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To date, there have been three epidemic waves of H5N8 avian influenza worldwide. The 
current third epidemic wave began in October 2020 and has expanded to at least 46 
countries. Active and passive surveillance were conducted to monitor H5N8 viruses from 
wild birds in China. Genetic analysis of 10 H5N8 viruses isolated from wild birds identified 
two different genotypes. Animal challenge experiments indicated that the H5N8 isolates 
are highly pathogenic in chickens, mildly pathogenic in ducks, while pathogenicity varied 
in BALB/c mice. Moreover, there were significant differences in antigenicity as compared 
to Re-11 vaccine strain and vaccinated chickens were not completely protected against 
challenge with the high dose of H5N8 virus. With the use of the new matched vaccine 
and increased poultry immune density, surveillance should be intensified to monitor the 
emergence of mutant strains and potential worldwide spread via wild birds.

Keywords: H5N8, highly pathogenic avian influenza, wild birds, genetic, pathogenicity, antigenicity

INTRODUCTION

The highly pathogenic H5N1 avian influenza virus (A/goose/Guangdong/1/1996(H5N1); clade 0) 
emerged from China in 1996 (Xu et  al., 1999) and has spread throughout Eurasia and Africa 
possibly via migratory bird paths and have evolved into various genetic and antigenic clades 
and subclades since 2003 (WHO/OIE/FAO H5N1 Evolution Working Group, 2012; Li et  al., 
2020). These viruses have caused huge economic losses to the poultry industry and pose a 
substantial threat to human health. Since 2010, clade 2.3.4 H5 viruses have evolved and have 
gradually become dominant globally.

H5N8 avian influenza virus (AIV) clade 2.3.4 was first detected from a domestic duck in 
China, in 2010 (Wu et  al., 2014; Li et  al., 2016). To date, there have been three epidemic 
waves of H5N8 viruses worldwide. The first epidemic wave of H5N8 began in early 2014  in 
domestic and wild birds in South Korea and Japan and spread to Russia, several European 
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countries, and the United  States by 2015 (Lee et  al., 2014, 
2015, 2016; Wu et  al., 2014; Saito et  al., 2015; The Global 
Consortium for H5N8 and Related Influenza Viruses, 2016). 
Additionally, an H5N2 virus containing gene segments related 
to H5N8 was identified in Canada in late 2014 (Pasick et  al., 
2015). Bayesian phylogenetic analysis revealed that H5Ny lineages 
were introduced into North America from Eurasia and into 
South Korea from Europe likely through migratory waterfowl 
(The Global Consortium for H5N8 and Related Influenza 
Viruses, 2016; Baek et  al., 2021).

The second epidemic wave started in late 2016 and lasted until 
early 2017 (Beerens et  al., 2017; Fusaro et  al., 2017; Kim et  al., 
2017; Pohlmann et  al., 2017; Selim et  al., 2017; Wade et  al., 2018; 
Yehia et al., 2018). H5N8 AIVs belonging to clade 2.3.4.4 reemerged 
in Europe, Asia, and Africa, suggesting that clade 2.3.4 H5 AIVs, 
particularly the H5N8 subtype, have a propensity for rapid global 
spread in migratory birds (Li et  al., 2017; Napp et  al., 2018).

The current third epidemic wave began in October 2020 
and had the highest number of outbreaks. Outbreaks of H5N8 in 
poultry and wild birds have been reported in several European 
countries, including Denmark, Germany, Ireland, the Netherlands, 
and the United Kingdom (Lewis et al., 2021). Meanwhile, H5N8 
outbreaks have been reported in poultry and wild birds in the 
Middle East (Israel) and East Asia (Japan, South Korea, and 
China), and have expanded to at least 46 countries (Isoda et al., 
2020; Baek et  al., 2021; Li et  al., 2021; Sakuma et  al., 2021). 
The third wave is more serious than the second in terms of 
the number of cases and extent of spread. To date, more than 
20 million poultry have been slaughtered in South Korea and 
Japan due to infection with AIVs belonging to clade 2.3.4.4b, 
as determined by phylogenetic analysis (Twabela et  al., 2020).

