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Abstract: The discovery of biomarkers in rare diseases is of paramount importance to allow a better
diagnosis, improve predictions of outcomes, and prompt the development of new treatments. Anti-
N-methyl-D-aspartate receptor (NMDAR) encephalitis is a rare autoimmune disorder associated with
the presence of antibodies targeting the GluN1 subunit of the NMDAR. Since it was discovered in
2007, large efforts have been made towards the identification of clinical, paraclinical, and molecular
biomarkers to better understand the immune mechanisms that govern the course of the disease
as well as to define predictors of treatment response and long-term outcomes. However, most of
these biomarkers are still in an exploratory phase, with only a few candidates reaching the final
phases of the always-complex process of biomarker development, mainly due to the low incidence
of the disease and its recent description. Clinical and paraclinical markers are probably the most
widely explored in anti-NMDAR encephalitis, five of them combined in a clinical score to predict
1 year outcome. On the contrary, soluble molecules, such as persistent antibody positivity, antibody
titers, cytokines, and other inflammatory mediators, have been proposed as biomarkers of clinical
activity, inflammation, prognosis, and treatment response, but further studies are required for their
clinical validation including larger and more homogenous cohorts of patients. Similarly, genetic
susceptibility biomarkers are still in the exploratory phase and, therefore, weak conclusions can for
now only be achieved. Thus, further studies are warranted to define biomarkers and unravel the
underlying mechanisms driving rare diseases such as anti-NMDAR encephalitis. Future international
collaborative studies with prospective designs that enable the enrollment of large cohorts will allow
for the identification and validation of novel biomarkers for clinical decision-making.

Keywords: anti-NMDAR encephalitis; biomarker; rare diseases; autoimmune encephalitis

1. Introduction

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a rare autoimmune
disorder associated with antibodies targeting the GluN1 subunit of the NMDAR. Despite
being the most frequent autoimmune encephalitis (AE) in adults and the second in children,
it is still considered a rare disease (ORPHA: 217253) with an estimated incidence of 1 case
per million population per year [1–3].

The definition of rare disease varies depending on the region that is being assessed.
While in Europe it is defined as a disease affecting less than 1/2000 people, in the United
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States it has to affect less than 200,000 Americans, giving a threshold of approximately
1/1650 people, considering the current population [4]. These diseases usually have unmet
medical needs, since the development of clinical trials for novel drugs presents multiple
challenges due to the common geographic dispersion of patients, phenotypic heterogene-
ity, and poor understanding of the pathophysiology [5]. Therefore, the development of
biomarkers in rare diseases is a pressing need that will likely contribute to the understand-
ing of their pathogenesis and provide practical tools for the diagnosis, outcome prediction,
and development of novel treatments.

A biomarker is defined as an objectively measurable characteristic evaluated as an
indicator of physiological functions, pathogenic processes, and responses to an exposure
or intervention [6,7]. However, not all biomarkers are suitable for daily clinical practice,
and the ideal biomarker is considered to be disease-specific, cost-effective, minimally
invasive, reproducible with adequate sensitivity and specificity, and to correlate with
disease outcomes [8,9]. Moreover, in the evaluation process of a potential candidate, the
general framework for developing disease-related biomarkers comprises different steps
including biomarker discovery, analytical validation, qualification, and establishment of
clinical utility [10]. According to their applicability, biomarkers can be further classified as
prognostic, susceptibility/risk, diagnostic, safety, monitoring, and predictive and treatment-
response biomarkers [11].

However, due to the aforementioned limitations, the only biomarker widely used in
clinical practice in anti-NMDAR encephalitis is the identification of IgG antibodies against
the GluN1 subunit of the NMDAR in the cerebrospinal fluid (CSF), which are mandatory to
achieve a definite diagnosis [2]. Thus, no other biomarker is used for diagnostic, prognostic,
monitoring, or therapeutic guidance besides clinical and paraclinical scores [12]. Given
this situation, the description of novel biomarkers in anti-NMDAR encephalitis is essential,
especially to improve the current therapeutic management and to promote the development
of new treatments that might accelerate recovery [2].

