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Complex social behaviors are emergent properties of the brain’s interconnected and
overlapping neural networks. Questions aimed at understanding how brain circuits
produce specific and appropriate behaviors have changed over the past half century,
shifting from studies of gross anatomical and behavioral associations, to manipulating
and monitoring precisely targeted cell types. This technical progression has enabled
increasingly deep insights into the regulation of perception and behavior with remarkable
precision. The capacity of reductionist approaches to identify the function of isolated
circuits is undeniable but many behaviors require rapid integration of diverse inputs.
This review examines progress toward understanding integrative social circuits and
focuses on specific nodes of the social behavior network including the medial amygdala,
ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus
(MPOA) as examples of broad integration between multiple interwoven brain circuits.
Our understanding of mechanisms for producing social behavior has deepened in
conjunction with advances in technologies for visualizing and manipulating specific
neurons and, here, we consider emerging strategies to address brain circuit function
in the context of integrative anatomy.
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INTRODUCTION

Technical progress in neuroscience has accelerated the capacity for resolving complex circuits
with high resolution. Many of the first circuits studied in terms of both connectivity and function
were small, consisting of a few dozen cells, often from invertebrate species (Selverston et al., 1976;
Russell, 1979; Katz et al., 1989; Marder and Bucher, 2001). Neuroscientists studying larger circuits
in vertebrates adapted the logic and conceptualizations advanced by invertebrate researchers to
larger circuits (Katz et al., 2013); however, each node in vertebrate circuit diagrams typically
represented a brain region containing thousands or millions of neurons. This translation was
immediately effective for brain regions with repeating motifs (e.g., the retina or primary visual
cortex), however, other more heterogeneous brain regions encompassed multiple overlapping and
interleaved circuits, each with different functions. For example, the ventromedial nucleus of the
hypothalamus emerged as a focal point for thermogenesis as well as hunger and aggression (Perkins
et al., 1981; Lin et al., 2011; Gaur et al., 2014). Similarly, the medial amygdala (MeA) was linked to
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reproduction, parenting, aggression, and same-sex affiliative
behaviors (Lehman et al., 1980; Unger et al., 2015; McCarthy
et al., 2017; Chen et al., 2019; Wu et al., 2021). Here, we
discuss the role of technological innovation in identifying and
isolating MeA circuits specific for precise behaviors and then
discuss the growing appreciation for, and need to understand,
the role of broadscale integration as an organizing principle of
social circuit design.

Social behaviors are critically important for survival in species
throughout all branches of the animal kingdom. In vertebrates,
the social behavior network (SBN) is a conserved network
of brain regions essential for social behaviors. Foundational
work established links between specific brain regions in the
SBN and behaviors such as aggression, affiliation, reproduction,
and parenting (Rosvold et al., 1954; Lammers et al., 1988;
Newman, 1999). The picture emerging from these studies and
subsequent research was one of dense connectivity between
nodes of the SBN, with each social behavior controlled by
multiple brain regions and each node of the SBN contributing
to the regulation of multiple social behaviors. The interwoven
nature of social behaviors and the circuits that mediate them
represented an immediate challenge for neuroscientists interested
in understanding the neural control for a specific social behavior.
For example, electrolytic lesions lack specificity for genetic cell-
type, and consequently indiscriminately impacted all neurons
at the lesion site. Similarly, with few exceptions (Margolis
et al., 2006) electrophysiological recordings lacked specificity
for genetically defined cell-types and, accordingly, were often
poorly equipped to distinguish between anatomically overlapping
circuits (Chen and Toney, 2010; Bergan et al., 2014).

Social neuroscience, as a formal field of study, dates at least
as far back as the work of early neuroethologists that sought
to study how the brain interprets sensory cues and guides
natural behaviors in a wide array of species. Progress toward
understanding the neural circuit principles that mediate behavior

has required adapting a wide array of concepts and techniques
including careful behavioral observation, endocrinology,
anatomy, electrophysiology, genetics, optogenetics and
chemogenetics, single cell sequencing, and connectomics
along with many other strategies (Figure 1). During the
latter half of the twentieth century technological advances in
monitoring neurons, genetically targeting cells, manipulating
neurons, investigating neural circuits, and extracting insight from
large datasets collectively ushered in a new era for identifying
and causally testing the precise circuits necessary for specific
social behaviors.