H5 viruses are known to infect humans. To date, 863 
laboratory-confirmed human cases of H5N1 infection have 
been reported to the World Health Organization, which resulted 
in 456 (52.8%) deaths. Surprisingly, the first human cases of 
H5N8 infection were reported in Russia in December 2020 
(Shi and Gao, 2021). Seven poultry farm workers who participated 
in a response operation to contain an outbreak of H5N8 tested 
positive, suggesting the potential for human infection.

From October 2020 to June 2021, several outbreaks of 
H5N8  in wild birds were reported in China. Therefore, the 
aim of the present study was to investigate the genetic, pathogenic, 
and antigenic characteristic of H5N8 by active and passive 
surveillance in China.

MATERIALS AND METHODS

Ethics Statements and Facility
The study protocol was approved by the Ethics Committee 
of China Animal Health and Epidemiology Center (Qingdao, 
China). All experiments with lethal H5 viruses were performed 
in a biosafety level 3 facility, and all animal experiments 
were performed in high-efficiency particulate air-filtered 
isolators at the China Animal Health and Epidemiology Center. 
All experimental animals were humanely handled in accordance 
with animal welfare.

Sampling
From September 2020 to June 2021, persistent surveillance of 
AIV infection in wild birds in China was conducted by collecting 
swab samples from the tracheae and cloacae of different species 
of wild birds and liver and lung tissue samples from dead 
birds. The swab samples were placed in transport medium 
(penicillin [2,000 IU/ml], streptomycin [2 mg/ml], amikacin 
[1,000 IU/ml], nystatin [2,000 IU/ml], and 10% glycerol [v/v] 
in sterile phosphate-buffered saline [pH 7.2]), transported to 
our laboratory at 4°C within 72 h, and stored at −70°C.

Virus Isolation and Identification
For virus isolation, the tissue samples were homogenated in 
transport medium followed by three freeze–thaw cycle. The 
homogenated tissue samples and swab samples were clarified 
by centrifugation at 10,000 × g for 5 min at 4°C, and the 
supernatants were inoculated into the allantoic cavity of 
10-day-old specific-pathogen-free (SPF) chicken embryos, which 
were then incubated at 37°C for 4 days and checked daily. 
Dead embryos were removed and stored at 4°C. After the 
incubation period, live embryos were sacrificed at 4°C and 
the allantoic fluid was collected for testing with the 
hemagglutination assay.

RNA was extracted from the allantoic fluid of embryonated 
eggs with the QIAamp Viral RNA Mini Kit (Qiagen GmbH, 
Hilden, Germany) and the HA gene was amplified using the 
primer pair 5´-AGTGAARTGGAATATGGYMACTG-3′/5´-
AACTGAGTGTTCATTTTGTCAAT-3′. Positive amplicons were 
confirmed by sequencing. H5 viruses grown in 10-day-old SPF 
embryonated eggs were purified by three rounds of the limited 
dilution method.

Subsequently, the complete genomes of purified H5 viruses 
were amplified using the PrimeScript One-step RT-PCR Kit 
(Takara Bio, Inc., Shiga, Japan) as described previously (Hoffmann 
et al., 2001; Jiang et al., 2017). The PCR products were purified 
with the QIAquick PCR purification kit (Qiagen GmbH) and 
sequenced using the ABI 3730xl DNA Analyzer (Applied 
Biosystems, Carlsbad, CA, United  States). The nucleotide 
sequences were edited using the SeqMan module of the 
DNASTAR® Lasergene® package (DNASTAR, Inc., Madison, 
WI, United States). Phylogenetic analyses were conducted with 
Molecular Evolutionary Genetics Analysis (MEGA) software 
ver. 5.101 and aligned using the ClustalW algorithm.2 Phylogenetic 
trees were constructed using the neighbor-joining method with 
a bootstrap value of 1,000; 96% sequence identity cutoffs were 
used to categorize the groups of each gene segment in the 
phylogenetic trees. The bioinformatics data were also analyzed 
based on the genome sequences.

Studies in Chickens
Two isolates with different genotypes (SX1/2020 and NX18/2020) 
were selected for pathogenicity studies in chickens, ducks, 
and mice.

