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Continuous switching between internal and external modes in the brain appears
important for generating models of the self and the world. However, how the brain
transitions between these two modes remains unknown. We propose that a large
synchronization fluctuation of brain networks, emerging only near criticality (i.e., a
balanced state between order and disorder), spontaneously creates temporal windows
with distinct preferences for integrating the network’s internal information or for
processing external stimuli. Using a computational model, electroencephalography
(EEG) analysis, and functional magnetic resonance imaging (fMRI) analysis during
alterations of consciousness in humans, we report that synchronized and incoherent
networks, respectively, bias toward internal and external information with specific
network configurations. In the brain network model and EEG-based network,
the network preferences are the most prominent at criticality and in conscious
states associated with the bandwidth 4−12 Hz, with alternating functional network
configurations. However, these network configurations are selectively disrupted in
different states of consciousness such as general anesthesia, psychedelic states,
minimally conscious states, and unresponsive wakefulness syndrome. The network
preference for internal information integration is only significant in conscious states and
psychedelic states, but not in other unconscious states, suggesting the importance
of internal information integration in maintaining consciousness. The fMRI co-activation
pattern analysis shows that functional networks that are sensitive to external stimuli–
such as default mode, dorsal attentional, and frontoparietal networks–are activated in
incoherent states, while insensitive networks, such as global activation and deactivation
networks, are dominated in highly synchronized states. We suggest that criticality
produces a functional platform for the brain’s capability for continuous switching
between two modes, which is crucial for the emergence of consciousness.

Keywords: criticality, consciousness, oscillator model, EEG, fMRI, brain network transition, information
processing
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INTRODUCTION

Continuous switching between internal and external modes
allows neural circuits to identify the contrast between different
sources of information and reduce the mismatch between them
(Hinton and Mcclelland, 1987; O’Reilly, 1996). Continuous
switching between two modes has been considered a functional
basis at a system level for constructing inner models in
the brain that support perception, prediction, and action in
the external world (Hasselmo, 1995; Honey et al., 2017).
However, the origin of such modes in the brain, the mechanism
by which they transition, and whether these transitions
represent a necessary process for supporting higher-order brain
functions are unknown. In our previous computational model
study, we demonstrated that the brain’s responsiveness to
external stimuli depends on the level of global brain network
synchronization, and this dependence only emerges near a critical
state (Kim and Lee, 2020). In this study, we expanded the
previous computational model study, suggesting that a large
synchronization fluctuation emerging near a critical state may
produce a functional platform upon which functional brain
networks fluctuate between two distinct modes, one of which
is conducive to the integration of internal information in
the network and the other of which is highly susceptible to
external stimuli. Such distinct preferences for internal or external
information originate from the general property of the network’s
responsiveness to the synchronization fluctuation. We also
analyzed both high-density electroencephalogram (EEG) and
functional magnetic resonance imaging (fMRI) data of various
states of consciousness (conscious, anesthetized, psychedelic, and
pathological) to investigate how the network’s preference for
internal or external information in the time domain is associated
with different states of consciousness.

Recent computational modeling and empirical studies suggest
that consciousness occurs when brain dynamics are near
criticality (i.e., poised at the border of multiple states) and that
losing criticality (i.e., after a transition to one of the possible
states) is related to various altered states of consciousness
(Kitzbichler et al., 2009; Tagliazucchi et al., 2012; Haimovici
et al., 2013; Muñoz, 2018; Kim and Lee, 2019). Critical dynamics
confer biological advantages that may establish a functional
foundation for the emergence of consciousness: an optimal
balance between stability and instability, optimal computational
capability, flexibility to adapt to a changing environment, and
wide repertoires of brain states (Beggs, 2008; Cocchi et al.,
2017). In both biological and non-biological systems, a large
global fluctuation is one of the most representative signal
characteristics of criticality, with an increase in autocorrelation
(Scheffer et al., 2009; Van De Leemput et al., 2014). In our
previous brain network modeling study, we found that a large
synchronization fluctuation near a critical state is associated with
a highly variable brain sensitivity to external stimuli (Kim and
Lee, 2020). Specifically, low and high levels of synchronization
in the brain network, respectively, provide susceptible and
refractory time windows to the stimuli. In addition, it has been
suggested that the level of neural synchronization reflects the
brain’s capability for information transmission and integration

