and cognitive neuroscience studies of sin-

gle-object tracking can be helpful. The second approach develops an MTT algorithm that can

track more than one object simultaneously. This approach is advantageous since it can benefit

from the shared information in the whole system, which is useful for tracking individuals and

handling challenges. In general, the MTT algorithms in computer vision are still far from the

exact mechanisms employed by the brain, even the brain-inspired algorithms. These brain-

inspired algorithms mainly consider the key cognitive effects that undoubtedly play a role in
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MTT, such as attention and memory. However, there is much more to learn from the cognitive

neuroscience of MTT.

It is worth noting that the brain chooses an efficient strategy to track multiple targets con-

sidering its physical and cognitive limitations; these limitations are mostly related to the physi-

ological properties and functions of neurons, which are tuned to specific features of visual

scenes, visual spatial mapping, and varied emotional and intrinsic brain states [13–17]. Com-

puters do not have similar computational limitations. Therefore, what would be the advantages

of using a brain-inspired approach to achieve high performance MTT algorithms? First, con-

sidering human-brain limitations, algorithms’ performance is still lower than human perfor-

mance, especially in challenging scenarios [18]. For MTT, humans still perform more

accurately than current MTT algorithms as long as the number of targets is less than four

items (because of human cognitive limitations [19]). However, human performance depends

on factors such as object spacing too [20]. Humans are very efficient at tracking multiple

objects from different categories and very robust to image transformation, whereas algorithms

have to be trained each time over a new data set. In this respect, algorithms lack generalizabil-

ity. Algorithmic performance is evaluated with respect to ground truth. Ground truth for an

MTT application contains exact positions of targets in each video frame. In fact, in most cases,

humans generate ground truth directly or via some annotation tools that streamline the pro-

cess. However, state-of-the-art MTT methods remain unable to detect all targets in all frames,

even offline methods that have sufficient time and information to process the video. This is

likely due to various challenges that a typical MTT algorithm must overcome (Fig 1).

Second, developing algorithms with low computational cost is integral to the computer-

vision domain. Such algorithms can be more easily customized for embedded systems and

real-time applications. Thus, investigating how the brain allocates its limited resources effi-

ciently and performs in different situations can help the field of computer vision develop

higher performing MTT algorithms that require less computational and memory resources.

Despite substantial progress in the areas of neuroscience and cognitive science, the exact

strategies exploited by the brain to solve problems such as MTT are still not completely under-

stood. However, studies have shed light on some parts of these strategies and raise the follow-

ing questions: Are all types of MTT studies in the field of cognitive neuroscience useful to

Fig 1. MTT general challenges. MTT, multiple-target tracking.

https://doi.org/10.1371/journal.pcbi.1007698.g001
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improve computer-vision algorithms? We believe the answer is no. Current brain-inspired

MTT algorithms use cognitive factors proven to be effective in experimental studies. For

example, an attention or memory module can be added to an algorithm to imitate the role of

visual attention in feature extraction or memory in retaining extracted information. Some

experimental studies in the field of multiple-object tracking (MOT; see the “MTT Studies in

Neuroscience” section) investigate how humans allocate their limited attentional resources to

multiple moving objects in the scene. However, overt attention cannot be assigned to more

than one point at any time. What is the mechanism behind selecting that point? How do

humans suppress unrelated information to avoid being sidetracked so they can track targets

successfully? Is using one hemifield as beneficial as using both for object tracking? On the other

hand, computers have sufficient computational resources to get high-resolution information

from all points of the screen. They can also consider both related and unrelated information on

the screen at the same time without any distractions. Therefore, these types of studies are likely

not as beneficial for increasing tracking algorithm accuracy although they might help to find a

solution for the effective use of computational resources in the proposed algorithm. Some cog-

nitive experimental studies have investigated different challenges that humans face, such as par-

tial or complete occlusion, targets with variable appearance, and crowding. These challenges

were the topic of a significant amount of research in the computer-vision domain [21], but they

remain unsolved. Therefore, investigating human behavior could prove to be the most efficient

and effective way to design algorithms to solve MTT problems.

Despite some potential issues, computer vision can help define specific MTT challenges.

Unlike experimental studies (performed only on simple artificial scenarios), algorithms are used

in real-world situations. Therefore, they confront various challenges with which humans are

already familiar. Studying human behavior while tracking multiple objects in real scenarios can

help to uncover normal strategies used by the brain. The results of such research will be more ben-

eficial than research on simple artificial scenarios used in cognitive neuroscience of MTT.

In sum, MTT, as an important paradigm in neuroscience, involves a variety of applications

in computer vision. There are consistencies and inconsistencies between studies in these two

areas. Some of these are due to intrinsic differences between the human brain and computa-

tional algorithms. But others are likely due to a research gap between these two potentially

interrelated fields. Here, we mention some of the consistencies. Human behavioral studies

have shown that memory and attention are cognitive processes that are undoubtedly involved

in MTT [22]. Several current proposed algorithms benefit from modules with similar function,

although their implementation details may not be entirely consistent with how the brain

works. For example, Mahadevan and Vasconcelos suggested that salient items are tracked eas-

ier by humans [23]. Some automatic methods also use discriminative features and saliency

detection to track objects. Furthermore, some neuroimaging studies have reported activation

of areas responsible for object recognition in the brain during the tracking of multiple targets

[24]. Similarly, several MTT algorithms use pretrained object-detection modules to find targets

in each frame and track them.

Still more findings from MTT cognitive studies are worth noting for the design of algo-

rithms. For example, it is reported that any surface features or semantic information that leads

to visual separation between targets and distractors can improve the performance of subjects

during tracking [25–28]. However, no MTT algorithm in computer vision has utilized this

finding as inspiration for its methods. It could be incorporated by processing both semantic

and surface information of targets in an object-recognition module in MTT algorithms, which

may improve tracking performance. Object-detection methods have recently benefited from

including semantic features [29,30]. Some MTT algorithms have also utilized such methods to

detect objects (“MTT Methods Based on ANNs” section); however, they discarded semantic
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relations between targets. This additional information increases discriminability of targets

from other objects and may improve performance of MTT algorithms. As another example,

human vision is binocular, and it has been reported that humans perform better when depth

information is also available in MTT stimuli [31]. However, there are still open questions

about how and to what extent human binocular or even monocular depth vision influences

the handling of challenges such as clutter, scale variance, and data association or occlusion.

Most MTT algorithms assume monocular vision. Some SOTs improve tracking performance

utilizing a binocular camera [32]. Improving MTT performance using a similar idea is antici-

pated. Indeed, this issue has rarely been considered by both communities. However, the effi-

ciency of methods based on binocular vision compared to monocular vision in other

applications (such as object detection) has been proven [33]. On the other hand, there are chal-

lenges that target-tracking algorithms confront; these include the variability in target appear-

ance and background, partial or complete occlusion, the birth and death of a target, and data

association in real scenarios. It is still not clear exactly how the brain performs in such situa-

tions, but cognitive studies can focus on these topics to understand the brain in more detail.

Even drawing inspiration from this incomplete survey may improve both accuracy and run-

time of automatic MTT algorithms.

In the “MTT Studies in Neuroscience” section, we review the most recent ideas about MTT

from the neuroscientific community. We discuss brain-inspired MTT methods in computer-

vision area in the “Brain-Inspired MTT Algorithms” section. Finally, in the “General Discus-

sion” section, we describe commonalities and differences in these two domains and explore

how these two veins of research can be mined to better understand the mechanisms behind

MTT and to develop stronger computer-vision algorithms.

MTT studies in neuroscience

Researchers in the field of MTT investigate how human subjects perform during psychophysi-

cal experiments. Fig 2 shows the classic MTT psychophysical task, which begins by introducing

Fig 2. The Basic MTT paradigm.

https://doi.org/10.1371/journal.pcbi.1007698.g002
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targets to be tracked among distractors. Then, both targets and distractors move simulta-

neously for a random period of time, and subjects are finally asked to identify the target(s).