In this review, we present an overview of the biomarkers described so far in anti-
NMDAR encephalitis, from clinical and paraclinical features identified during the routine
diagnostic workup, to advanced molecular biomarkers that could improve our understand-
ing of anti-NMDAR encephalitis pathophysiology and lead to the development of novel
targeted-treatments (Figure 1).
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2. An Overview of Anti-NMDAR Encephalitis

Anti-NMDAR encephalitis is a rare autoimmune neurological disorder that predomi-
nantly affects women (≈80%) in the first four decades of their life. This AE is caused by
autoantibodies targeting the NMDAR, impairing synaptic glutamatergic networks involved
in brain circuits essential for learning, memory, and neuroplasticity [13]. The majority of
patients initially present subacute psychiatric symptoms such as mania, social withdrawal,
and psychosis. Subsequently, this initial clinical picture is rapidly followed by neurological
abnormalities including short-term memory impairment, seizures, movement disorders,
central hypoventilation, and even altered level of consciousness leading to intensive care
unit (ICU) in up to 50% of adult patients [14]. Nonetheless, movement disorders and
partial seizures are more frequently the first symptom in children [15,16], while male adults
often have isolated focal seizures preceding the full clinical picture [17]. Interestingly,
up to 70% of patients report prodromal flu-like symptoms, suggesting a potential role of
yet unknown environmental/infectious agents that might act as triggers of the aberrant
immune response [18].

Initially, anti-NMDAR encephalitis was described as a paraneoplastic neurological
syndrome (PNS) associated with ovarian teratomas that aberrantly express neural antigens,
which lead to an immune cross-reaction against the central nervous system [19]. Supporting
this hypothesis, Chefdeville et al. found that ovarian teratomas associated with anti-
NMDAR encephalitis contain nervous glial tissue, and among them, 82% express the GluN1
subunit of the NMDAR [20]. However, a recent meta-analysis showed that paraneoplastic
cases account for only 25% of cases [14], suggesting that other unknown pathogenic
mechanisms may lead to the immune tolerance breakdown in anti-NMDAR encephalitis.
Likewise, a few viral infections have been reported as triggers of anti-NMDAR encephalitis,
especially herpes simplex 1 virus (HSV1) encephalitis [13,21,22]. A prospective study
of patients with HSV1 encephalitis found that 27% of them subsequently developed an
AE after a mean latency of 32 days, and, strikingly, all these patients presented CSF
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antibodies against neuronal antigens, 64% of them against NMDAR [22]. The underlying
pathogenic mechanisms of post-infectious autoimmune encephalitis are still obscure, but
several hypotheses have been proposed [21–23]. For instance, mechanisms involving
molecular mimicry and chronic polyclonal expansions have been proposed based on
serological studies [24,25], although this possibility would not explain the wide variety
of antibodies against neural antigens reported, neither the fact that other infections, such
as Japanese encephalitis, have also been associated with post-infectious autoimmune
encephalitis [21–23]. Conversely, HSV1 encephalitis is typically associated with intense
inflammatory and necrotic lesions involving the temporal lobes that could eventually
release multiple neural antigens and trigger an aberrant self-direct immune response [23]. It
is noteworthy that post-infectious autoimmune encephalitis, even with NMDAR antibodies,
likely represents a different entity from idiopathic or teratoma-associated anti-NMDAR
encephalitis, since the latter frequently presents better long-term outcomes [22]. However,
the mechanisms behind the worse prognosis of post-herpetic anti-NMDAR encephalitis
remains unclear, and the involvement of T-cell or complement-mediated cytotoxicity due
to the disruption of the blood–brain barrier have been proposed [2,22].

The diagnosis of anti-NMDAR encephalitis can be achieved based on the criteria
settled by Graus et al. in 2016 (Table 1), which rely on clinical criteria to reach a probable
diagnosis and requires the identification of IgG NMDAR antibodies in the CSF for the
definite diagnosis [26]. Only IgG antibodies have been proved to be pathogenic in vitro
and in vivo and are therefore responsible for this fairly stereotyped syndrome [27–29].
These IgG antibodies target the GluN1 subunit of NMDAR and lead to its reversible
internalization and disruption of the interaction with Ephrin B2 receptors [13,30]. The
pathogenic role of these antibodies and the presence of CD19+ B cells and CD19+ and
CD138+ plasma cells in the CSF suggest that humoral immunity is the major effector in anti-
NMDAR encephalitis [31–33]. Nevertheless, histopathological studies showed not only B
and plasma cell parenchymal infiltrates, but also CD3+ T cells were identified, suggesting
that cellular immunity may play a role as well. However, there is no evidence of neuronal
loss nor deposition of complement or antibodies, which in addition to the reversible effects
of NMDAR antibodies, may explain its generally good response to immunotherapy [34–36].