across the cortex (Fries, 2005; Bastos et al., 2015). Based on
these findings, we hypothesize that the functional brain network
may be highly susceptible to external stimuli but less internally
integrative at low levels of synchronization. Conversely, at high
levels of synchronization, the brain network favors information
integration within the network but is less susceptible to external
stimuli. Thus, we hypothesized that the brain network at high
and low levels of network synchronization possesses distinct
preferences for, respectively, internal and external information,
which may induce the internal and external modes of the
brain in the time domain. Such distinct preferences may be
the most significant in conscious states (i.e., near criticality)
with the maximal difference between high and low levels of
synchronization. In contrast, these preferences may be mitigated
in different states of consciousness (i.e., sub- or supercritical
states) with reduced synchronization fluctuation.

To test this hypothesis, we used a large-scale human brain
network model, modulating criticality and examining whether
brain networks at high and low levels of synchronization near
criticality have distinct preferences for the internal information of
the network and external stimuli, respectively. Symbolic mutual
information (SMI) (King et al., 2013) and network susceptibility
(Yoon et al., 2015) were measured for each sub-second temporal
window of simulated brain signals to evaluate quantitatively
the brain network’s preference. The modeling results were
tested in humans with high-density EEG during various states
of consciousness: conscious wakefulness, anesthetized (with
isoflurane and ketamine), psychedelic (with a subanesthetic-dose
of ketamine), and pathological conditions such as minimally
conscious states and unresponsive wakefulness syndrome. We
also examined functional brain network configurations at high
and low levels of synchronization that systematically contribute
to those preferences. In addition, we analyzed the fMRI data
during wakefulness, propofol-induced unconscious states, and
unresponsiveness wakefulness syndrome to examine whether the
results observed in the model and EEG data were also consistent
with what we observed in the fMRI functional networks.
We investigated whether the fMRI functional networks that
predominate at high or low levels of synchronization are relevant
to the well-known networks presumably associated with internal
or external information processing. The schematic diagram of the
study is presented in Figure 1. The figures from the fMRI data
analysis were adapted from Huang et al. (2020).

MATERIALS AND METHODS

Simulation of Spontaneous Neural
Oscillations
A coupled Stuart-Landau model with human brain network
structure has been widely used to simulate the oscillatory
dynamics from various types of imaging modalities including
EEG (Kim and Lee, 2019), magnetoencephalography (MEG), and
fMRI (Deco et al., 2017, 2018). Here we also used the coupled
Stuart-Landau model to simulate the oscillatory dynamics
of brain network and investigated relationships between
network synchronization and variables associated brain network’s
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FIGURE 1 | Schematic diagram of study design. We hypothesized that a large global synchronization fluctuation emerging near a critical state enables continuous
switching between internal (conducive to integration of internal information) and external (highly susceptible to external stimuli) modes with distinct functional network
configurations in a human brain network during conscious wakefulness. The study was composed of two parts, a mathematical modeling and an experimental
analysis. We constructed a human brain network model, applying a coupled Stuart-Landau model to a human brain network structure consisting of 78 brain regions.
The critical state was found with a maximum variance of the global synchronization. Human electroencephalogram (EEG) data were acquired in different states of
consciousness including conscious states (CS), psychedelic state induced by sub-dose of ketamine, unconscious states (UCS) induced by isoflurane and ketamine,
minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS). Functional magnetic resonance imaging (fMRI) data were acquired during CS,
UCS induced by propofol and UWS. With the model and EEGs, we measured symbolic mutual information (SMI) and susceptibility χ in a sub-second time window
to investigate the brain network’s preference for internal and external mode. The topographic similarity Samp was measured to observe functional network
configurations for each high and low synchronization window. The co-activation pattern analysis was performed for the fMRI data to obtain fMRI networks related to
internal and external modes.

preferences for integrating information internally in the brain
network and receiving stimuli from the outside of the brain.