The final step can be done in two ways: (1) A probe is shown, and subjects are asked whether it

was one of the targets, or (2) participants are instructed to select all of the targets among all sti-

muli. There are also two methods for evaluating the performance of each subject. The first is

calculating the ratio of the correct trials to the total trials done by subjects and reporting the

value as their performance. A correct trial is a trial in which the subject marked all targets cor-

rectly. The second method involves computing the ratio of correctly marked targets to the

total number of targets in a trial and then calculating the mean of these values over all trials of

a subject. Finally, the average performance of all subjects is reported as human performance in

the task.

Many factors can vary in this task, such as the number of targets and distractors; the speed,

type, and duration of movements; and the choice of targets and distractors. Decisions on these

parameters are defined by the research objectives for individual studies. It is common to divide

MTT tasks into two types of experiments: MIT (multiple-identity tracking) and MOT. For

MIT, the task involves tracking objects with different identities among dissimilar distractors.

MOT involves tracking similar targets when there is no difference in the appearance of targets

and distractors.

MIT versus MOT

Tracking multiple targets with different identities (done in MIT) differs from tracking indis-

tinguishable targets (done in MOT): MIT requires both recognizing targets’ identity and

remembering their location. It is postulated that, generally, there are two distinct mechanisms

involved in MTT [12,34]. In [12], subjects were required to track multiple indistinguishable

objects in one experiment and multiple objects with different identities in another experiment

(instances of MOT and MIT, respectively), and their performances were compared between

the two task conditions. It is reported that during MOT, people remember only location infor-

mation and forget target features since they are not informative [12]. However, in MIT, both

the feature and location of the targets are important, and subjects had to bind both pieces of

information together to successfully complete the task. Thus, it was proposed that MOT is a

parallel process, and MIT is a serial one. Analyzing the eye movements of the subjects helps

better investigate this; if MOT is a parallel mechanism, the subjects should rarely look at the

targets, while if MIT is a serial mechanism, subjects should focus on targets one after another.

Recently, a review of eye behavior studies for both MOT and MIT is provided in [35].

In [12], the number of targets visited as well as the number of fixations, (i.e., fixation fre-

quency) are recorded. The pupil size and blink rate were also quantified as a measure of atten-

tional load. The authors manipulated the target-set size (number of targets) and speed of the

objects during the task and studied the effect of these manipulations on the two recorded

parameters. They postulated that MOT occurs in parallel, since their results showed that sev-

eral parameters, such as the number of target visits and fixations, were not affected by target-

set size. Subjects showed overt attention near to one target and tracked the others covertly.

Pupil size, a measure of attentional load, increased with the number of targets. Fig 3 shows

some results from Experiment 3 of this study. In this experiment, authors used black- and

white-line drawing pictures to design one MOT task and one MIT task. The same group of

subjects performed both tasks. The fixation map covered approximately the center of the

screen in MOT. Slowing down the target’s speed of motion led to serial tracking; an increase

in target-set size in the slow-speed condition resulted in an increase in the number of target

visits and fixations. For MIT, the number of target visits and fixations should increase with set
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size. In fact, subjects fixated more on the targets but with shorter duration as target speed

increased, which supports serial tracking in MIT. Additionally, eye-tracking data showed that

all targets are tracked overtly by the subjects, and tracking performance for recently visited tar-

gets is higher than targets that were visited earlier [36]. The fixation heatmap covered nearly

the entire screen area since the objects move randomly.

The authors also found that pupil size was larger in MOT than MIT. It is believed that there

are two systems responsible for MTT [12]: One ambient system is responsible for tracking the

positions of objects, and another system is focal and responsible for recognition of individual

items. These two systems must then be bound together to enable MTT. In MOT, only the for-

mer is used, while in MIT both the former and latter are used. Therefore, the mechanisms

underlying MOT and MIT are neither completely independent nor the same. When the sub-

jects are instructed to track identities, location tracking is impaired [37]. That is due to inher-

ent limitations of cognitive resources such as attention and memory. Studies have further

postulated that MIT and MOT mechanisms share common resources, and this allocation pro-

cess is flexible [37–41].

Some studies provide evidence contrary to the aforementioned findings. According to [42],

the number of fixations stays the same with the increase in the target-set size for both MIT and

MOT. It is postulated that subjects use the same strategy to perform both tasks. They designed

a different experiment to investigate the matter. Subjects were instructed to track moving

objects with the speed of 6 deg per sec for 8 seconds. For MIT, the objects were cartoon-animal

images, and, after the cue, they were covered by gray circles during the tracking phase; the

objects finally stopped, and a probe was shown. Afterwards, an animal appeared at the center

of the screen, and the subject was asked whether the probe was that animal or not. It is worth

mentioning that MIT is commonly referred to as those tasks for which the identity of targets

and distractors are visible during movements. Therefore, the aforementioned results can be

regarded in line with other findings suggesting that tracking indistinguishable objects needs

just location information and is parallel, while tracking distinguishable targets is serial [12].

A recent study suggested that MIT performance manifests a more serial pattern when high-

resolution information is required, and a relatively parallel pattern when low-resolution

Fig 3. Comparing subjects’ performance in MOT and MIT tasks using the results from Experiment 3 of [12]. MIT, multiple-identity tracking; MOT,

multiple-object tracking.

https://doi.org/10.1371/journal.pcbi.1007698.g003
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information suffices for tracking [22]. Authors recorded eye movements and behavioral

responses of subjects during tracking multiple distinct faces from the same sex, disks with dif-

ferent colors, and distinct line drawings in separate tasks. The eye-movement results showed a

more serial pattern when tracking faces and drawings and a parallel pattern when tracking col-

ors. That is, when tracking faces and drawings, participants visited each target serially, while

when tracking color discs, more eye visits to blank areas between targets were observed. When

high-resolution information is needed for identifying a target, foveal vision is directed to it; on

the other hand, when low-resolution information is sufficient for discriminating the targets,

the eyes tend to land on blank areas to sample information from multiple targets covertly [22].

MTT algorithms usually use a serial procedure to track multiple targets. Leveraging the advan-

tages of parallel programming, it is possible to recruit different cores of a processor and assign

each core to track one target. This decreases the algorithm’s runtime and makes it more suit-

able to apply for real-time applications. However, a limited number of algorithms benefited

from this strategy [43].

To pinpoint the neural circuits responsible for binding target identity and location during

MIT, fMRI and eye-tracking data were analyzed simultaneously in [24]. Areas responsible for

working memory, attention, and object recognition were active in these tasks, and the authors

postulated that binding is performed in lateral frontal and ventral occipitotemporal areas.

Identity switching during a tracking task to investigate which part of the brain is responsible

for binding object identity and location is the goal of another study [44]. Three different sce-

narios were considered: 1) switching the targets’ identity, 2) switching the distractors’ identity,

and 3) no identity switching. The fMRI data were acquired while the subjects were tracking

multiple circles tagged with different letters. Identity switching was applied by changing the

letter on the related object. Results show that targets’ tag switching was associated with activity

in the dorsal attention network (frontal eye fields [FEF] and intraparietal sulcus [IPS]).

Main topics in MTT

Although classic MTT tasks can be considered either MOT or MIT, many recent studies cus-

tomize classical experiments to answer their particular questions. Therefore, it is difficult to

label them either a pure-MIT or a pure-MOT task. However, these customized versions are

more similar to MIT since they rarely use the same objects. In fact, pseudo-MIT scenarios are

ubiquitous in daily life in which there are usually some visual features that help the observer

distinguish among objects, specifically tracked and nontracked ones (e.g., tracking different

color clothing while also tracking multiple children on a playground or attending to the model

of vehicles being tracked while driving). Most computer-vision problems also involve issues

with real-world applications, so MIT or pseudo-MIT studies are the main focus of this paper.