The capacity for targeted lesions has, in some cases,
reached the level of single cells (e.g., Ruta et al., 2010) and
pharmacological agents increasingly allow specific targeting of
single channels (e.g., Alexander et al., 2010). Advances in
single cell sequencing are revealing the heterogeneity of neuron
populations and are allowing neuroscientists to define a “parts
list” required for circuit function that accounts for structural
and molecular heterogeneity in the cells that constitute each
circuit (Macosko et al., 2015; Hrvatin et al., 2017; Kamitaki et al.,
2018). The introduction of optogenetics and chemogenetics make
it possible to activate and inhibit circuits reversibly with high
temporal precision (Boyden et al., 2005; Alexander et al., 2010).
This, in combination with advances in in vivo electrophysiology
(Lima et al., 2009; Cohen et al., 2012), and advances in optical
imaging of neural activity (Kim et al., 2016; Li et al., 2017)
allows neuroscientists to probe questions with novel behavioral
resolution and strengthen links between behaviors and the
circuits that mediate them. As the precision of tools improved,
the resolution with which individual behaviors were understood
increased proportionally (Figure 1). However, the interwoven
nature of social circuits is likely an important design principle
that allows integration of diverse sensory and interoceptive
inputs to produce behavior well-adapted to the individual’s
environment. We suggest that the same tools that accelerated

FIGURE 1 | Timeline of the dynamic relationship between technological innovation and biological insight in neuroscience. Technical trends that have profoundly
shaped mechanistic insight for social neuroscience are highlighted at the top. Arrows indicate that most developed technologies continue to shape neuroscience to
this day. Key papers describing either the development of a technical innovation or the adaptation of a new technique for investigating brain function are listed at the
bottom. Select icons adapted from BioRender.com.
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insight into cell-type specific neural circuits specialized for
specific social behaviors are also essential for understanding
how emergent properties of social behavior are mediated by the
connections between circuits and the broad integration of sensory
inputs and internal states.

ISOLATING NEURAL CIRCUITS
UNDERLYING BEHAVIOR

Untangling the intermingled circuits in the SBN depends on
identifying each reliable and reproducible subset of neurons
whose activity produces a specific behavior. For example,
territorial aggression is triggered by sensory cues unique to
each species (Tinbergen, 1951; Harrison, 1983; Goodson and
Kabelik, 2009; Butler and Maruska, 2015), with chemosensory
stimuli being particularly salient in rodents (Schultz and
Tapp, 1973; Stowers et al., 2002; Hubbard et al., 2004;
Mandiyan et al., 2005). Aggression-inducing cues are detected
by both the main olfactory and vomeronasal system and
conveyed to a conserved circuit for aggression that includes
the ventromedial hypothalamus (VMH) as a core component.
Electrical stimulation of VMH directly produces aggression
(Kruk et al., 1983); however, the VMH is also critical for satiety
as lesions to the VMH produce over-eating and obesity as well
as sexual behaviors (Musatov et al., 2006, 2007; Xu et al., 2011;
Correa et al., 2015; Yang et al., 2017; Kammel and Correa, 2020).
Disentangling these interleaved behavioral circuits requires
access to genetically defined cell-type specific tools to enable
reproducible targeting of precise VMH subcircuits. The advent
of optogenetics (Zemelman et al., 2002; Boyden et al., 2005)
further established the causal relationship of the ventrolateral
VMH (VMHvl) as a control center for aggression. Specific
activation of VMHvl directly produced aggression regardless
of the social partner (even toward an inanimate object) while
silencing VMHvl suppressed the level of territorial aggression
toward intruders (Lin et al., 2011). Later, VMHvl neurons
expressing either estrogen receptor alpha or progesterone
receptor, likely overlapping populations, were identified as
central populations required for VMHvl-induced aggression
(Yang et al., 2017; Hashikawa et al., 2018). Importantly,
the moment-to-moment neural activity of steroid responsive
subpopulations of VMHvl neurons correlates exquisitely with
aggressive encounters (Falkner et al., 2014). Collectively,
these studies demonstrate a clear progression through which
technical innovation, specifically the advent of cell type-specific
manipulations identified causal relationships between precise
populations of hypothalamic neurons and aggression.