Table 1. Diagnostic criteria for anti-NMDAR encephalitis.

Probable Anti-NMDAR Encephalitis

Diagnosis can be made when all three of the following criteria have been met:

1. Rapid onset (less than 3 months) of at least four of the six following major groups of symptoms:

• Abnormal (psychiatric) behavior or cognitive dysfunction;
• Speech dysfunction (pressured speech, verbal reduction, mutism);
• Seizures;
• Movement disorder, dyskinesias, or rigidity/abnormal postures;
• Decreased level of consciousness;
• Autonomic dysfunction or central hypoventilation;

2. At least one of the following laboratory study results:

• Abnormal EEG (focal or diffuse slow or disorganized activity, epileptic activity, or extreme
delta brush);

• CSF with pleocytosis or oligoclonal bands.

3. Reasonable exclusion of other disorders.

Diagnosis can also be made in the presence of three of the above groups of symptoms accompanied by a
systemic teratoma.

Definite anti-NMDAR encephalitis

Diagnosis can be made in the presence of one or more of the six major groups of symptoms and IgG GluN1
antibodies *, after reasonable exclusion of other disorders.

CSF, cerebrospinal fluid; EEG, electroencephalogram; IgG, immunoglobulin G; NMDAR, N-methyl-D-aspartate
receptor. * Antibody testing should include testing of CSF. If only serum is available, confirmatory tests should be
included (e.g., live neurons or tissue immunohistochemistry, in addition to cell-based assay).
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The management of these patients is based on two main strategies. On the one hand, if
a tumor is found, its removal is mandatory and should be promptly performed in order to
decrease the antigenic exposure to the immune system. On the other hand, immunotherapy
must also be prescribed as soon as there is a suspicion of AE [26]. Immunotherapy for AE
generally comprises a two-step approach: The so-called first-line therapies, such as intra-
venous immunoglobulins, steroids, or plasma exchange, can be administered individually
or in combination. Eventually, second-line therapies, such as rituximab and cyclophos-
phamide, might be considered for patients not showing a significant improvement in
the first two weeks [18]. After these therapies, up to 75–80% of patients achieve good
outcomes and reassume their daily activities. However, refractory patients may benefit
from alternative drugs, such as tocilizumab, bortezomib, or daratumumab, which could be
considered based on the effectiveness reported in small case series [37–41].

3. Clinical and Paraclinical Features as Markers of Anti-NMDAR Encephalitis
3.1. Clinical Predictors

The most explored subset of outcome predictors in anti-NMDAR encephalitis are
based on the initial clinical characterization of this entity in large cohorts. For instance,
ages younger than 2 years or older than 65 years and the need of ICU admission have
been associated with poor long-term outcomes [14,15,42]. Regarding the impact of current
treatments, poor outcomes have also been associated with a lack of immunotherapy in
the first month after onset, while early instauration of plasma exchange, steroids with
intravenous immunoglobulins, or the combination of the three has been associated with
good prognosis [14]. Interestingly, treatment delay longer than 1 month and ICU admission
have been combined with other immunologic and clinical variables (CSF pleocytosis
> 20 cells/mm3, abnormal magnetic resonance imaging (MRI), and lack of improvement
after 1 month from treatment onset) to predict outcomes in a grading score termed the anti-
NMDAR encephalitis one-year functional status (NEOS) score [12]. Indeed, the accuracy
of this score has recently been validated in the aforementioned meta-analysis including
694 patients, although it was modified due to the frequent unavailability of the time to
response from treatment onset [14].

3.2. Neuroimaging Biomarkers

The development of neuroimaging biomarkers is an interesting field in anti-NMDAR
encephalitis, since MRI is easily and widely available, even in non-research or specialized
centers. The analysis of large cohorts of patients showed that only 25–50% of the patients
had an abnormal MRI during the acute phase of the disease. However, the characteriza-
tion of specific patterns is challenging due to the heterogeneity of the findings, mainly
T2/FLAIR hyperintensities in temporal and frontal lobes and, in some cases, demyelinating
lesions [14,15,18,43,44]. Interestingly, the sole presence of MRI abnormalities in the acute
phase was found to be an independent predictor of poor outcome [12,45]. Furthermore,
although most of these inflammatory changes tend to disappear during the course of the
disease, some patients subsequently develop hippocampal, cerebellar, or diffuse brain
atrophy [46,47]. While diffuse brain atrophy has been related to a severe acute phase,
it showed no association with long-term outcomes, as it may be reversible. Conversely,
cerebellar atrophy was suggested to be irreversible and, therefore, associated with poor
long-term outcomes [48]. Moreover, advanced multimodal structural imaging and func-
tional MRI studies found impaired hippocampal connectivity and white matter changes
despite having normal baseline MRIs, which correlated with disease severity and memory
performance [49,50].