MOT scenarios in which all objects are completely similar rarely occur in practice. However,

studying these tasks helps to better understand the brain mechanisms underlying MIT. In this

paper, we also tap into some MOT studies if their findings are useful for empowering algo-

rithms. For a review of MOT studies, please refer to [45,46].

The effect of semantic information. Semantic difference between target and distractor

categories facilitates MIT [25]. In [47], authors attribute this facilitation to the categorical dis-

tinction of targets and distractors, supported by four processes. First, any type of visual distinc-

tion between targets and distractors facilitates tracking. Second, semantic differences in targets

and distractors require the attentional system to choose a different strategy for distributing

attention to objects and thus facilitate tracking. Third, categorical information might be saved

in visual working memory and thus improve the error recovery process. Fourth, there is a

mechanism that groups information according to its category, leading to easier tracking of
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targets among distractors that belong to different categories. The authors conducted six experi-

ments targeting this hypothesis and found that visual distinctiveness is not the only reason that

differential category membership of targets and distractors induces facilitation in tracking per-

formance: Intercategorical information is also important. Their results rejected the “change in

attentional distribution strategy” hypothesis since targets always attracted more attention than

distractors. Eye-tracking data have shown that fixations are directed toward targets; the fre-

quency of fixations landing on the targets increases with enhancing the attentional need for

processing the targets [36]. This is why change detection is also easier for targets than distrac-

tors in a tracking task [48]. Finally, they argue in favor of the fourth process underlying this

effect, i.e., the categorical distinction reduces the interference of the distractor in target track-

ing, so there is a semantic category-based system that facilitates tracking in similar situations.

This suggests that adding common features between targets as shared information may

increase MTT algorithms’ performance and improve their accuracy in discriminating targets

from other parts of the scene. Effectiveness of a similar idea was proved in the object-recogni-

tion domain [49].

To understand which brain area is responsible for semantic category-based grouping, brain

activity using fMRI is studied [9]. Subjects in the experiments tracked multiple targets in three

scenarios: 1) All targets and distractors were from the same category, 2) targets and distractors

were from two distinct categories, and 3) half of the targets and half of the distractors were

selected from one category and the others from a different one. Results suggested that the fusi-

form and pars triangularis of the inferior frontal gyrus are involved in semantic categorization.

Familiarity of targets also facilitates tracking. One can regard this familiarity effect as a kind

of semantic distinction. Tracking multiple familiar identities versus tracking unfamiliar ones is

compared in [26]. It is postulated that the ease of tracking multiple familiar identities origi-

nates from less cognitive load needed to remember the identity of targets. Relating this to the

two systems responsible for MIT, location and identification, familiar targets reduce cognitive

load since identification of these targets is less cognitively demanding. Familiarity of objects

depends on the frequency of their use in trials of a block of experiments. To study familiarity,

the identity of targets and distractors are the same in all trials within a block. In the unfamiliar-

ity condition, the identity of targets and distractors always change, and there are no two trials

with the same targets and distractors in the block. In [50], authors performed an experiment to

investigate whether among familiar objects (animals and man-made ones) there is any bias

toward one category or the other. They asked subjects to track multiple objects among animals

and artifacts. Although they observed a small increase in identity accuracy for animal targets,

they suggested that animal targets do not improve location tracking and that there is no abso-

lute advantage in their tracking over man-made objects. The neural processes involved in

tracking familiar targets and unfamiliar ones are examined in [26]. While tracking unfamiliar

objects, activity in regions within the attention network, and areas responsible for identifica-

tion increase. However, activity in areas underlying memory performance increases while

tracking familiar objects. Accordingly, it is suggested that MIT is a two-stage process: finding

the location of targets in the first stage and identifying them in the second stage. When subjects

localize the targets, they extract some key features to identify them and understand what is

where. As the subject becomes progressively more familiar to targets, key features can be deter-

mined more efficiently while ignoring irrelevant features. This process facilitates finding the

loci of targets.

Emotional content of the target items can also affect tracking performance. Li and col-

leagues performed a multiple–identical-face tracking task to examine the effect of facial emo-

tion on tracking performance [27]. Subjects could track angry faces as targets more

successfully than other faces in general. This effect persisted even when another angry face
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existed among the distractors. This means that processing of emotional expression happens

quickly and affects MTT performance. They did not report such effects for a happy expression.

Familiarity and emotion can make both targets and distractors semantically distinct. This

type of distinctiveness facilitates perceptual grouping and increases MTT-tracking perfor-

mance. In fact, discriminating targets from nontargets is easier when utilizing both semantic

and appearance information compared to appearance only. Computer-vision algorithms con-

sider appearance features to discriminate targets and distractors, but semantic information has

rarely been used for this purpose. Using semantic information improved an algorithm’s per-

formance in an object-detection application [29,30]. Applying a similar approach to MTT

algorithms can be beneficial and potentially improve their performance. In addition to seman-

tic categorization, the visual features of objects can also affect MTT accuracy. For example,

assigning a single color to all targets and another color to all distractors makes tracking easier

[28]. In the following section, we explain how appearance features affect MTT.

The effect of surface features. Surface features such as color and shape are the most easily

perceivable features that help an observer distinguish between objects. A study investigated

whether surface-feature information contributes to MOT or if tracking multiple objects is based

on spatiotemporal information alone [51]. The experiment consisted of several spheres moving

on a floor plane. The floor plane was presented against a black background from a viewpoint

angle of 20˚. Target spheres were introduced by flashing red at the beginning, after which they

started moving. In the meantime, distinct colors were assigned to the spheres for a period of

time. An abrupt scene rotation around the axis occurred after motion onset. At the end of the

trial, participants had to select the target objects. Their results indicated that brief presentation

of object colors around a scene rotation influences tracking performance, and distinct color

matching across the scene rotation improved tracking. Swapping the distinct colors after rota-

tion impaired tracking performance. The authors introduced a flexible-weighting tracking

account, revealing that spatiotemporal information and surface features are both utilized by the

location-tracking mechanism. The two sources of information are weighted according to their

availability and reliability. Surface-feature effects on tracking are particularly likely when dis-

tinct surface-feature information is available and spatiotemporal information is unreliable [51].

To investigate the extent to which tracking can be improved by surface-feature distinc-

tiveness in object identities, in another experiment subjects are asked to track a subset of

objects either unique in color or unique in color and shape [52]. Results showed that tracking

is feature based, and there is a limitation in feature binding. Tracking performance improved

when objects were distinct in shape or color; however, when the targets were distinct from one

another, tracking was not enhanced if distractors shared the target’s colors or digit identities.

This finding contrasts with previous studies, where participants were found to have poor

memory for surface properties in a MOT task [53]. Participants use a strategy for tracking to

set up a competition between the two types of perceptual grouping: grouping on the basis of

attentional set (tracking targets versus nontargets) and grouping on the basis of surface fea-

tures (red objects versus green objects and so on). This was also reported in [54]: When targets

and distractors have distinct features, only surface features of targets are maintained in visual

working memory; when targets have the same color as distractors, they are more difficult and

consume more attentional resources to track.

In [28], authors investigated how much uniqueness of object identities affects tracking

accuracy. They asked participants to track four targets among eight objects that were: (1) iden-

tical in color (homogeneous condition), (2) of different colors (all unique; red, green, blue, yel-

low, orange, azure, brown, and pink), or (3) represented by two or four total colors

(heterogeneous condition). They found that accuracy was affected by heterogeneity of tracked

objects, and color uniqueness of targets and distractors enhanced performance. The similarity
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between targets is not important; rather, it is the distinction between targets and distractors

that is important. This was further shown in [55], by investigating separately the impact of

chromatic and categorical distinctiveness of colors on tracking. Circles from two green and

blue categories in different hue ranges were used as objects in the proposed MTT task. Results

revealed that the varying distinctiveness in color between the targets and distractors signifi-

cantly influenced tracking performance. Also, tracking accuracy was affected by the chromatic

difference between targets and distractors, which may be attributed to the effect of perceptual

grouping [55]. Further, in a separate study, fMRI data showed that the putamen and temporo-

parietal junction (TPJ) may be involved in this color-based grouping [56]. In [57], authors

investigated to what extent target-distractor differences in terms of color, contrast polarity, ori-

entation, size, shape, depth, and combination of shape, color, and size influences tracking

accuracy. They compared accuracy in these conditions to accuracy in situations in which two

targets and distractors share one feature and the others share another feature. Tracking perfor-

mance was always better in the former case. Results showed that subjects use a range of fea-

tures to highlight target-distractor differences that facilitate tracking.