Like advances in our understanding of aggression, technical
advances have enabled rapid progress in understanding the
neural basis of parental behavior. The medial preoptic area
of the hypothalamus (MPOA) is linked to parental behavior,
sexual behavior, and sleep. As above, these interwoven circuits
were disentangled through the identification of a genetic marker,
galanin, that is expressed in MPOA neurons specific for parental
behavior. Activation of galanin-expressing neurons promotes
parental behavior, while ablating galanin-expressing neurons

suppresses it and, consequently, promotes infanticidal behaviors
(Wu et al., 2014). Remarkably, phenotypic heterogeneity
of subpopulations of galanin-expressing neurons maps on
to specific behavioral features that collectively constitute
parental behaviors—for example, one sub-population of galanin-
expressing neurons suppresses interactions with other adults and
a separate subpopulation of galanin-expressing neurons enhances
motivation to interact with offspring (Kohl et al., 2018). Like the
circuits required for aggressive behaviors, molecular and genetic
tools were essential to isolate the circuits controlling parental
behavior in the MPOA. While the behavioral output of these
circuits is clear, the computations required to reach a behavioral
“decision” integrate interoceptive, sensory, neuromodulatory,
and developmental inputs.

CIRCUITS MEDIATING BEHAVIORAL
COMPLEXITY IN THE MEDIAL
AMYGDALA

Both the VMHvl and MPOA nodes receive direct input
from the MeA (Dong and Swanson, 2004; Kohl et al., 2018)
that itself contains interwoven circuits devoted to nearly all
social behaviors. The MeA, MPOA, and VMH are each core
members of the SBN with the MeA being the primary recipient
of chemosensory input, arriving directly from the accessory
olfactory bulb (Scalia and Winans, 1976; Mohedano-Mariano
et al., 2007; Keshavarzi et al., 2015) and indirectly from the main
olfactory bulb via the cortical amygdala (Swanson and Petrovich,
1998). With strong connections to all nodes of the SBN, the MeA
sits at the nexus of sensory and social behavioral processing.
To understand the role of MeA in integrating information, it
is important to appreciate the heterogeneity, distinct temporal
dynamics of neural activity, and broad anatomical connections
MeA circuits make with the rest of the brain.

The MeA is divided into four subregions with unique
functional, cytoarchitectural and anatomical qualities (Swanson
and Petrovich, 1998; Petrulis, 2020; Raam and Hong, 2021).
Dorsal regions contain a higher abundance of inhibitory
neurons, while ventral regions contain more excitatory neurons
(Keshavarzi et al., 2014). Posterior regions, posterodorsal
(MeApd) and posteroventral (MeApv), and the anterior MeA
(MeAa) are distinguished by their response to reproductive
and defensive stimuli, as well as their differential expression
of transcription factors Lhx6, Lhx9, and Lhx5. For example,
Lhx9 and Lhx5 expressing MeAa and the MeApv neurons
preferentially respond to predation stimuli and form circuits
with other defensive BNST and hypothalamic nodes, while Lhx6
neurons in the MeApd form reproductive circuits with the
posterior region of the BNST and the hypothalamus (Choi et al.,
2005). Molecular heterogeneity correlates with the behavioral
outcomes of MeA circuits, and here we focus on the MeA circuits
for reproduction and aggression.

The MeApd is known to produce many socially and
reproductive relevant behaviors, including aggression (Newman,
1999). The MeApd is active during aggressive events (Kollack-
Walker and Newman, 1995; Veening et al., 2005) and aggression

Frontiers in Integrative Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 862437

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-16-862437 March 28, 2022 Time: 15:14 # 4

Dickinson et al. Integration of Social Behaviors

in both sexes is suppressed by MeApd lesions (Kemble et al., 1984;
Takahashi and Gladstone, 1988). Channelrhodopsin stimulation
of GABAergic, and not glutamatergic, cell populations within
the MeApd elevates aggressive behaviors (Hong et al., 2015).
Similarly, aromatase-expressing MeApd neurons, aromatase
being required for the conversion of testosterone to estradiol
in the brain, regulate both intermale and maternal aggression
(Unger et al., 2015). Currently, the overlap between GABAergic
and aromatase-expressing MeApd neurons in the context of
aggressive behavior is not clear and, therefore, it remains
unknown whether these represent multiple aggression circuits or
multiple nodes in a single aggression circuit in the MeA.