In contrast, positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-
FDG) imaging is less available, mainly due to the fact of technical and economic limitations.
Similar to MRI findings, 18F-FDG abnormalities are overall heterogeneous, although
a distinct pattern with mild frontal and temporal hypermetabolism and occipital hy-
pometabolism have been described in small series of patients with anti-NMDAR encephali-
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tis, which was associated with disease severity and improved in the recovery phase [46,51].
Interestingly, this characteristic pattern has been proposed to be related to the density of
NMDAR in the brain cortex, which shows a postero–anterior gradient, opposed to the
antero–posterior gradient described with 18F-FDG PET [52].

Neuroimaging biomarkers fulfill several criteria for an ideal biomarker, as they are
minimally invasive, cost-effective, reproducible, and may be associated with outcomes
and disease severity, although most findings are not specific to anti-NMDAR encephali-
tis. However, 18F-FDG PET abnormalities may be found in patients with normal MRI,
highlighting its potential value as a prognostic biomarker [8,9,46].

3.3. Electroencephalographic Biomarkers

The role of electroencephalography (EEG) in anti-NMDAR encephalitis has been
assessed in large cohorts of patients, mainly due to the fact of its availability and non-
invasive nature. Interestingly, EEG abnormalities are considered a consequence of the
antibody-mediated disruption of NMDAR synaptic functions [53]. Since they are found in
80–90% of patients, they were included in the diagnostic criteria of probable anti-NMDAR
encephalitis [14,15,26,54].

EEG abnormalities associated with encephalopathy (mainly slowing, including delta
range slowing) are the most frequent finding (≈60%), followed by epileptiform discharges
and electric seizures, detected in 15% and 10%, respectively [54]. Although most of these
EEG findings are not specific, a characteristic pattern defined as extreme delta-brush (EDB),
consisting of a generalized rhythmic delta activity with a superimposed rhythmic beta
activity, have been particularly associated with anti-NMDAR encephalitis [55].

The development of EEG abnormalities during the course of the disease seems to be
time dependent, with predominant epileptiform discharges in early phases and generalized
slowing predominantly in late stages [43]. Among non-epileptic abnormalities, three EEG
patterns have been described in the following chronological order: excessive beta activity
range 14–20 Hz (EBA) in 71% of patients, EDB in 58%, and generalized rhythmic delta
activity (GRDA) in 50% [56], although lower frequencies were found in other studies [54].

The identification of a normal posterior rhythm in the first EEG performed has been
associated with good outcomes [57], which may reflect normal electroencephalographic
activity in the cortical areas with the highest NMDAR density in contrast to the FDG-PET
pattern that associated a posterior hypometabolism with a more severe disease [51]. To the
contrary, the sole presence of EEG abnormalities has not been independently associated
with poor outcomes, probably due to the fact of their identification in the majority of
patients [12]. However, several specific EEG patterns have been proposed as prognostic
biomarkers. Among them, EDB has been associated with longer hospitalization, ICU
admission, and poor long-term outcomes [14,55,58], while GRDA was strongly associated
with abnormal movements [56] and treatment-response to second-line therapies [59]. In
contrast, EEG findings in long-term monitoring during the acute phase of the disease have
not been found to predict the persistence of seizures in long-term follow up [60].

Additionally, EEG findings can be measured and analyzed in terms of frequency,
amplitude, power, and rhythmicity by different quantitative EEG techniques that have
shown promising results in identifying several patterns or parameters proposed as di-
agnostic and prognostic biomarkers. For instance, an increased beta/delta power ratio
have been associated with anti-NMDAR encephalitis compared to other AE [61], while a
high-frequency peak in the delta band and a wide parietal amplitude-integrated EEG band
have been associated with a poor prognosis [62,63].