1 http://www.megasoftware.net
2 http://www.clustal.org/
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To assess the pathogenicity of the SX1/2020 and NX18/2020 
viruses in chickens, the intravenous pathogenicity index (IVPI) 
was determined in accordance with the recommendations of 
the World Organization for Animal Health. Six-week-old SPF 
chickens (n = 10/group) were intravenously inoculated with 
0.1 ml of a 1/10 dilution of bacteria-free fresh infectious allantoic 
fluid containing the challenge virus (HA titer > 16). 10 chickens 
were inoculated with 0.01 M phosphate-buffered saline as a 
control group. The chickens were then examined daily for 
10 days for signs of disease or death. At each observation, 
each chicken was scored based on a 4-point scale (0, normal, 
1, sick; 2, severely sick; or 3, dead). The IVPI was calculated 
as the mean score of each chicken at each observation point 
over the 10-day period.

10 additional chickens were inoculated intranasally with 106 
50% egg infective dose (EID50) of each virus in a 0.1-mL 
volume. At 3 days post-infection (dpi), the chickens were 
subjected to euthanasia and necropsy. The brain, heart, liver, 
spleen, lungs, intestine, and kidneys were collected for detection 
of viral RNA. Tracheal and cloacal swabs were collected from 
all birds for detection of virus shedding.

Studies in Ducks
To assess the pathogenicity of the SX1/2020 and NX18/2020 
viruses in ducks, 3-week-old SPF ducks (n = 10/group) were 
intranasally inoculated with 0.1 ml of allantoic fluid containing 
106 EID50 of the tested virus. The ducks were then observed 
for signs of disease or death until 14 dpi. At necropsy (3 
dpi), the brain, heart, liver, spleen, lungs, intestine, and 
kidneys of five ducks were collected for detection of viral 
RNA. Tracheal and cloacal swabs were collected from the 
remaining birds at 3 dpi for detection of virus shedding. 
At the end of the experiment, the animals were subjected 
to blood collection for assessment of seroconversion, followed 
by euthanasia.

Studies in Mice
To assess the pathogenicity of the SX1/2020 and NX18/2020 
viruses in a mammalian host, 6-week-old female Balb/c mice 
(Charles River Laboratories, Beijing, China; n = 14/group) were 
lightly anesthetized with CO2 and inoculated intranasally with 
106 EID50 of each virus in a volume of 50 μl. Nine of the 14 
mice were euthanized at 3, 4, and 5 dpi for virus titration of 
the nasal turbinate, lungs, spleen, brain, and liver. The remaining 
five mice were monitored daily for weight loss and mortality 
until 14 dpi. At the endpoints of the experiment, the mice 
were anesthetized and sacrificed humanely.

Antigenic Analyses
Antigenic analyses were performed using cross-hemagglutination 
inhibition (HI) tests with polyclonal antisera against the indicated 
viruses. To generate the antisera, 21-day-old SPF chickens were 
injected with 1 ml of oil emulsion-inactivated vaccines derived 
from the selected viruses and sera samples were collected at 
21 dpi. Antibodies to HI were tested with 0.5% (v/v) 
chicken erythrocytes.

Generation of Recombinant Viruses
A recombinant virus (rSD18) was generated with a reverse-
genetics method using eight bidirectional pHW2000 plasmids. 
Human embryonic kidney 293 T cells were co-transfected with 
0.8 μg of each of the six bidirectional pHW plasmids 
(corresponding to PB2, PB1, PA, NP, M, and NS) as well as 
the HA and NA genes of the SD18/2020 virus. The pHW 
plasmids expressing six internal genes were all derived from 
the A/PR/8/34(H1N1) virus with Lipofectamine 3,000 
transfection reagent (Life Technologies, Carlsbad, CA, 
United  States). The HA sequence of the SD18/2020 virus was 
attenuated from PLREKRRKRG to PLRETRG by deletion of 
the multibasic amino acid motif at the HA cleavage site. After 
24 h, the cells were treated with L-(tosylamido-2-phenyl) ethyl 
chloromethyl ketone-treated trypsin (Sigma–Aldrich 
Corporation, St. Louis, MO, United States) at a final concentration 
of 2 μg/ml. After 72 h, the supernatants of transfected cells 
were collected and used to inoculate 10-day-old SPF chicken 
embryos, which were then incubated at 37°C for 72 h. Vaccine 
batches were produced in SPF chicken embryos after five egg 
passages of recombinants.