MeApd circuits have been linked to social behaviors beyond
aggression. Activation of tachykinin-expressing GABAergic
neurons in the MeApd promotes allogrooming of distressed
social partners (Wu et al., 2021), while activation of glutamatergic
neurons promotes asocial self-grooming (Hong et al., 2015).
Sex discrimination, recognition and social memory have all
been linked to the MeA and are dependent on oxytocin
input to aromatase-expressing neurons (Ferguson et al., 2001;
Yao et al., 2017). In vivo imaging in the form of micro
endoscopes have now been used to longitudinally record MeA
circuit function during specific social behaviors including social
discrimination and avoidance/approach behavior, as well as
through periods of plasticity including before and after sexual
experience (Li et al., 2017; Miller et al., 2019). The findings
from these studies show subsets of neurons functioning with
distinct temporal dynamics, as well as sex differences in circuit
function. Experiments that monitor the moment-to-moment
activity of neurons during behavior, in line with previous studies,
underscore the importance of neuronal heterogeneity as an
organization principle that allows circuits to produce a large
breadth of behavioral output.

The MeA and, accordingly, the behaviors mediated by the
MeA display clear sex differences in anatomy and function
(Cooke and Woolley, 2005; Bergan et al., 2014). However, single
cell scRNA-seq data suggests surprisingly few sex differences in
the abundance of neurons in each major classes of MeA neurons.
Instead, molecular variation in GABAergic neurons has been
suggested to underlie the vast differences in behavioral outcomes
between sexes (Wu et al., 2017; Chen et al., 2019). In aromatase-
expressing neurons, there are clear sex differences, with males
expressing roughly 50% more aromatase neurons in the MeApd
(Morris et al., 2007; Wu et al., 2009; Yao et al., 2017). Given
the role of aromatase neurons in driving aggression, a sexually
dimorphic social behavior (Unger et al., 2015), this variation in
local MeA circuit design creates a framework for understanding
how behavior can adapt between types of individuals. In
addition to genetic identity, anatomical connections represent
another feature by which neurons can be classified with clear
ramifications for understanding complex behavioral output. For
example, MeA aromatase-expressing neurons receive conspecific
pheromonal information via projections from the anterior AOB
(Billing et al., 2020), reflecting a model of the MeA as the third
step in a chemosensory pathway that produces social behaviors
(Lee et al., 2014; Unger et al., 2015; Bayless and Shah, 2016;
Ishii et al., 2017). However, aromatase-expressing neurons in the

MeA receive inputs from dozens of subcortical brain regions,
including regions associated with fear, memory, and metabolic
regulation. Indeed, the “classic” chemosensory inputs from the
AOB and inputs from the BNST each make up less than 2%
of the total input to MeA-aromatase neurons (Dwyer et al.,
2022), implying that this single subset of MeA neurons integrates
sensory input with a broad array of internal physiological and
learned information prior to signaling to behavioral control
centers in the hypothalamus (Figure 2A).

The largest proportion of synaptic inputs to aromatase-
expressing neurons in the MeA actually comes from other
neurons within the MeA (Dwyer et al., 2022), suggesting that
these neurons also integrate signals from neighboring local
circuits containing different neuronal subtypes, which are in
turn processing information from different compliments of
brain regions. In many cases MeA neurons make reciprocal
connections with other nodes in the SBN (e.g., BNST, MPOA,
VMH, posterior amygdala and ventral premammillary nucleus)
further highlighting the non-linear nature of the circuits
mediating social behavior and demonstrating the complex
orchestration of recursive feedback and broad integration at
multiple levels from which complex social behaviors like
parenting likely emerge.

CIRCUIT CONNECTIONS AT THE
INTERSECTION OF DIVERGENT
BEHAVIORS

Physical integration of circuits such as we see in the MeA likely
allows integration, not just between different social behaviors, but
also between social and non-social behaviors. The relationships
between seemingly divergent behaviors are reflected in the
organization and connections between social and non-social
circuits. Early on, neuroscience research on feeding demonstrated
striking results using molecularly engineered receptors to gain
control Agouti-related peptide (AgRP) neurons. AgRP neuronal
soma are exclusively localized to the arcuate hypothalamus and
play a vital role in mounting a hunger response. Toxin-induced
ablation of AgRP neurons in adult mice led to lethal aphagia
(Luquet et al., 2005). In 2011, the field applied opto- and
chemogenetics to AgRP neurons. AgRP neuron stimulation was
sufficient to evoke feeding behavior; well-fed animals consumed
food as if they were starved (Aponte et al., 2011; Krashes et al.,
2011). Direct stimulation of AgRP neurons evoked at least two
aspects of starvation, the drive to consume food, and decreased
energy expenditure. These experiments investigated a discrete
behavioral outcome; the animals were removed from a social
setting and food was available at little cost.