Electroencephalographic findings fulfill some of the requirements for an ideal biomarker,
since they are cost-effective, non-invasive, reproducible, and may be associated with
prognosis [8,9]. However, although several patterns are considered to be highly suggestive
of anti-NMDAR encephalitis, none has been proved to be disease specific and must be
studied in larger cohorts of prospective patients.
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4. Molecular Biomarkers in Anti-NMDAR Encephalitis

Two different approaches can be followed in the assessment of new molecular can-
didates for the discovery of novel biomarkers. On the one hand, a deductive reasoning
based on the existing knowledge of the pathophysiology of similar disorders could be
extrapolated to the disease of interest. On the other hand, an omics-based investigation is
an undirected approach that allows a wider understanding of the disease and the discovery
of new candidates not previously explored, although its cost and complex analysis may
limit its use [64]. However, despite significant investments in biomarker discovery studies,
only a small proportion of the initially proposed biomarkers are subsequently accepted
and implemented in clinical practice [65].

Studies assessing potential molecular biomarkers in anti-NMDAR encephalitis are
scarce, mainly due to the low incidence of the disease and its recent description in
2007 [1,19]. While clinical and paraclinical biomarkers have been assessed in large cohorts
of patients and may soon be used to guide clinical practice, most molecular candidates are
still in the initial phase of the biomarker development process. Most of the exploratory
biomarker studies conducted in anti-NMDAR encephalitis follow a deductive reasoning
to identify candidates based on existing knowledge of the pathophysiology of other au-
toimmune disorders. On the contrary, to our knowledge, there are no studies following
an unbiased strategy employing omics to identify candidate biomarkers on the basis of
their differential expression between healthy controls, other neuroimmune disorders, and
patients with anti-NMDAR encephalitis.

4.1. Blood and CSF Soluble Biomarkers
4.1.1. Anti-NMDAR Antibodies

CSF NMDAR antibodies of the IgG subclass are the most important diagnostic
biomarker, as they are highly specific to the stereotyped clinical syndrome defining anti-
NMDAR encephalitis [18,27,66]. These antibodies can also be found in serum, although
the risk of false-positive and false-negative diagnoses should be considered if CSF is not
tested as well [67]. Antibodies of other subclasses, such as IgA or IgM, have been found
in patients with other neurological disorders, and IgA NMDAR antibodies have been
proposed as a biomarker of teratoma-related anti-NMDAR encephalitis [68]. However, IgA
or IgM NMDAR antibodies have been found to bind a different epitope and, therefore, they
are unable to significantly alter the density of NMDAR clusters in cultured live neurons,
questioning their role in the pathogenesis of anti-NMDAR encephalitis [66].

For NMDAR antibodies detection, most clinical laboratories use a commercial test
(FA112d-1005-51 or FA112d-1010-51) based on a cell-based assay (CBA) using human
embryonic kidney (HEK) cells transfected with a cDNA coding for GluN1/2, that is
expressed in their membrane. This test is approved by the FDA under the label “In vitro
diagnostic” (IVD) and was recently reported to successfully identify NMDAR antibodies
in 98.5% of the patients after a screening with rat brain tissue immunohistochemistry
compared to in-house techniques of the research center that discovered these antibodies [69].
However, CBAs may lead to false-negative or false-positive results if not confirmed with
tissue-based assay, especially if only serum is tested [2,66,67]. For instance, patients with
neuropsychiatric systemic lupus erythematosus may have antibodies targeting the GluN2
subunit, leading to false positive results since anti-NMDAR antibodies target the GluN1
subunit [70]. For that reason, most reference research laboratories perform a rat brain tissue
immunohistochemistry or immunofluorescence with serum or CSF to identify the presence
of IgG antibodies targeting neural antigens, displaying a particular staining pattern when
NMDAR IgGs are present (Figure 2). Then, more specific tests, such as in-house CBAs or
live neuron cultures expressing NMDAR, are required to ensure that the antibodies bound
to the rat brain tissue are targeting the NMDAR. Nevertheless, although these techniques
are considered to be the most sensitive and specific to detect NMDAR antibodies, they are
limited by their high complexity, as they require an experienced team for the interpretation
of the results [66,67].
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Figure 2. Immunostaining of an adult rat’s brain tissue with CSF (1:10) of a patient with anti-NMDAR
encephalitis. A strong reactivity can be observed in the molecular layer (ML) of the hippocampus (A)
and the granular layer (GL) of the cerebellum (B). A predominant reactivity with the inner part of the
ML in the dentate gyrus is considered a highly suggestive pattern of anti-NMDAR antibodies (C).