Surface features such as color and shape are encoded in early visual-processing areas of the

brain [58]. According to the preceding findings, these features undoubtedly influence the pro-

cessing of targets and distractors during MTT and facilitate tracking. It seems possible that

there is a flexible feature-selection method in our brain that selects a minimum number of dis-

criminative features to separate targets and background in general. However, MTT algorithms

lack generality and are biased to find the best feature set for only one specific application. We

next study how low-level feature and depth influence tracking motion.

The effect of motion features and depth. Motion information is also important in MTT

[59]. To investigate motion information’s effect on visual attention through MOT, a task that

added motion to the texture of each object and to the background is designed [60]. The texture

inside targets either stayed stationary or moved relative to the direction of the target’s motion.

This motion could be in the direction of a target’s motion, opposite to the motion of the target,

or orthogonal to it. Tracking accuracy was better in the same direction condition than the

orthogonal condition and better in the orthogonal condition compared to the opposite condi-

tion. These results show that texture motion influences tracking accuracy, but texture speed

does not affect it. Thus, when there is a motion conflict between the target’s motion direction

and the texture motion, tracking is impaired. This result was also replicated in a 3D scenario.

Intrinsic motion of an object is a feature that is not used by MTT algorithms, although this fea-

ture could help to discriminate nonrigid and deformable targets from other parts of a scene.

In addition to intrinsic motion, an object’s movement speed and direction are usually set

randomly to force the object to have independent motion trajectories in MTT tasks. In some

studies, velocity is considered constant to ignore the effect of acceleration [61]. In addition to

tracking in a 2D environment, a limited number of experiments were performed on 3D MTT

tasks that found an advantage to tracking in 3D compared to 2D; for example, it has been

reported that stereopsis effect has a positive impact on MOT [62]. It can even facilitate some

related skills similar to playing football. Tracking multiple objects in a 3D environment

improves passing decision-making accuracy in soccer players [63]. Using depth information

in computer-vision algorithms is beneficial, too [32,33], even though MTT algorithms rarely

use binocular vision and depth information.

Simple low-level surface or motion features involve less attentional resources compared to

high-level information, which can have a negative impact on MTT performance. In the follow-

ing section, we focus on how identity processing of objects interferes with location processing.

The interference of identification. The common resources used for processing location

and identity information cause them to interfere with each other [37,64]. In one study, subjects
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were asked to track four objects from eight identical circles and then select targets and report

their identity at the end of each trial. Results showed that tracking identical targets is easier

than recalling their identities. It is possible that subjects have an internal name for targets

paired with external labels; however, this also assumes that internal names are available for use

outside the tracking task. It is also possible that the internal name is available only for the pur-

pose of tracking and is not retained outside that process. This would operate similarly to a

local variable in a computer subroutine, which is not available to the program that calls the

subroutine [64]. In [65], authors studied to what extent we can recognize identity while track-

ing multiple objects. They asked subjects to track grayscale human faces with neutral expres-

sions from a Chinese face database. Study results indicated that processing of target identity is

a mandatory process that can occur even when it is task irrelevant. Results also showed that

performance of tracking different faces was impaired compared to tracking of identical faces,

which can be explained by a dynamic identity-location binding for faces and objects by some

mandatory processes. The study also demonstrated that tracking and identity processing share

the same attentional resources.

When high-level processing such as face identification is involved in MTT, the identifica-

tion process requires more attentional and memory resources, resulting in lower MTT accu-

racy and location information processing. In fact, people tend to use optimized features that

not only can discriminate targets better but are also encoded and retrieved faster and more eas-

ily. This is why in the real world, where a lot of information exists for processing, we are still

successful in tracking various objects simultaneously. Some MTT algorithms benefit from an

object-detection module to determine all targets in all frames of video. Some use discriminant

features to separate targets from background and track them in next frames. However, the

brain utilizes a combination of these approaches. We have thus far considered how visual

information affects identification and location processing in MTT; the following section

explores the influence of other information, such as spatial configuration.

Spatial configuration and the hemifield effect. To study the role of overall spatial config-

uration of targets in MTT performance, an MIT experiment is designed in [10], and subjects

are asked to track objects with either distinct colors or distinct irregular shapes. They found

that the spatial configuration of targets impacts their identification. Preserving the form of a

nonrigid polygon (with each target as a vertex) while tracking, the targets can be identified

more accurately. This suggests that subjects tend to mentally build a polygon, considering each

target as a vertex. They focus on its center of mass overtly and track the vertices covertly. This

means that the responsibility for tracking targets is assigned to both hemispheres, which offers

a benefit of use in MTT algorithms, such as tracking cars in a highway. Specifically, this strat-

egy could help to detect the location of objects that are partially or completely occluded. Hemi-

field effect is also studied during MIT [66]. Comparing tracking performance when all targets

are moving in one hemifield versus when they are distributed in both hemifields showed that

the cognitive resources for tracking are not hemifield specific. Tracking accuracy is higher

when targets are distributed across two hemifields, and this bilateral advantage was stronger

during MOT than MIT. Tracking is partially independent in two visual hemifields, and the

degree of independence is greater in MOT than MIT.

In [67], the authors investigated the effects that speed and proximity of objects to each

other have on tracking performance. They used the Planets and Moons Tracking (PMT) para-

digm, which consists of a series of dots rotating around local centers and also around a fixation

marker, similar to a solar system. Some factors of the experiment (proximity, speed, eccentric-

ity, and number of distractors) can be manipulated independently. The results of this study

clearly indicate that speed, proximity, and the number of distractors in the display each influ-

ence tracking performance while the other factors are held constant. Thus, models of object
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tracking need to include mechanisms that are sensitive to these factors. These results suggest

that there are at least two mechanisms at play during tracking: One mechanism is sensitive to

the number of distractors in the display, while a second is sensitive to target-distractor proxim-

ity as well as the speed of the objects in the display [67]. Tracking performance declines with

increasing speed and decreasing distance between objects. Overall tracking accuracy is always

higher in 3D compared to 2D [68]. According to [69], more attention is allocated when targets

are in a crowded situation and have a higher chance of being lost. More precise tracking is

needed in such situations, and an increase in accuracy in these cases supports the idea of

dynamic allocation of attentional resources.

Occlusion and crowding. Studies have shown that humans are able to track targets suc-

cessfully even if targets move behind an occluder or are out of view (due to disappearance) for

a short time [70–72]. Although occlusion causes performance to decrease slightly compared to

the no-occlusion condition [72], attentional resources are still devoted to occluded or invisible

objects [73]. In [74], authors compared brain activities recorded using fMRI while tracking

occluded and fully visible objects covertly to unearth neural substrates underlying occlusion

handling. They reported that cognitive strategies and mental states behind these two cases dif-

fer; they found more activation in four regions of the brain in the occlusion condition com-

pared to no occlusion: inferior parietal lobule, superior temporal sulcus, presupplementary

motor area, and precentral sulcus.

Subjects track more successfully when objects simultaneously disappear rather than when

they disappear asynchronously for several hundreds of milliseconds and reappear again [70].