Vaccination and Challenge Study in 
Chickens
Two oil-adjuvant whole-virus inactivated vaccines were prepared 
from Re-11 [the HA and NA gene donor (A/duck/Guizhou/
S4184/2017, H5N6), HA gene clade (clade 2.3.4.4 h)] (Zeng 
et  al., 2020) and rSD18 (the inactivated virus mixed with 
mineral oil adjuvant at 1:2 (v/v) and then emulsified) by 
Qingdao Yebio Bioengineering Co., Ltd. (Qingdao, China). 
Groups of three-week-old SPF chickens were vaccinated with 
the Re-11 and rSD18 vaccines. 3 weeks later, the chickens were 
intranasally challenged with 106 EID50 of the tested viruses. 
Tracheal and cloacal swabs were collected from the chickens 
for virus titration at 3 and 5 dpi, and clinical signs were 
monitored daily until 10 dpi. In addition, two groups of 10 
chickens were used as challenge controls. At the end of the 
experiment, the animals were anesthetized and 
sacrificed humanely.

RESULTS

Molecular and Phylogenetic Analysis
During September 2020 to June 2021, 10 viruses were isolated 
from eight kinds of wild birds in Shanxi, Ningxia, Shandong, 
Tibet, and Shaanxi provinces (Figure  1). The information of 
the strains is shown in Supplementary Table S1.

Phylogenetic analysis of HA genes showed that all 10 viruses 
isolated from wild birds in this study belonged to clade 2.3.4.4b 
during September 2020 to June 2021 (Figure  2). Furthermore, 
on the basis of their genomic similarity and phylogenetic 
analysis of genome sequences (Supplementary Figures S1–S7), 
the 10 H5N8 HPAIVs in this study were divided into two 
genotypes: seven strains belong to the genotype 1 and three 
strains formed a different genotype 2.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Jiang et al. H5N8 From Wild Birds in China

Frontiers in Microbiology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 893253

The HA genes of clade 2.3.4.4b viruses contained a series 
of basic amino acids (PLREKRRKR/G) at the cleavage sites, 
a signature of highly pathogenic avian influenza virus The 
receptor binding sites of the viral HA genes possessed the 
residues Q226 and G228 (H3 numbering), suggesting 
preferential binding to avian-like receptors (Tharakaraman 
et  al., 2013). However, the receptor binding site mutations 
A137, N158, A160, N186, I192, Q222, and R227 (H3 
numbering) could increase binding to SAα-2,6Gal human-
like receptors (Yang et  al., 2007; Gao et  al., 2009; Wang 
et  al., 2010; Guo et  al., 2017).

Bioinformatics analysis identified many mutations that 
would increase virulence in mice, such as R114 and I115 
(H3 numbering) of the HA gene (Wessels et  al., 2018); 
D30, M43, and A215 of the M1 gene (Fan et  al., 2009; 
Nao et  al., 2015); S42, E55, E66 (SX1/2020, Y173/2020, 
and Y175/2020), M106, and F138 (except SX1/2020, 
Y173/2020, and Y175/2020) of the NS1 gene (Jiao et  al., 
2008; Ayllon et al., 2014; Li et al., 2018); the NS1 C-terminal 
ESEV motif of the PDZ domain at position aa227–230 
(Jackson et  al., 2008; Soubies et  al., 2010; Zielecki et  al., 
2010); combination of V89, D309, K339, G477, V495, E627, 
and T676 of the PB2 gene (Li et  al., 2009); V3 (except 
NQ1/2021) and G622 of the PB1 gene (Feng et  al., 2016; 
Elgendy et  al., 2017); and D383 of the PA gene (Song 
et  al., 2015; Suttie et  al., 2019).

Pathogenicity in Chickens
To assess pathogenicity in chickens, 6-week-old SPF chickens 
were inoculated with viruses to determine the IVPI. Both 
SX1/2020 and NX18/2020 viruses caused 100% mortality within 
1 day, conferring an IVPI of 3.00 and indicating that both 
were highly pathogenic in chickens (Table  1).