Since NMDAR antibodies have extensively been proved to be pathogenic and they
are synthetized both systemically and intrathecally, it could be expected that serum and
CSF titers have an influence on clinical severity and long-term prognosis. Interestingly,
in vitro experiments on rat hippocampal neuronal cultures have shown that the CSF of
patients with high antibody titers produced a higher decrease in synaptic and extrasynaptic
NMDARs [27]. However, antibody titers are not currently used in clinical practice because
their value in predicting disease severity and outcomes has only been attained in small
series of patients [27,43,67]. Paraneoplastic cases have been reported to have higher serum
and CSF titers, suggesting a more intense inflammatory reaction in this subset of patients,
despite having a better long-term prognosis compared to non-paraneoplastic cases if
the tumor is removed [27,43,67]. Conversely, patients with the highest serum and CSF
titers have been suggested to have a more severe disease or even to die more frequently,
while patients with the lowest titers had a milder disease. Moreover, patients with a
good response to immunotherapy showed a more prominent decrease in antibody titers
compared to those with no improvement [27,43,67].

The persistence of NMDAR antibodies in serum and CSF despite second-line im-
munotherapies has been associated with poor outcomes, or even death, in small cohorts
of patients [27,43]. However, their value as a biomarker of relapses in recovered patients
is worthy of future analysis, as some patients have been reported to maintain intrathecal
synthesis for more than a decade without evident clinical consequences [71].

The detection of NMDAR antibodies in CSF meets some of the characteristics required
for an ideal biomarker, since it is biologically and pathophysiologically relevant, and it
presents a sensitivity and a specificity of 100% if brain tissue immunohistochemistry and



Int. J. Mol. Sci. 2021, 22, 13127 9 of 16

an in-house CBA is performed [8,9,67]. However, an invasive method like the lumbar
puncture is required to obtain CSF and the antibody-testing methods are not accessible in
many institutions [26].

4.1.2. Cytokines

A better understanding of the inflammatory molecules that govern neuroinflammation
may lead to the development of novel biomarkers and treatment strategies. Among those
molecules, cytokines are soluble signaling proteins used by immune cells to regulate
inflammatory responses in both health and disease, and an unbalanced cytokine expression
is considered a hallmark of autoimmunity. Despite the fact that most of these molecules
have pleiotropic effects, some cytokines are predominantly involved in the regulation of
particular subsets of immune cells that may play a relevant role in the pathogenesis of
anti-NMDAR encephalitis [72]. Therefore, several studies have explored the CSF cytokine
profile of anti-NMDAR encephalitis; for instance, a few interleukins (ILs), tumor necrosis
factors (TNFs), chemokines, and interferons (IFNs) have been associated with clinical
activity, inflammation, and long-term outcomes (Table 2).

Table 2. CSF soluble inflammatory molecules proposed as biomarkers of anti-NMDAR encephalitis.

Type of Biomarker Findings Molecule References

Clinical activity

Acute phase

CXCL-13 [73–78]

BAFF and APRIL [79]

IFN-γ [74,78,80]

TNF-α [74,76,78,80]

CXCL-10 [74,76,78]

CCL-22 [77,78]

IL-1β [77,81]

IL-6 [75–77,81,82]

IL-7 [74,78]

IL-10 [76,78]

IL-17A [74,75,77,81–83]

NLRP3 [81]

CD146 [84]

Elevated for months after the acute phase IFN-γ, TNF-α, CXCL-10, IL-7, IL-17A [74]

Relapses

CXCL-13 [73,76]

CXCL-10 [76]

IL-17A [77]

Clinical severity

CXCL-13 [76]

CXCL-10 [76,78]

CCL-22 [77,78]

IL-6 [77,78,81,83]

IL-10 [78]

IL-17A [81,83]

CHI3L1 [85]

OPN [85]

CD138 [80]

CD40L [83]

PTX3 [83]

sFas and sFasL [86]
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Table 2. Cont.