While discrete behaviors can be assessed in a controlled
laboratory setting, the stimuli that drive behavior are rarely
experienced in isolation in nature. To that end, the above
experiments did offer some environmental context. AgRP
stimulation was performed during the rest phase and therefore
the act of feeding required arousal, calling into question the
role of AgRP activity and by proxy hunger itself in a complex
system of competing need states. Starving animals in the wild
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FIGURE 2 | Structural and Functional Integration in Medial Amygdala Circuits. (A) Left: The MeA receives synaptic input from diverse circuits dedicated to stress,
chemosensation, memory, and metabolic regulation. Right: Synaptic inputs are integrated in the MeA to direct innate aggressive, parental, and reproductive
behaviors. Example connections represent the largest efferent and afferent connections but are not exhaustive. Bolded brain regions indicate regions with identified
reciprocal connections (feedback loops) with the MeA. Connections indicated by an asterisk (*) are identified specifically for aromatase-expressing MeA neurons.
Posteromedial cortical amygdala (PMCo), paraventricular nucleus of the hypothalamus (PVN), central amygdala (CeA), basomedial amygdala (BMA), zona incerta (ZI),
hippocampal-amygdaloid transition area (HATA), ventral posteromedial nucleus (VPM), lateral hypothalamus (LH), arcuate nucleus of the hypothalamus (ARC),
anterior hypothalamus (AH), posterior amygdala (PA) and premotor cortex (PMv) (Wu et al., 2009; Dwyer et al., 2022). (B) The MeA receives converging
chemosensory and interoceptive input from the AOB and hypothalamus, respectively. During starvation conditions, AgRP neurons release inhibitory signals onto
postsynaptic Npy1R neurons in the MeA. Excitatory chemosensory input from the AOB conveys information about predator and/or conspecific cues to the MeA.
This dichotomy positions the MeA for scalable outcomes in a hierarchy of survival with respect to social behaviors. When a starving mouse is presented with a
conspecific intruder, it prioritizes escape behaviors over territorial aggression, and this behavior is replicated by experimental activation of AgRP fibers in the MeA.
AgRP neurons release a multitude of inhibitory signals. Fast acting GABA can act on a short order, while the inhibitory tone from the neuropeptides, NPY and AGRP
signals can persist for days.

demonstrate both behavioral and physiological adaptations:
fertility is gated, avoiding the costly energetic demands of
reproduction (Iwasa et al., 2018); metabolism slows, requiring
fewer calories to meet basal metabolic demands (Leibel, 1990);
foraging strategies shift (Krebs, 1980); and food seeking activity
is prioritized over rest/sleep (Alvarenga et al., 2005).

As a population, individual AgRP neurons have a near
uniform response to fasting (Betley et al., 2015). AgRP neurons
send projections, with few to no collaterals, to at least
14 downstream brain regions, fostering the idea that each
projection played a “parallel and redundant” role in food seeking
behavior (Broberger et al., 1998; Betley et al., 2013). However,
because AgRP neurons were implicated in competing need state
dynamics, it was also plausible to view them as a “distribution
center,” receiving cues of low energy status and distributing this
information to a variety of postsynaptic targets that contribute
to the collective starvation-associated state change. The power
of optogenetic fiber stimulation provided a means to test
these hypotheses.

With respect to this review, it is important to consider
that AgRP neurons send projections to multiple relays of