Some studies have shown that humans use available and reliable surface features in addition to

spatiotemporal information to handle occlusion [51]. To investigate how humans use spatiotem-

poral features to track objects through occlusion, authors in [75] defined a wall in their MTT task

and manipulated location, motion direction, and the side of objects’ reappearance when they go

behind the wall and disappear. They reported that MTT performance is better when the target

reappearance position is near to its disappearance location regardless of motion direction and

whether objects reappear on the same side they disappeared on. In [61] also, authors found that

accuracy is higher when objects reappear near their disappearance locus than when they appear

on their trajectories. However, a debate persists on whether humans use trajectory information to

handle occlusion. Evidence supports both ideas [46]. Authors in [76] argued that extrapolation

and motion information are used more frequently when tracking two targets and less frequently

while tracking four targets. In the computer-vision domain, most MTT methods use a motion-

estimation module, which significantly increased the accuracy of algorithms.

Crowding is another important factor in an MTT task. When the number of objects increases

in the scene, the distance between objects decreases. This factor is the primary human limitation

in MTT [20]. Performance falls by decreasing spatial separation between targets [77], and in such

situations, when the possibility of confusing targets increases, it is suggested that human subjects

benefit from rescue saccades (the saccades toward the targets that are in a critical situation) to

avoid wrong target association [78]. Studies have shown that subjects utilize working memory

and allocate more attentional resources to crowded parts of a scene [69,79]. In addition, they tend

to locate their gaze close to the targets that are in a crowd. This way, the crowd is projected to the

fovea and can be handled easier because of the fovea’s higher spatial resolution [80]. In general,

this spatial limit in MTT is distinct from the attention-capacity limit [81].

Discussion

Thus far, we have reviewed the main topics on the cognitive neuroscience of MTT. These stud-

ies can open up avenues for empowering computer-vision algorithms. For example, research
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shows that semantic distinction between targets and distractors facilitates tracking. Using

object-detection algorithms is common in tracking algorithms, but they usually focus on tar-

gets and detect them in the frames of video. However, utilizing more powerful object-recogni-

tion tools to detect all existing objects (moving or stationary) helps localize the targets better

and avoid missing targets or introducing distractors instead of a targets by mistake. In addi-

tion, considering the semantic relation of targets provides more information and helps avoid

any confusion between targets and other items in the scene. Object-detection methods have

recently benefited from including semantic features [29,30]. Familiarity is also reported as

useful.

To use its advantages in computer vision, a memory module in the algorithm can save dif-

ferent appearances of different targets. We can cross-check the similarity of the current candi-

date with the items saved in memory. This can help recover correct indices, especially when

target identification is difficult. A similar strategy was exploited successfully in [82] to model

the background of video. This is consistent with activity increases in memory-related parts of

the brain while tracking familiar objects. Although using surface features, such as shape, is

common in algorithms for both object detection and discrimination from background, an

object’s intrinsic motion information is rarely used for discrimination. This feature is particu-

larly useful for tracking nonrigid objects or avoiding wrong data association. The spatial con-

figuration of targets also helps humans track multiple objects. This was not previously

considered in algorithms. There are some real-world scenarios in which targets have specific

spatial relations (e.g., tracking cars on highways). Although this configuration changes over

time, it still improves performance, especially when the target is missed due to partial or com-

plete occlusion or when reporting the exact location of the vehicle is difficult. In addition, cog-

nitive studies have shown the positive effect of tracking in 3D. This shows the benefit of

adding another feature, depth, which can help in target discrimination. Using this feature in

algorithms can be beneficial, too. Using more features usually increases the opportunity to dis-

criminate and track targets successfully.

The next section reviews existing brain-inspired computer-vision algorithms in MTT.

These algorithms benefit from approaches used by the brain to improve performance. We cat-

egorize these studies according to their approach and discuss how they can be beneficial for

the cognitive neuroscience of MTT.

Brain-inspired MTT algorithms

Tracking multiple targets automatically remains an important problem in computer vision

[83,84]. It is crucial for many applications, such as sport analysis [85–87], biology [88], surveil-

lance [89,90], and human–computer interaction [91]. There are various strategies to track

objects in MTT algorithms. One strategy uses an object-detection algorithm to find all candi-

date objects in each frame and then determine the new loci of objects according to the result of

a motion-prediction module. Instead of object detection, another strategy uses discriminative

features to separate objects from their surrounding background. Some MTT algorithms are

offline, and others are online methods. The latter are suitable to apply to real-time

applications.

Regardless of the strategy behind an algorithm, specific metrics are used to evaluate them

[92]. One metric, for example, measures the amount of displacement between the targets’ loci

determined by the algorithm and real locations of targets. Another metric evaluates whether

the location determined by the algorithm is bounded to the correct borders of the objects or

whether it contains some parts from another target or unrelated parts of the environment as

well. There are several reviews on MTT methods in computer vision [5,83]. Among various
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methods in this area, a few MTT algorithms try to imitate how humans perform MTT. They

used only general findings of cognitive neuroscience on MTT, such as the fact that attention

and memory are two important cognitive components that are undoubtedly involved in MTT.

Some algorithms are based on ANNs, and we considered them as bioinspired methods, too.

In this section we review MTT algorithms that mimic brain functions in their design.

Table 1 compares some of these algorithms according to results reported in their related papers

on MOTChallenge data sets (https://motchallenge.net/) with MTT related metrics, such as

MOT accuracy (MOTA), MOT precision (MOTP), false positive (FP), and false negative (FN).

Data sets used to evaluate computer-vision algorithms are videos recorded from natural envi-

ronments, which can motivate cognitive studies of MTT to use real stimuli instead of artificial

ones. MOTA considers all types of errors that the tracker makes. MOTP shows the ability of

an algorithm to determine the exact position of objects [92]. A higher value for MOTA and

lower one for MOTP show that the algorithm has high accuracy (i.e., a low number of errors)

and good localization. FP shows how many times the algorithm reported a wrong item as an

object. FN counts the times that the algorithm was unable to report an existing object [93].

Therefore, low values for both FP and FN are desirable. Some research mentioned in this sec-

tion involves brain-inspired SOTs. In the computer-vision domain, it is possible to extend

such algorithms to track multiple objects, which is their rationale for inclusion in this section.

We classify existing brain-inspired studies into three categories: attention based, memory

based, and methods based on neural networks. These categories are not distinct, and some

algorithms may fall into more than one category. At the end of this section, we present some

suggestions for further research in the cognitive neuroscience of MTT.

Attention-based MTT methods. Humans are unable to process all incoming visual infor-

mation simultaneously. To overcome this limitation, they use attention as a mechanism to

select what to process. The overtly attended region is projected onto the fovea (a part of the ret-

ina with the highest spatial acuity and the highest density of photoreceptors), and the sur-

rounding areas are projected onto parts of the retina that are far from the fovea, which have a

lower density of photoreceptors. Many researchers have studied attention, and different mod-

els have been proposed to predict which part of an unseen image will be attended to by

humans. Many attention models have been developed in the past, and reviewing them all goes

beyond the scope of this work. Refer to [94–96] for comprehensive reviews on attention

modeling.

A fundamental concept in modeling attention is a center-surround mechanism, suggesting

that an item that is highly different from its surround is salient and attracts attention. This

mechanism has been used in several algorithms. For example, authors in [23,97] utilized this

mechanism to propose a discriminant tracker for a single object. They chose and used features

Table 1. Comparison of several discussed brain-inspired algorithms.

Data set Method MOTA MOTP FP FN

MOT15 [99] (tested on six sequences) 43 74 682 2,780

[110] 19 71 11,578 36,706

[98] 34.3 70.5 5,154 34,848

[113] 37.1 71 7,034 30,440

MOT16 [98] 46 74.9 6,895 9,117

[113] 47.3 74 6,375 88,543

Abbreviations: FN, false negative; FP, false positive; MOTA, multiple-object–tracking accuracy; MOTP, multiple-object–tracking precision; MOT15, multiple-object

tracking 15 data set; MOT16, multiple-object tracking 16 data set

https://doi.org/10.1371/journal.pcbi.1007698.t001
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with the highest ability to discriminate a target from its surrounding background from a fea-

ture pool. For this purpose, they applied features on both center and surround. Then, the Kull-

back–Leibler divergence between probability distributions of center and surround is

calculated to measure the ability of features that discriminate these two. In [38], another strat-

egy is proposed to benefit from both center and surround information to facilitate tracking.