All chickens infected intranasally with 106 EID50 of the 
SX1/2020 and NX18/2020 viruses died within 5 dpi. Both 
viruses were detected in the heart, liver, spleen, lungs, kidneys, 
intestine, and brain samples collected during necropsy of 
inoculated chickens at 3 dpi. Virus shedding was detected 
from the tracheal and cloacal swabs of all dead chickens 
inoculated with the SX1/2020 and NX18/2020 viruses at 3 dpi 
(Table  1).

Pathogenicity in Ducks
To assess pathogenicity in ducks, 3-week-old SPF ducks were 
inoculated with the SX1/2020 and NX18/2020 viruses, which 
caused 20%—40% mortality within 14 dpi, indicating that both 
were moderately pathogenic in ducks.

To investigate the replication of these viruses in ducks, five 
ducks from each group were euthanized at 3 dpi to assess 
the viral load in the heart, liver, spleen, lungs, kidneys, intestine, 
and brain. The remaining five ducks in each group were assessed 
for seroconversion (Table  1).

FIGURE 1 | Geographical distribution of H5N8 avian influenza viruses detected in wild birds in China, 2020–2021. Red dot indicates sampling sites. Dates refer to 
the day of initial H5N8 virus isolated in wild birds in each site.
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Both viruses were detected in the heart, liver, spleen, lungs, 
kidneys, intestine, and brain samples collected during necropsy 
of inoculated ducks at 3 dpi. All ducks inoculated with the 
SX1/2020 and NX18/2020 viruses exhibited virus shedding and 
seroconversion (Table 1). The results indicated that both viruses 
were moderately pathogenic in ducks.

Replication and Pathogenicity in Mice
To assess the replication and virulence of the SX1/2020 and 
NX18/2020 viruses in a mammalian host, 6-weeks-old Balb/c 
mice (n = 14/group) were inoculated intranasally with 106 EID50 
of each virus. On 3, 4, and 5 dpi, three mice from each group 
were euthanized to measure the viral load in nasal turbinate, 

lungs, spleen, brain, and liver, while the other five were observed 
for body weight changes and death until 14 dpi.

At 3, 4, and 5 dpi, mice infected with the NX18/2020 
virus had high titers in the nasal turbinate, lungs, spleen, 
and brain, but not the liver (Table  2). The mice exhibited 
progressive signs of infection, such as inactivity, ruffled fur, 
lack of appetite, hunched backs, and labored breathing. The 
body weights of mock-infected mice gradually increased from 
1 to 14 dpi. In contrast, the infected mice experienced 
dramatic weight loss of more than 25% and all died within 
8 dpi (Figure  3). These results suggest that the NX18/2020 
virus not only effectively replicated in the nasal turbinate, 
lung, spleen, and brain without preadaptation, but was 
also lethal.

FIGURE 2 | Phylogenetic analyses of the HA genes of H5N8 highly pathogenic AIVs. Phylogenetic trees were constructed with MEGA (ver. 5.10) software using the 
neighbor-joining method. Bootstrap analysis was performed with 1,000 replications. The viruses sequenced in this study are shown in red in the phylogenetic trees. 
Scale bars indicate nucleotide substitutions per site.
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TABLE 2 | Replication level of SX1/2020 and NX18/2020 strains in organs of 
experimentally infected Balb/c mice.

Strains

Virus titers in organs of experimentally infected mice (log10 
EID50/g)a

Tissue 3 day 4 day 5 day

SX1/2020 Nasal turbinate 3.86 ± 0.32 3.83 ± 0.28 4.12 ± 0.45
Lung 3.67 ± 0.36 3.82 ± 0.37 4.03 ± 0.42
Liver – – –

Spleen – – –
Brain – – –

NX18/2020 Nasal turbinate 4.45 ± 0.33 4.78 ± 0.32 5.32 ± 0.46
Lung 4.27 ± 0.38 4.56 ± 0.38 5.18 ± 0.45
Liver – – –