the social behavioral network, and it is important to note
that hunger can tune the expression of social behaviors.
During starvation, food seeking efforts become dominant, to
the extent that species of prey will migrate out of their
protected territorial safe zone and seek food in areas that
are more susceptible to predation (Krebs, 1980). Evidence of
AgRP communication to the MeA was shown by projection
mapping studies (Broberger et al., 1998; Padilla et al., 2016).
Adding to this, inhibitory AgRP neurons co-express NPY and
both NPY receptors along with melanocortin 4 receptors are
expressed in the MeA, further highlighting the remarkable
heterogeneity of MeA neurons (Figure 2B; Kishi et al., 2003;
Liu et al., 2003; Padilla et al., 2016). It was proposed that the
starved state may tune territorial aggression via communication
from AgRP neurons to the MeA with the rationale that
during starvation, the cost of territorial defense is outweighed
by the animal’s primal drive to find and consume food.
Stimulation of AgRP fibers in the MeA was sufficient to reduce
territorial aggression of resident males toward subordinate
conspecific male intruders (Padilla et al., 2016). In alignment
with a shift in priorities, stimulation of AgRP fibers in the
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MeA produced more escape behaviors in the presence of
an intruder indicating a reduced motivation for antagonistic
social interactions (Padilla et al., 2016). In this experimental
paradigm, the MeA receives converging input from at least
two stimuli and demonstrates the power of a dominant need
state in decision making. Indeed, social circuit function is
fundamentally altered by AgRP neuron signaling through a
collective group of physiological changes that are attributed to
starved state adaptations in wild animals (Dietrich et al., 2015;
Burnett et al., 2016, 2019; Jikomes et al., 2016; Padilla et al., 2017;
Alhadeff et al., 2018; Goldstein et al., 2018; Xia et al.,
2021).

An appreciation for the importance of behavioral integration
has similarly grown out of research on the circuits that
control pain sensitivity. The initial discovery that descending
projections from the brainstem were capable of endogenously
modulating pain set the stage for decades of fruitful research
into the role of raphe magnus neurons in gating an animal’s
sensitivity to painful stimuli (Basbaum et al., 1978; Basbaum
and Fields, 1978). Raphe neurons project to the dorsal horn of
the spinal cord and the activities of raphe neurons modulate
sensitivity to painful stimuli through two opposing groups
of neurons. ON cell activation upregulates sensitivity to pain
while OFF cell activation decreases sensitivity to pain (Mason
and Fields, 1989; Skinner et al., 1997) — collectively enabling
bidirectional control of pain sensitivity. Subsequent research into
raphe magnus function investigated the behavioral conditions
during which ON and OFF cells are active and found that
the current behavioral state dramatically influenced activity
in the raphe magnus (Leung and Mason, 1999). Behavioral
states including sleep, feeding, and sex correlate with both
reduced pain sensitivity and activation of raphe magnus OFF
cells (Mason, 2001). Thus, while raphe magnus neurons are
essential for modulating sensitivity to pain, descending pain
modulation may be best understood in service of defending
critically important behavioral states such as sleep, sex, and
feeding from interruption. Indeed, raphe magnus neurons
have access to information about sex, feeding, and sleep
and, collectively, these behavioral states provide the context
for how pain sensitivity is regulated on a moment-to-
moment basis.

NEUROMODULATION OF BEHAVIOR
CIRCUITS

Thus far, we have discussed how neurons connect locally and
brain-wide to form social circuits. But social circuits also vary
between individuals and over a range of timescales. For example,
the sensory stimuli that drive strong responses in MeA neurons
differ between males and females and also change as an animal
ages (Morris et al., 2007; Bergan et al., 2014; Yao et al., 2017).
Indeed, many social circuits undergo developmental organization
and activation phases during which the probabilistic landscape
of potential behaviors is remodeled (Figure 3A). And among the
physical connections between neurons are modulatory systems
that can alter the sensitivity of individual neurons within the

FIGURE 3 | Multiple Influences on the Energy Landscape of Social Circuit
Function. Each energy landscape represents the probability of behavioral
outcomes over three different timescales. Highlighted periods of time
represent epochs during which circuit functions change, transiently or
permanently, because of developmental, neuromodulatory, or sensory and
interoceptive events. The depth of a given “energy well” is proportional to the
likelihood of a specific behavior with deep troughs representing highly
probably behaviors. Ultimately, the output of a social circuit represents the
integration of these energy constraints. (A) Development. Puberty represents
a developmental transition point during which the energy landscape of social
circuits is dramatically reorganized to favor adult behaviors. The resulting
energy landscape is, in large part, persistent through life.
(B) Neuromodulation. Changes in neuromodulatory tone (e.g., steroid
hormones or neuropeptides), such as those that occur during the postpartum
period, persist for hours to weeks during which a subtle change to the energy
landscape alters the likelihood of multiple behaviors. (C) Sensory input. Rapid
fluctuations (milliseconds to minutes) in the energy landscape of social circuits
are driven by dynamic and transient sensory and interoceptive input including
the transduction of sensory cues during social interactions. Time symbols
created with BioRender.com.

circuit, making them more or less prone to firing, and thereby
influencing which behaviors a circuit produces.