The author uses a swarm of tracking windows, each capable of tracking a part of a single mov-

ing target. Windows are assigned to corners of a target after applying a corner-detection algo-

rithm in the initialization phase. Therefore, some windows contain some parts of the target,

and others contain its surround. Windows are tracked separately, and the patch with the high-

est normalized cross-correlation (NCC) is considered to be the new position of the target.

Motion direction, speed, and the size of the target were also inferred from corners. Target

motion is calculated according to mean motion of windows. To handle changes in target size,

the associated motion of windows in right versus left and top versus bottom is examined.

Changes in swarm motion can be interpreted as changes in size. Outlier windows that have

inconsistent motion regarding swarm motion are dropped, which reduces window population

after several steps. In this case, swarm is reassigned to the targets. This study uses corner fea-

tures of objects to follow their changes in size. However, in cognitive studies of MTT while

subjects are instructed to track targets in a 3D environment, it is an open question how they

treat changes in targets’ size due to perspective.

Attentional mechanisms are usually characterized as either bottom-up or top-down pro-

cesses. Bottom-up attention is stimulus driven and unconscious, whereas top-down attention

is goal driven and conscious. Some algorithms use these mechanisms to develop search capa-

bilities. They usually use bottom-up attention to extract features and top-down processes in

order to find the target’s new position (the most similar object according to extracted features)

in the new frame. Features extracted in the bottom-up phase can be discriminant features

[23,97]. In the top-down phase, some algorithms search the neighborhood of the current posi-

tion of the target in the next frame to find the most similar part. These two steps are repeated

one after another, which means that target features are updated in their new positions to easily

track appearance changes in the target. In other words, in such discriminant trackers, there is

less bias towards using target representative features. Instead, features with a high ability to dis-

criminate between the target and background are used, which is useful for handling both the

target‘s variable appearance and variable background challenges. For tracking multiple targets,

this strategy is extendable.

Another method considers spatiotemporal attention mechanisms using a framework based

on dynamic CNNs for MTT [98]. This method solves two MTT challenges. Using a dynamic

CNN helps handle computational complexity, and using spatiotemporal attention helps avoid

missing objects in case of the occlusion of multiple targets. The CNN-based framework has

some shared layers and devotes a separate branch to each tracker. The shared layers encode

the features of the whole frame and do not change during the tracking process. The branches

have the same structure, while each one is trained on a separate object as an SOT; a new branch

is devoted to a newly defined target, and, when a target is removed, its corresponding branch

is removed as well. Each branch consists of a visibility map that determines nonoccluded

regions, an attention map to weigh the feature map, and a binary classifier to separate the

object from its background. This appearance model is trained online using new and historical

samples via the backpropagation algorithm. Temporal attention is also considered to weigh

the previous correctly detected samples against the new ones according to the amount of

occlusion. The more a sample is occluded, the lower its weight.

Authors in [99] focused on spatiotemporal continuity by checking for inconsistencies in

spatial coherence according to psychological findings suggesting that spatial information plays

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007698 April 9, 2020 16 / 28

https://doi.org/10.1371/journal.pcbi.1007698


a dominant role in preserving target identity. Their method considers potential associations of

targets in the spatial domain and evaluates appearance, motion, and other features in the visual

domain as inspired by the famous two-stream hypothesis about what (object) and where (loca-

tion) attentional pathways [100].

Among different approaches reviewed in [101], attention provides a suitable method for

recognizing targets by discriminating them from the background and from each other. This

helps handle important challenges, such as variable target appearance and background vari-

ability. But, due to its adaptability to variation, it suffers from occlusion. When a target is grad-

ually occluded by an occluder, the algorithm may tend to accept it as a change in target

appearance and thus miss the target. A successful solution to avoid this involves using memory

to retain appearance information of the targets and limiting the range of variations in target-

appearance changes.

Memory-based MTT methods. Memory is the second cognitive mechanism with signifi-

cant impact on MTT performance. To find the position and identity of targets at each

moment, one needs to remember them. This helps to overcome occlusion challenges. In the

case of partial occlusion, it helps to detect the parts that belong to the target and to exclude the

occluder. In the case of complete occlusion, after reappearance of a target from a complete

occlusion, we can remember which object was the target. Memory also helps retain different

appearances of a target and overcome the variable target-appearance challenge. According to

the Atkinson–Shiffrin memory model (ASMM) [102], there are three memory stages: sensory

memory, short-term memory, and long-term memory. A study used this model to handle sud-

den changes, such as illumination changes and occlusion, in the proposed MTT algorithm

[103]. The model is based on compressive tracking that uses sparse and reduced discriminant

features to find the target in a new frame. The authors also applied a weighting method to

emphasize the nearer candidates for targets (according to the euclidean distance between the

target in the previous frame and the candidate in the new frame) and to lower the contribution

of others. This approach leads to higher accuracy when the target is similar to the background.

In [104], authors used the aforementioned memory model to propose a single target MUlti-

Store Tracker that can memorize target appearance. This method supports both translation

and scale invariance. A forward-backward tracker [105] is applied to two consecutive frames

to identify any failure in tracking, i.e., the tracker estimates the target position in the first

image according to its determined position in the second image. The amount of displacement

is expected to be small. Comparing the estimated position with the real position identifies the

best key points to successfully track the target; key points are used to find the best match for

the target, to determine its position in the new frame according to the euclidean distance, and

to reject outliers. Occlusion handling is also possible. A small number of key points matching

the background in the targets’ bounding boxes means that no occlusion is happening. As the

number of key points matching the background approaches the number of target key points,

the target is more occluded. The target is remembered and stored in short-term memory when

it is not occluded.

Forgetting is also used for descriptors inspired by how humans lose information when

there is no attempt to retain it. As a feature is recalled more, forgetting becomes harder.

Another memory-based SOT is proposed with adaptability to variation in target appearance

and environment [106]. This proposed memory model has three components: ultra-short-

term memory, short-term memory, and long-term memory, each associated with the processes

of encoding, forgetting, and remembering. Both of the above-mentioned algorithms can be

extended to track multiple targets. Targets and background usually change over time in a natu-

ral environment. A challenge for computer-vision algorithms is successfully keeping track of

targets in these situations. On the other hand, stimuli used in cognitive studies of MTT are too
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simple and lack any changes that may happen naturally. A productive area for future study is

how humans deal with this challenge in MTT.

The memory module in an MTT algorithm is useful for handling challenges in target track-

ing, such as occlusion, variability in target appearance, and data association. In tracking more

than one object, the role of memory becomes even more important. However, a memory-

based algorithm needs to establish some critical parameters, such as what to remember and

when to forget something. The importance and necessity of memory in algorithms motivated

some studies (in particular, those using deep neural nets as their main tool) to propose LSTM

(Long–Short-Term Memory) networks.

MTT methods based on ANNs. ANNs are commonly used in computer vision. They are

inspired by the human nervous system; each neuron in an ANN receives inputs from one or

more neurons, applies a simple function on the weighted sum of inputs, and emits its output

to others. Different attempts have been made to improve neural nets according to biological

neural-processing evidence. These efforts have led to convolutional neural nets, recurrent neu-

ral nets, and spiking neural nets as well as networks with various architectures (e.g., the Hop-

field network).