Type of Biomarker Findings Molecule References

Inflammatory activity
CSF antibody titers CXCL-13 [73]

Pleocytosis CXCL-13, CXCL-10 [74]

Treatment response Limited response IL-17A [77]

Outcomes Poor long-term outcomes

CXCL-13 [73]

BAFF and APRIL [79]

CXCL-10 [76]

IL-17A [77]

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor of the tumor necrosis factor family; CCL22, chemokine C-C motif
ligand 22; CSF, cerebrospinal fluid; CHI3L1, chitinase-3-like 1; CXCL, C-X-C motif chemokine; sFas, soluble Fas; sFasL, soluble Fas ligand;
HMGB1, high-mobility group box 1; IFN-γ, interferon γ; IL, interleukin; NLRP3, NOD-like receptor family, pyrin domain-containing 3;
NMDAR, N-methyl-D-aspartate receptor; OPN, osteopontin; PTX3, pentraxin 3; TNF-α, tumor necrosis factor-α.

Different cytokine profiles have been observed during the course of anti-NMDAR
encephalitis compared to the control without autoimmune neurological diseases. In the
acute phase, several cytokines involved in the recruitment and proliferation of B cells
have been found elevated in the CSF of patients, such as the chemokine C-X-C motif
ligand (CXCL) 13 [73–78], B-cell activating factor of the tumor necrosis factor family
(BAFF), and a proliferation-inducing ligand (APRIL) [79]. Additionally, although anti-
NMDAR encephalitis is considered to be driven mainly by humoral immunity, high levels
of several cytokines playing a role in T-cell recruitment and proliferation have also been
found in the CSF during the acute phase of the disease such as IFN-γ [74,78,80], tumor
necrosis factor (TNF)-α [74,76,78,80,84], CXCL-10 [74,76,78], chemokine C-C motif ligand
(CCL) 22 [77,78], IL-1β [77,81], IL-6 [75–77,81,82,84], IL-7 [74,78], IL-10 [76,78,84], and IL-
17A [74,75,77,81–83]. Conversely, only cytokines involved in the T-cell responses, such
as IFN-γ, TNF-α, CXCL-10, IL-7, and IL-17A, can be found elevated in the CSF months
after the acute phase of the disease, revealing a possible role of T cells in the maintenance
of the immune response [74]. Interestingly, the elevated levels of these cytokines have
also been correlated with clinical severity, measured with the modified Rankin score
(mRS) such as CXCL-13 [76], CXCL-10 [76,78], CCL-22 [77,78], IL-6 [77,78,81,83], IL-10 [78],
and IL-17A [81,83]. On the contrary, during relapses of anti-NMDAR encephalitis only
CXCL-13 [73,76], CXCL-10 [76], and IL-17A [77] have been found elevated in the CSF.

As mentioned before, a CSF pleocytosis > 20 cells/mm3 has been shown to predict
1 year poor functional outcomes when included in a clinical score along with other clinical
variables [12]. Accordingly, CSF levels of the chemokines CXCL-13 and CXCL-10, which
are involved in the recruitment of B and T cells into the central nervous system (CNS),
have been found to correlate with the total number of white cells counts in the CSF and
with functional outcomes of patients with anti-NMDAR encephalitis, respectively [74].
Moreover, high CSF concentrations of other cytokines involved in the proliferation of B and
T cells, such as BAFF, APRIL, and IL-17A, have also been associated with poor long-term
outcomes [77,79].

Thus, cytokines are promising biomarkers, since they fulfill several criteria for an
ideal biomarker, as they are cost-effective and correlate with disease outcomes. However,
most of the aforementioned cytokines have only been studied in the CSF, requiring an
invasive test for its extraction, and none of them have been proposed to be specific of
anti-NMDAR encephalitis [8,9]. Although some cytokines, such as CXCL-13, IL-1β, IL-6,
IL-17, and TNF-α, have been studied in relatively large cohorts of patients (n = 100–270)
and can therefore be considered to be in the validation stage of the biomarker development
process, most of the remaining were explored in small samples of patients and need further
confirmatory studies.
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4.1.3. Other Molecular Biomarkers

Interestingly, the innate immune system could also play a role in the pathogenesis of
anti-NMDAR, as it is suggested by the high CSF levels of certain proteins involved in the
activation of innate responses found in small series of patients such as the NRL family pyrin
domain-containing 3 (NLRP3) inflammasome, soluble Fas and FasL, and the high-mobility
group box protein 1 (HMGB1) (Table 2) [81,82,87]. Moreover, the levels of NLRP3, sFas,
and sFasL were reported to correlate with clinical severity during the acute and recovery
phases of the disease, suggesting their potential role as prognostic biomarkers [81,86,87].