Neuromodulatory effects are caused by the action of a
wide range of signaling molecules, including molecules like
serotonin and dopamine that can also act as neurotransmitters,
neuropeptides like vasopressin and oxytocin, and steroid
hormones like testosterone and estradiol (Remage-Healey, 2014).
Neuromodulators may arrive from peripheral sources via the
circulatory system or be secreted locally by neurons, reaching
their targets either directly by synaptic transmission or indirectly
by volume transmission (Nadim and Bucher, 2014). Some bind
to receptors in the cell membrane, triggering second-messenger
systems that change neuron activity on timescales on the order
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of minutes to hours (Taxier et al., 2020), others, particularly
steroid hormones, may produce longer-term effects by modifying
gene expression (Kelly et al., 2013; Campbell and Herbison,
2014; Nadim and Bucher, 2014). Importantly, neuromodulatory
signaling, including both neuropeptides and steroid hormones,
is rife in the SBN and likely affects nearly all circuits devoted to
social behavior.

Because neuromodulators change how neurons behave within
a circuit but have little effect on the physical structure
of that circuit, they can induce transient dynamic changes
within circuits in response to specific changes in internal
and external environments on timescales longer (hours to
weeks) than traditional neurotransmission (Figure 3B; Marder,
2012; Remage-Healey, 2014). This flexibility lets animals shift
temporarily from one behavioral state to another: for example,
changes to local estradiol levels in brain tissue rapidly affects
male sexual motivation in quail (Cornil et al., 2018); in mice,
higher progesterone levels during diestrus preferentially dampen
the activity of VNO neurons that detect male pheromones,
turning off female courtship and copulatory behaviors until
progesterone levels drop during estrus (Dey et al., 2015).
Moreover, because the action of each neuromodulatory molecule
depends on receptor binding, its effects are targeted to only
the subset of neurons in a circuit that express the specific
receptors it binds to.

Neuromodulation in a circuit can be complex. The strength
of any specific neuromodulator’s effect on its target neurons can
change in concert with local concentrations of that molecule, as
demonstrated by the effects of aromatase inhibitors on estradiol-
mediated sexual behaviors in quail (Cornil et al., 2006), goldfish
(Lord et al., 2009), and mice (Taziaux et al., 2007), and on
aggressive behaviors in mice and birds (Heimovics et al., 2015).
Upregulation or downregulation of a neuromodulatory receptor
can have similar effects (Kenakin, 2004). Complicating things
even more, individual neurons can express more than one type
of neuromodulatory receptor (Shughrue et al., 1998; Ochiai et al.,
2004; Nadim and Bucher, 2014), and the neurons that populate
a circuit can be heterogeneous, with each expressing receptors
for a different suite of neuromodulators. Furthermore, neuron
activity may also be modified by signals from adjacent glia,
which may also be subject to neuromodulatory molecules (Wahis
et al., 2021). This means that a circuit can be simultaneously
subject to multiple types of modulation, whose actions may
produce opposing effects (Ogawa et al., 1997, 1999) or potentially
complement one another.

Experimentally observing the effects of neuromodulation
on circuits is understandably challenging. But new in vivo
technological advances in electrophysiology paired with genetic
targeting and activity markers open the possibility of observing
circuit and network dynamics in real time. One such example
includes micro endoscopes and fiber photometry paired with
calcium imaging (Aharoni and Hoogland, 2019). With genetically
targeted activity markers such as GCaMP, RCaMP, and the
like it is possible to observe sensory responses, circuit activity,
and network dynamics in an area of interest (Figure 3C).
These techniques will allow researchers to observe many
neurons over multiple behavioral events, for weeks up to

months and, therefore, make it possible to gauge the effects of
neuromodulation on circuit function over time.