In the context of tracking, neural nets have been widely adopted. In [107], a five-layer net-

work inspired by the primary visual cortex is proposed. Three layers perform object recogni-

tion and present a biologically inspired appearance model. The remaining two layers

strengthen the discriminative ability of the model in distinguishing the target from the back-

ground. This architecture also includes layers for whitening, coding (which uses discriminative

dictionary learning methods), rectification, normalization, and sum pooling (making the

model find global features). This network was proposed to model appearance when a particle-

filter algorithm is used for tracking. The weights for particles are calculated according to the

similarity of the learned target and candidates. The particle with the highest weight is consid-

ered to be the tracking result in the current frame. To handle target variation during the video,

a set of target templates are used, and a weight is assigned to each one to define the current

appearance of the target. Authors in [108] postulated that having a large amount of auxiliary

data is enough to learn a CNN (in an online manner) that can track a target robustly without

offline training. They proposed a lightweight, two-layer feedforward convolutional network

tracker (CNT) accordingly and ignored pooling layers in the architecture of their net in order

to keep high-resolution spatial features and their precise positions. A particle filter then esti-

mates the exact position of the target in the new frame.

The methods mentioned above are all SOTs. Neural-net–based algorithms for MTT, how-

ever, are rare. For example, [109] benefits from the motion-history image, which is the differ-

ence between the current frame and historical images. However, their approach cannot detect

stationary objects. Therefore, another feature is also used to strengthen object detection and

recognition. A number of filters are learned using a convolutional restricted Boltzmann

machine in an unsupervised manner. Using features and motion-history information, a fea-

ture map is produced for each frame. Using this method, all objects in the scene are tracked,

and this information is used to detect and recognize objects in a scene.

Another study proposed an end-to-end recurrent neural network (RNN) approach with an

LSTM for MTT that can handle various challenges, especially the unexpected entrance or exit

of objects, which happens in a real scenario [110]. This is a challenge for algorithms that is

ignored by almost all cognitive studies of MTT. The RNN is responsible for temporal predic-

tion, and the LSTM is responsible for handling data association. The proposed method is

entirely data driven and does not need any prior knowledge. Required data is generated by

sampling from a generative model. A multidimensional state space is used concurrently to

determine the states of all targets with different types of variables and desired numbers of
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outputs, each corresponding to a single target. In robotics, authors in [91] used an RNN (par-

ticularly, a deep LSTM network) with the help of heading estimation and spatial information

to identify robots with the same appearance in robot collaboration tasks.

Recently, deep reinforcement learning (DRL) has also been shown to be an innovative

approach for demonstrating object localization, active object tracking, and MOT [111,112].

For example, [113] used a DRL method to locate targets in the new frame considering the col-

laborative interaction of targets and environment based on detection results of targets in the

previous frame. For this purpose, they combined a prediction network (responsible for pre-

dicting the location of targets) and a decision network (responsible for feature extraction and

finding optimal results regarding interaction of targets and the environment). In this way, they

initialize, delete, or update information related to all targets in each frame.

In general, ANNs have the potential to apply to cognitive mechanisms and are shown to be

effective for tracking more than one object. However, problems remain (e.g., the requirement

for a large amount of data, instability, etc.), which sometimes makes ANNs unsuitable for

some real-world scenarios.

Discussion

MTT algorithms are mainly used in real-world complicated applications, and they are mis-

matched to cognitive MTT tasks, which are designed as simply as possible. Studying human

behavior while tracking multiple objects in real-world experiments helps to unearth strategies

normally used by humans. It is common in algorithms to handle objects’ scale changes. How-

ever, to the best of our knowledge, scale changes are studied in general [114], not specifically

in the context of cognitive research of MTT. Using memory is an approach for occlusion han-

dling in computer-vision algorithms. This raises the question in the cognitive science of MTT

studies about whether subjects with better working memory (or short-term memory) perform

better at tracking multiple objects through occlusion. Answering this question will inform us

about the mechanism behind occlusion handling in humans; whether it is memory or some-

thing else remains to be discovered. Another common challenge for MTT algorithms is con-

tinuous changes in the appearance of targets and background, which can make it difficult to

track targets; this raises the question of how humans tackle this problem.

Occlusion of targets or target distractors is common in real-world applications. However,

most MTT cognitive research has studied the effect of occlusion due to solid occluders such as

walls or environmental factors. Studying occlusion due to other moving objects (targets or dis-

tractors) can be useful in this domain. In computer-vision algorithms, it is common to use the

exact surround of the targets for discrimination. Do humans use the same strategy to track

objects in real-world and natural scenarios when the background is not as simple as the artifi-

cial stimuli used in most MTT cognitive neuroscience studies? On the other hand, a challenge

in computer-vision algorithms is how they handle unexpected entrance or exit of a target from

the scene. To the best of our knowledge, this topic has not been studied thus far; however,

answering this question is necessary for understanding the exact mechanism behind MTT

used by human subjects. Finally, it is demanding to identify to what extent the two approaches

of discriminant- and detection-based trackers contribute to daily MTT activities. Brain-imag-

ing technologies can help us in this regard and show more detailed information about the neu-

ral mechanism underlying MTT in the brain. We can compare how brain parts responsible for

object detection are involved in both MOT and MIT.
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General discussion

MTT is an important paradigm in neuroscience. It is also essential for a variety of applications

in computer vision. A line of research in this area is concerned with learning from the brain to

build and improve the accuracy of algorithms in computer vision. These studies have led to

three types of brain-inspired methods: 1) attention based, 2) memory based, and 3) neural-net

based. According to cognitive studies, memory and attention are cognitive processes that are

clearly involved in MTT [22]. Tasks measuring visuospatial short-term and working memory

as well as attention switching proved to be significant predictors of MTT. Thus, tracking is not

automatic, and keeping track of targets demands attentional resources [115]. In fact, the inspi-

ration behind these computer-vision models indirectly imitates brain function in general,

although the implementation details are not exactly in line with how the brain tracks multiple

targets. Using ANNs as an implementation tool can be beneficial since its building blocks (e.g.,

neurons) imitate the human nervous system and thus have the potential to encompass the

aforementioned cognitive processes. With regard to studies related to MTT in neuroscience,

there are some commonalities as well as incongruities between computer vision and neurosci-

ence, which we discuss below.

Neuroscience and computer-vision commonalities in MTT

Researchers in both neuroscience and computer vision believe that attention and memory are

critical in MTT. In neuroscience, many studies have proven the importance of these factors

[12,22,24,26,37,47,65,69]. In computer vision, different algorithms have been applied that ben-

efit from the role of attention and memory in increasing the accuracy and performance of

their methods [38,98,99,103,104]. Tracking algorithms in computer vision are commonly

divided into two groups: (1) algorithms that use a tracking-by-discrimination approach and

(2) algorithms that follow a tracking-by-detection approach. Some algorithms in the first

group utilize brain-inspired methods that benefit from center-surround saliency to discrimi-

nate the target from background [23,97]. This is in line with the saliency hypothesis in track-

ing, which states that a salient item can be tracked with higher accuracy than a nonsalient one

[116]. In tracking-by-detection methods, on the other hand, an object-detection module is

usually included, which detects all related objects in the scene [117–119]. The tracking module

considers different locations of detected objects in successive frames to determine the object’s

trajectory. The advantage of this approach is handling unexpected entrances or exits of a

target.

Although we include tracking by discrimination as a brain-inspired strategy, some evidence

in neuroscience suggests that tracking by detection is also a strategy used by the brain. In fact,

evidence shows that tracking and identity processing share the same attentional resources,

especially in the case of face tracking [65]; some neuroimaging studies have reported activation

of areas responsible for object recognition in the brain during MTT [24]. We therefore hypoth-

esize that the brain uses both strategies. To have a realistic brain-inspired MTT algorithm in

the area of computer vision, one could benefit from a combination of these approaches. It is

also common to use a motion module to predict the trajectory of targets in MTT computer-

vision algorithms. This is in line with studies in neuroscience that provide evidence for sub-

jects using motion information and extrapolation to track objects [120,121]. Neuroscience and

computer-vision studies both agree on the general framework of MTT, which emphasizes the

importance of attention, memory, and motion prediction. But there are few or almost no prac-

tical algorithm in the computer-vision domain that uses all the aforementioned modules as its

building blocks.
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Neuroscience and computer vision inconsistencies in MTT

Although the fields of neuroscience and computer-vision believe in the same framework for

mechanisms underlying MTT, there are many differences in the approaches used in these two

areas. For example, studies suggest that any visual separation between targets and distractors,

which can be due to surface features or semantic information, can streamline perceptual grouping

and improve the performance of subjects during tracking [25–28]; however, no computer-vision

algorithm has utilized this finding as inspiration behind its methods. This could be incorporated

by processing semantic and surface information of targets in an object recognition module in

MTT algorithms, which may improve tracking performance. Computer-vision distractors are not

explicitly defined; rather, algorithms mainly focus on discriminating targets with their surround-

ing background. One challenge, then, is how to determine the correct border to separate objects

from the background. Algorithms are highly likely to introduce a window that is half target and

half background, for example. However, humans are able to introduce objects effortlessly. In cog-

nitive studies, people introduce distractors as an object when making mistakes.