Other mediators of neuroinflammation have been found to be elevated in the serum
and CSF of patients with anti-NMDAR encephalitis and to correlate with their functional
status such as chitinase-3-like 1 (CHI3L1), osteopontin (OPN), pentraxin 3 (PTX3), CD40L,
CD146, and CD138 (Table 2) [80,83–85]. Additionally, biomarkers of axonal damage, such
as neurofilaments, a cytoplasmic protein highly expressed in myelinated axons, have been
quantified and associated with outcomes in other neurological disorders [88]. In anti-
NMDAR encephalitis, CSF levels of neurofilament light and heavy chains were correlated
with the clinical severity and the levels of the cytokines IL-1β and IL-17A [89].

4.2. Genetic Susceptibility Biomarkers

The heterogeneity of the environmental factors described in anti-NMDAR encephalitis
could potentially interplay with an eventual genetic predisposition. The human leukocyte
antigen (HLA) is the main genetic factor related to autoimmunity, with several associa-
tions in neurological diseases driven by neural antibodies [90], being especially strong
between DRB1*07:01 and limbic encephalitis (LE) with antibodies against leucine-rich
glioma inactivated 1 [91–94] and between DRB1*11:01 and LE with antibodies against
contactin-associated protein-like 2 (CASPR2) [93,95]. On the contrary, a first study includ-
ing a small cohort of patients with anti-NMDAR encephalitis found no association with
HLA [91]. Later, very weak and doubtful associations were reported with B*07:02 in adult
patients of Caucasian origin [96] and with DRB1*16:02 in a Chinese cohort [97]. However,
these associations have not been confirmed in a very recent genome-wide association study
(GWAS) including the largest cohort (n = 178) investigated to date [98].

Since no consistent association between HLA and anti-NMDAR encephalitis has so
far been found, other non-HLA genes have preliminary been explored. Nevertheless, the
first GWAS performed in anti-NMDAR encephalitis obtained no positive results, although
the number of patients included was fairly small [96]. The same authors have very recently
doubled the sample size and reported a significant association with LRRK1 (leucine-
rich repeat kinase 1), ACP2 (lysosomal acid phosphatase), and NR1H3 (nuclear receptor
subfamily 1 group H member 3) genes, which might have some yet poorly defined functions
in immune and inflammatory responses [98]. Despite being appealing, these results have
to be carefully considered, since there was no replication cohort due to the still insufficient
sample size [98].

In addition, using a different approach that consisted in genotyping a preselected list
of 28 genes, a Chinese study found an association with polymorphisms in BANK1 (B-cell
scaffold protein with ankyrin repeats), TBX21 (T-box transcription factor 21), and IRF7
(interferon regulatory factor 7) [99]. Moreover, IRF7 and TBX21 are involved in the immune
response against viruses, which is interesting considering that nearly 70–80% of patients
with anti-NMDAR encephalitis have prodromal flu-like symptoms [27]. Furthermore,
HSV1 encephalitis may also trigger AE mostly with anti-NMDAR antibodies [22]. However,
post-herpetic AE seems to be a different etiopathogenic entity with a likely distinct genetic
predisposition that could involve Toll-like receptor 3 [100].

Therefore, genetic predisposition to anti-NMDAR encephalitis remains undefined,
and should ideally be investigated in large and diverse cohorts using general approaches
such as GWAS, rather than preselected genes, in order to determine whether the genetic
background of this disease is as heterogeneous as the acquired factors related to it.
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5. Conclusions and Future Perspectives

The increasing knowledge about the pathophysiology of the immune system is provid-
ing new perspectives on the mechanism underlying autoimmune neurological disorders
and offering novel candidates as biomarkers. However, the development of biomarkers in
rare disorders, such as anti-NMDAR encephalitis, may be challenging due to the difficulties
related to collecting large cohorts of patients to achieve solid conclusions. For these reasons,
the majority of biomarkers validated in anti-NMDAR encephalitis are clinical or paraclini-
cal, whereas most soluble biomarkers are still at the early phases of their development, with
the notable exception of CSF IgG NMDAR antibodies that have been widely implemented
in clinical practice.

Future investigations should consider the aforementioned limitations to decipher the
pathophysiology of anti-NMDAR encephalitis and develop novel biomarkers to guide
clinical decisions. In addition, international collaborative studies are required for recruiting
large cohorts of patients with anti-NMDAR encephalitis in order to increase the strength
and reliability of their results.
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