Spleen 3.07 ± 0.30 3.16 ± 0.31 3.46 ± 0.33
Brain 2.23 ± 0.22 2.92 ± 0.26 3.26 ± 0.35

aGroups of fourteen female Balb/c mice were intranasally inoculated with a 106 EID50 of 
each virus. On 3, 4, and 5 dpi, three mice of each group were euthanatized after 
anesthetization, and the nasal turbinates, brains, lungs, livers, and spleens of the mice 
of each group were pooled separately and homogenized in L-15 medium containing 
antibiotics to make a 10% w/v tissue homogenate for virus titration in embryonated 
chicken eggs. Values are mean ± SD. –, virus titer lower than the detection limit.

In contrast, the SX1/2020 virus replicated poorly and was 
only detected in the nasal turbinate and lungs of mice and 
was not fatal (Figure 3), indicating that H5N8 viruses circulating 
in nature have different pathotypes in mice.

Antigenic Analyses
Since December 2018, the inactivated reassortant vaccine Re-11 
has been extensively used to control the spread of clade 2.3.4.4 
viruses in China. To determine whether antigenic drift had 
occurred, antigenicity of the H5N8 viruses was evaluated with 
the cross-HI assay.

The results showed that the H5N8 isolates weakly reacted 
with Re-11 antisera (Supplementary Table S2). The cross-reactive 
HI titers of the Re-11 antiserum against the H5N8 isolates 
were 32- to 128-fold lower than that against the homologous 
Re-11 antigen (9 log2). In contrast, the cross-reactive HI titers 
of the antiserum against the Re-11 antigen from the H5N8 
viruses were also 32- to 128-fold lower than that against the 
homologous H5N8 isolates. The amino acid homology between 
these isolates and Re-11 was 91.2–91.7%. These results indicate 
that the H5N8 viruses exhibited severe antigenic drift as compared 
to the more established H5 vaccine strains.

Protective Efficacy of the Vaccines
To determine whether these isolates reduce the protective effect 
of commercially available vaccines in vivo, the protection 
efficacies of the inactivated reassortant H5N1/PR8 vaccine Re-11 
and rSD18 vaccine were evaluated.

During the 10-day observation period, birds vaccinated with 
the Re-11 vaccine displayed no clinical signs and all survived. 
In addition, the tracheal and cloacal swabs from only 10.0–20.0% 
of the experimental chickens exhibited virus shedding at 3 
and 5 dpi. The rSD18-vaccinated birds all survived and displayed 
no clinical signs of infection. In addition, no virus shedding TA
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was detected in tracheal or cloacal swabs from any of the 
experimental chickens at 3 and 5 dpi (Table  3). These results 
suggest that the Re-11 vaccine did not provide complete 
protection against the high dose of antigenically distinct highly 
pathogenic H5N8 AIV.

DISCUSSION

Since 2014, there have been three global waves of the H5N8 
pandemic in wild birds and poultry. The spread of H5N8 viruses 
in many countries in Asia, Europe, Africa, and North America 
has resulted in numerous outbreaks in domestic poultry (Lee 
et  al., 2014, 2015, 2016; Wu et  al., 2014; Saito et  al., 2015; 
The Global Consortium for H5N8 and Related Influenza Viruses, 
2016). During the first and second epidemic waves, H5N8 

strains were occasionally detected from wild birds, ducks, and 
geese in China, although the damage caused by these viruses 
was limited (Cui et  al., 2020). However, the current third 
epidemic wave of H5N8 viruses has spread with a vengeance, 
resulting in heavy losses to the poultry industry worldwide.

In this study, positive and passive surveillance was conducted 
to monitor the invasion and spread of H5N8 viruses in China. 
The H5N8 viruses were first detected in two healthy mallards 
in Ningxia Province in October 2020 and dead whooper swans 
found in Shanxi Province in November 2020. Afterward, these 
viruses have been detected in seven other varieties of wild 
birds in several provinces. Genetic analysis revealed that two 
distinct genotypes of H5N8 viruses were circulating in wild 
birds in China, with wide spread of genotype 1. The results 
of the present study are consistent with those of previous 
reports (Baek et  al., 2021; Cui et  al., 2021). Interestingly, 

A

B

FIGURE 3 | Virulence of the H5N8 viruses in Balb/c mice intranasally inoculated with a 106 EID50 of virus. Body weight changes (A) and mortality (B) of Balb/c mice 
were monitored daily for 14 days.
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virusesw isolated from different individuals at the same site 
may be  of different genotypes, which illustrates the complexity 
of viruses in China.