While practical tracking algorithms include a motion-prediction module, the question of

“whether humans use motion prediction during tracking or not” is still open in the field of

neuroscience. Some studies investigated the behavior of subjects during the tracking of objects

that undergo occlusion in the middle of their trajectory or disappear for a short period of time

and reappear. They suggest that subjects use this motion-prediction information in object

tracking after occlusion [69]. There is also evidence supporting the idea that no prediction

occurs during tracking of more than two targets. For example, in [122], subjects are asked to

track several circles out of eight circles filled with four colors (yellow, red, blue, and green). On

each trial, there was a target and distractor of each color. At the end of the tracking phase, the

cursor turns into one of the targets appearing at the screen’s center. Participants have to posi-

tion the disc (using a mouse cursor) at the last location of the queried target. They reported

that perception lagged rather than anticipated future positions and results were biased towards

lagging positions. Although several factors might lead to a position lag, it might be a result of

temporal integration of visual signals, serial attention, and encoding into short-term memory.

This shows that a memory module might be more critical than a motion-prediction module

for computer-vision algorithms. It is reported that tracking performance is always more accu-

rate when objects appear at their disappearance loci than at their predicted positions [61].

Thus, understanding the exact mechanism behind the brain can inspire algorithms that cur-

rently utilize a motion-prediction module.

Although we included ANNs as a powerful tool for developing MTT algorithms, their func-

tional details fundamentally differ from biology. Cortical neurons in the brain are organized in

a goal-driven manner, each with particular functions, and they communicate to each other in

different ways. The process proceeds dynamically and evolves over time. Further, unlike

ANNs, no separate training phase is needed. Methods based on ANNs rarely match the true

approach that the brain uses. Some existing methods assign a particular part of the network to

a particular target to track, but no evidence shows that the brain behaves in the same way.

The main challenges that target-tracking algorithms face include variability in target

appearance and background, partial or complete occlusion, and data association. It seems that

the brain handles these challenges more successfully and rapidly. Although it is still not clear

how the brain performs exactly, cognitive studies of MTT have been successful to date in dis-

covering some aspects. Even this incomplete information can improve both the accuracy and

runtime of MTT algorithms.

Another challenge in computer-vision studies that has not been addressed in the field of

neuroscience is handling the birth and death of a target. Paradigms used by neuroscientists to
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study human MTT are more simplistic than those used to test computer-vision algorithms

[5,123]. To study the fundamental aspects of MTT, neuroscientists present simple artificial sce-

narios to subjects. However, using stimuli with greater ecological validity is also important and

may implicate additional brain areas involved in real-world MTT that are not active when

viewing synthetic stimuli.

Human vision is binocular, and it has been reported that humans perform better when

depth information is also available in MTT stimuli. However, there are still open questions

about how and to what extent human binocular or even monocular depth vision influences the

handling of challenges such as clutter, scale variance, and data association or occlusion. Most of

the stimuli used in MTT cognitive experiments are 2D; this raises the issue of circumstances in

which human tracking of performance using binocular vision is better than monocular. Most

MTT algorithms are based on monocular vision mainly due to economic or technological con-

straints or even due to the lack of knowledge of developers concerning its role in tracking per-

formance. Indeed, this issue has rarely been considered by both communities.

Another problem faced by computer-vision–tracking algorithms is multiple-class MTT or

tracking different objects from various categories, which is done easily by humans. It is difficult for

a computer-vision algorithm, especially one with a tracking-by-detection strategy, to manage this

since these types of methods need one or more (pretrained) algorithms with the ability to detect

different types of targets. Thus, gaining inspiration from the brain about how to track objects from

multiple classes could be highly rewarding in improving artificial tracking algorithms.

So far, we encourage computer-vision researchers to motivate mechanisms underlying

MTT algorithms based on existing knowledge as to how the brain processes similar tasks; the

hope being that this insight might improve the tracking performance of these algorithms. In

many cases, the advantages of the strategies used by the human brain to efficiently track multi-

ple targets can be used as inspiration behind computer-vision algorithms. However, several

processing limitations humans face during MTT are not inherently limiting to computer-

vision models. Computer vision itself has some advantages over biological vision. For example,

in computer vision, we might utilize multiple cameras to monitor a scene from different angles

of view, and some algorithms benefit from this to handle occlusion. Thus, all parts of an image

can be processed in high resolution with great detail. A human is unable to do so because the

brain is inherently limited in processing the sensory information it receives and the eye is

physically limited by being able to capture only a part of the visual field with high resolution at

any given time. Thus, from a pure perceptual standpoint, changing the focus of attention to

capture the whole visual scene in the way a human does is irrelevant to computer-vision

approaches. However, investigating how humans organize and retain the information they

perceive from viewing different parts of a scene can be helpful towards applying the same strat-

egy to multicamera problems in computer vision.

Another limitation faced by the human brain in MTT is the maximum number of targets

being tracked. This number is limited in humans because of capacity limitations in working

memory to encode the location and appearance of targets and limitations in attentional capac-

ity to attend to more than a certain number of stimuli [124]. However, for computer-vision

algorithms, such limitations are not faced by the system since we can enhance the storage

space or processing capacity using more powerful hardware and software.

Conclusion

In this paper, we reviewed MTT studies both in the areas of computer vision and neuroscience

and discussed their commonalities and inconsistencies. Despite significant efforts, several

unresolved points still exist pertaining to MTT that are worth noting. For example:
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• From cognitive studies, we know that the human brain utilizes all available information to

discriminate among objects. Using depth information, binocular vision and information

about the intrinsic motion of nonrigid targets is expected to be beneficial in improving the

performance of MTT algorithms.

• As a successful strategy for MTT, human subjects consider targets as vertices of a polygon

and follow its center. Considering spatial configuration of targets (or objects in general)

while estimating target loci empowers the algorithms and improve their accuracy in han-

dling partial or complete occlusion in some applications, e.g., tracking vehicles in traffic-

monitoring systems.

• Motivated by the parallel strategy used by the brain to track similar objects and considering

the power of computer vision to assign enough computational resources, parallel program-

ming can increase performance of MTT algorithms. In such algorithms, all targets can be

tracked in parallel to improve runtime.

• A controversy remains in cognitive studies about whether the human brain uses objects’

motion information (or extrapolates it) to handle occlusion. Understanding the exact mech-

anism or the situations in which each is used would help us improve related machine-vision

algorithms.

• The question of how the human brain handles the entrance of a new target or exit of an exist-

ing one in MTT tasks has not yet been studied. Almost all existing studies considered a fixed

number of targets and distractors in their design.

• It is more valuable and inspiring to study human behavior and brain activities while per-

forming real-world experiments than common synthetic scenarios.

Overall, computer-vision algorithms struggle with important challenges that can be studied

in neuroscience to identify strategies the brain uses to resolve similar problems. Similarly,

important findings in neuroscience related to MTT can improve the efficiency and accuracy of

computer-vision algorithms. We suggest strengthening the connection between these two

fields to develop more powerful MTT computer-vision algorithms and to better understand

the mechanisms supporting MTT in the human brain.
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