Spontaneous networked oscillations were generated using a
coupled Stuart-Landau model in a group-averaged anatomical
human brain network constructed from diffusion tensor imaging
(DTI) of 78 nodes (Gong et al., 2009). The coupled Stuart-Landau
model, composed of the N number of oscillators, is defined as the
following:

żj (t) =
{
λj + iωj −

∣∣zj (t)∣∣2} zj (t)
+

N∑
k=1

AjkKjk{zk
(
t − τjk

)
− αzj (t)} + βξj(t)

where a complex variable zj(t) represents the oscillatory
dynamics of brain region j at time t. ωj is an initial angular
natural frequency of oscillator j. We used Gaussian distribution
for the natural frequency with a mean frequency of 10 Hz and
a standard deviation of 0.5 Hz to simulate the peak frequency

bandwidth of human EEG activity (Kim et al., 2018; Kim and Lee,
2020). Ajk = 1 if oscillators j and k are connected, and Ajk = 0
if they are not, based on the structural brain network. τjk is a
time delay between oscillators j and k, defined as Djk/s, with the
distance between brain regions j and k, Djk, and the average speed
of axons in brain regions, s. Here we used s = 7ms. The node j
receives input from connected node k after the time delay τjk. λj
and Kjk are a bifurcation parameter of oscillator j and a coupling
strength between oscillators j and k, respectively. Modulating
these parameters induce competition of independent behavior of
oscillator and the coupling among the oscillators so that complex
oscillatory dynamics differently emerge in different parameter
regions. Each node shows supercritical Hopf bifurcation, and
the dynamics of the oscillator settle on a limit cycle if λj >
0, and on a stable focus if λj < 0. We used a homogeneous
bifurcation parameter λjk = λ from −3.2 to 3.2 with δλ = 0.2,
and a coupling strength Kjk = K from 0 to 1 with δK = 0.02.
We additionally modulated a diffusive coupling parameter α.
The α controls the degree of outgoing flow of node j. In neural
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networks, two extreme values of α, 0 and 1 indicate two types of
synapses, chemical synapses, and gap junctions, respectively. We
tested 0, 0.5, and 1 for the α, and set α = 0.5 as the empirically
well-fitted parameter. Further investigation for this parameter
will be explored in the future study. ξj(t) is a Gaussian white
noise for each node j and added to the dynamics with the
standard deviation β = 0.05. We numerically solved differential
equations of the Stuart-Landau model using the Stratonovich-
Heun method with 1,000 discretization steps, then we resampled
the data with 500 Hz. The last 60 s were used for the analysis
of each simulation after 15 s of saturation periods. Therefore,
spontaneous oscillatory dynamics were generated for each brain
region at each λ and each K. We repeated this simulation with
one hundred different initial frequency distributions to obtain
statistical stability.

Experimental Protocol and
Electroencephalography Acquisition
Isoflurane Anesthesia
The isoflurane data were collected from a cohort of 20
healthy volunteers (20−40 years) recorded at the University of
Michigan, Ann Arbor, United States (Protocol #HUM0071578).
The study has been reviewed by the Institutional Review Boards
specializing in human subject research at University of Michigan.
Written informed consent in accordance with the Declaration
of Helsinki to participate in the study was obtained from all
participants. Ten participants underwent general anesthesia. The
participants in the anesthesia group initially received propofol
at increasing infusion rates over three consecutive 5-min blocks
(block 1: 100 µg/kg/min, block 2: 200 µg/kg/min, block 3:
300 µg/kg/min). Responsiveness was quantified every 30 s by
the response to the verbal command “Squeeze your left/right
hand twice” with random allocation to left/right. Isoflurane
was then administrated with air and 40% oxygen at 1.3 age-
adjusted minimum alveolar concentration. The isoflurane was
administrated for 3 h and discontinued.

We analyzed EEG data of 9 out of 10 subjects who underwent
general anesthesia due to the availability of high-density EEG data
(128-channel HydroCel nets, Net Amps 400 amplifiers; Electrical
Geodesic, Inc., United States). All EEG channels were referenced
to a vertex with 500 Hz sampling frequency. EEG data of 4-
min of eye-closed resting state before isoflurane administration
(baseline) and 4-min of periods during general anesthesia (ISO)
without burst-suppression were used in the current study. The
data have been published with different analyses and hypotheses
(Lee et al., 2019).