CONCLUSION

Tremendous progress has been made toward associating the
activities of genetically defined populations of neurons in distinct
brain regions with specific social behaviors. Emerging from
this collective work is a complex image of brain circuits in
which the structural and molecular heterogeneity of neurons
is not an experimental problem to overcome, but rather, a
feature that provides precise access to unlock the underlying
logic of individual social behaviors. Genetic approaches often
leverage neuroanatomical, behavioral, and functional approaches
for a comprehensive and multifaceted description of brain
circuits and provide unprecedented predictive power over the
behavioral consequences of neural activity. At the same time,
it is important to appreciate the experimental conditions that
produce our understanding of these circuit functions. For
example, the same genetically defined neuron population can
drive or suppress aggression when activated with different
temporal dynamics (Lee et al., 2014; Baleisyte et al., 2021),
demonstrating that the dynamics of activation patterns can
profoundly shape behavioral outcomes. As endogenous patterns
of neural activity are revealed by techniques such as single
cell in vivo fluorescent imaging, progress on optogenetics
suggests single cell functional manipulations may eventually
become feasible (Papagiakoumou et al., 2009, 2020). To this
point, however, the temporal profiles used to experimentally
manipulate social circuits typically have not replicated the
endogenous activity patterns. Thus, while the causal relationships
between the activation of a specific neuron population and
the resulting behavior are undeniable, testing the impact of
endogenously realistic patterns of activity on behavioral output
remains challenging.

Genetic approaches allow reproducible access to a precisely
defined population of neurons (Choi et al., 2005; Wu et al.,
2014), and experimental control over the activity of these neurons
(Boyden et al., 2005; Armbruster et al., 2007). However, social
circuits display profound integration on multiple spatial and
temporal scales. For example, significant progress has been made
toward identifying the molecular and structural organization of
circuits responsible for individual social behaviors, and toward
identifying the neuromodulatory nodes that influence these
behaviors. However, in most cases it remains unclear how
neuromodulatory input remaps the probabilistic relationships
between sensory input and the behaviors they promote.
Do the same neurons mediate social behaviors regardless
of interoceptive states? Is the output or electrophysiological
activity of a behavioral circuit suppressed or enhanced by
a particular neuromodulator? We are just now starting to
understand how fluctuations in neuromodulatory state alter
circuit dynamics, and the resulting behaviors, on a moment-to-
moment basis (Falkner et al., 2014; Tang et al., 2020). Moreover,
the effects of neuromodulation depend on how social circuits
are organized during development, and therefore the effects
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of neuromodulation often differ between individuals based on
factors such as age, sex or experience (McCarthy et al., 2012; de
Vries et al., 2014). Understanding individual differences in the
organization of social behaviors is a particularly important goal.

The profound integration occurring at social circuits in the
brain (e.g., Dwyer et al., 2022), trumpets the interdependent
nature of these critically important behaviors. Thus, the
probability of a specific social behavior depends on the
identity of both social partners and interoceptive states, such
as hunger, that require a shift in the landscape of potential
social behaviors (Padilla et al., 2016). As such, a behavioral
hierarchy emerges in which hunger suppresses social interaction
and sensitivity to pain, while social interactions are suppressed
by hunger but suppress an animal’s sensitivity to pain. The
relationships between different behavioral states are reflected in
the organization of the underlying circuits and, in some cases,
the organization of social circuits can inform our understanding
of behavior (Mason, 2001; Padilla et al., 2016). While we have
discussed this primarily in the context of social behavior, it is our
belief that profound integration is a feature of many brain circuits
and progress toward understanding the native function beyond
social circuits will often require establishing the relationships
between different behaviors.

In many cases, the tools required to investigate the
connections between distinct behavioral circuits are already
available. Viral anatomical tracing methods provide ways to
identify the brain-wide afferent (Wickersham et al., 2007;

Menegas et al., 2015; Dwyer et al., 2022), and efferent (Feinberg
et al., 2008; Wu et al., 2009; Ishii et al., 2017) synaptic partners to
a genetically and anatomically defined population. Intersectional
genetic approaches allow simultaneous investigation of multiple
genetically defined cell populations (Austin et al., 2004; Knobloch
et al., 2012; Ishii et al., 2017; Carcea et al., 2021). At the same
time, the ability to monitor the activities of many, well-defined,
neurons continues to accelerate (Lee et al., 2014; Li et al., 2017;
Menegas et al., 2018). If recent progress characterizing the basis
for individual social behaviors at the level of genetically defined
neural circuits serves as a valid benchmark, the coming years will
provide remarkable insights into how distinct behavioral circuits
integrate information from disparate circuits.
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