Animal studies have shown that H5N8 viruses are highly 
pathogenic in chickens, but cause relatively mild disease in 
ducks. In previous studies, some H5N8 strains could kill nearly 
100 percent of the challenged ducks (Dinev et al., 2020; Koethe 
et  al., 2020). The pathogenicity of the virus may depend on 
the strain and duck species. In practice, even with the adoption 
of biosecurity measures, the production of ducks has been 
poorer than that of chickens and other pathogens, such as 
Escherichia coli and Riemerella anatipestiferis, which cause 
higher mortality rates in ducks. Furthermore, there is a clear 
antigenic difference between H5N8 viruses and the H5N1 
vaccine strain Re-11 used in China against 2.3.4.4 viruses, as 
vaccinated chickens are not completely protected against 
challenge with the high dose of H5N8 viruses. The results 
were inconsistent with those of Cui et al., which may be related 
to bird species and immune background where the layer 
chickens and ducks in the field were immunized with two 
or more doses of the H5/H7 AI inactivated vaccine (Cui et al., 
2021). As we  known, under field conditions, birds unlikely 
to get sustained high levels of antibody and would more likely 
be susceptible to infection and virus shedding. Normally, when 
HI titer to the challenge virus of H5 subtype is above 4 log2, 
the vaccinated chickens were completely protected without 
virus shedding. However, in this study, vaccinated chickens 
with HI antibody titers of 5.2 log2 still shed viruses after 
challenge. It is highly likely that the reduced immune protection 
is caused by the high dose of challenge virus. The 106EID50 
dose of the challenged H5N8 virus in this study is tenfold 
higher than the normal dose (105EID50).

Animal studies have shown that the virulence of H5N8 
viruses in mice varies among strains, as a highly pathogenic 
virus was lethal in mice without preadaptation and effectively 
replicated in several organs, while replication of a less pathogenic 
virus was limited in some organs. The H5N8 virus isolated 
in 2013 showed similar results (Wu et  al., 2014).

In 2004 and 2005, an epidemic of the H5N1 virus occurred 
in China (Chen, 2009). Thus, the Chinese government adopted 
comprehensive prevention and control measures, including 
surveillance, culling, and mass vaccination, which achieved 
great success. For example, replacement of the Re-4 vaccine 
with the Re-7 vaccine in 2014 completely eliminated infection 
of a clade 7.2 virus (Liu et  al., 2016). In 2017, the use of the 
H7N9-Re1 vaccine successfully controlled H7N9 infection in 
humans and highly pathogenic viruses in chickens (Shi et  al., 
2018; Jiang et  al., 2019). However, vaccines were less effective 
in controlling other clades of the H5 virus, such as clade 
2.3.4, which is found in chickens and especially waterfowl, 
while clade 7.2 and H7N9 viruses are found mainly in chickens 
and less often in waterfowl. In China, the number of waterfowl 
is huge and many are raised in open environments in contact 
with wild birds. Clade 2.3.4.4b viruses circulate in wild birds 
and spread easily to waterfowl and, thus, are more difficult 
to control. In addition, the immune density of waterfowl is 
much lower than that of chickens, which causes waterfowl to 
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become more susceptible to infection and further spread of 
the virus. Due to continuous mutation and reassortment, 
antigenic drift of avian influenza viruses occurs frequently. 
Timely updating the vaccine seeds could maintain the 
effectiveness of the vaccine in control and elimination of the 
target avian influenza virus. Although the Re-11 vaccine strain 
was updated by antigenically matched Re-14 vaccine to prevent 
and control clade 2.3.4.4b viruses since 2022, many challenges 
remain. With the use of new matched vaccines and increased 
poultry immune density, surveillance should be  strengthened 
to early detect the emergence of mutant strains and worldwide 
spread via wild birds.
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