Ketamine Anesthesia
The ketamine data were collected from 15 healthy volunteers
(20−40 years) recorded at University of Michigan, Ann Arbor,
with written informed consent to participate in the study. This
study was approved by the University of Michigan Medical
School Institutional Review Board, Ann Arbor, MI, United States
(HUM00061087). The data have been published with different
analyses (Lee et al., 2019). EEG data were acquired during a
5-min eyes-closed resting state before ketamine administration,
subanesthetic ketamine infusion (0.5 mg/kg) over 40 min,

followed by 8 mg ondansetron, break for completion of
questionnaire, anesthetic (1.5 mg/kg) bolus dose, and recovery
period. EEG data of 4-min eyes-closed resting state (baseline),
4-min subanesthetic ketamine-induced state (PSY), and 4-min
ketamine-induced unconsciousness (KET) after bolus anesthetic
administration were used in the current study. The EEG data
were acquired with 128-channel HydroCel nets, Net Amps 400
amplifiers (Electrical Geodesic Inc., United States). All channels
were referenced to a vertex with 500 Hz sampling frequency.

Disorders of Consciousness
Electroencephalography data were originally collected from
a cohort of 80 patients with disorders of consciousness
caused by ischemic stroke, intracerebral hemorrhage,
subarachnoid hemorrhage, subdural hematoma, traumatic
brain injury, meningitis, or hyperglycemic brain injury.
Patients were diagnosed as minimally conscious or vegetative
states/unresponsiveness wakefulness syndrome (UWS) using
the Coma Recovery Scale-Revised (CRS-R). The CRS-R status
was acquired again after 6 months of investigating the follow-up
changes. The data from 17 subjects (the Munich cohort) were
recorded on two different systems; 15 subjects were recorded
with 64-channel, ring-type sintered, and nonmagnetic Ag/AgCl
electrodes (Easycap, Herrsching, Germany); 2 subjects were
recorded with 32-channel, nonmagnetic, and battery-operated
electroencephalographic amplifiers (BrainAmp MR, Brain
Products, Gilching, Germany). Both EEG data were recorded at
5 kHz sampling rates (BrainVision Recorder, Brain Products).
The data from 63 patients (the Burgau cohort) were recorded
with a 256-channel high-density Geodesic sensor net, a Net
Amps 300 amplifier, and Net Station 4.5 software (Electrical
Geodesic Inc., Eugene, OR, United States). The sampling rates
were 1 kHz. All data were preprocessed to have 63-channel. In the
current study, we analyzed the 4-min of the data from 9 subjects
who were diagnosed as UWS without the evolution of CRS-R
status and not showing suppression patterns and 16 subjects who
were diagnosed as minimally conscious state (MCS).

In this study, we defined PSY as an altered state of
consciousness (i.e., pharmacologically perturbed with
consciousness maintained) and ISO, KET, MCS, and UWS
as depressed states of consciousness (i.e., pharmacologically or
pathologically perturbed with no conscious response).

Electroencephalography Data
Preprocessing
With three datasets, we analyzed 6 different states of
consciousness, such as conscious state, (CS, n = 24),
ketamine-induced psychedelic state (PSY, n = 15), isoflurane-
induced unconsciousness (ISO, n = 9), ketamine-induced
unconsciousness (KET, n = 15), MCS (n = 16), and UWS
(n = 9). We selected 96-channel for the isoflurane and ketamine
data and selected 56-channel for the MCS and UWS data that
cover the scalp for the analysis. The MCS and UWS data were
down-sampled to 250 Hz. After selecting the EEG channels,
we high-pass filtered the data with 0.5 Hz cutoff frequency
using MATLAB function “pop_eegfiltnew.m” in the EEGLAB
toolbox. We then removed noisy epochs using MATLAB
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function “trimOutlier.m” with a standard deviation of channel
amplitude rejection thresholds 100 µV , amplitude rejection
thresholds 300 µV, and the range for rejection period 200-ms.
Rejected channels were reconstructed using MATLAB function
“pop_interp.m” in the EEGLAB with a spherical interpolation
method. All EEG data from isoflurane, ketamine-induced
unconsciousness, and disorders of consciousness were re-
referenced to the average of all channels. We band-pass filtered
the data with a frequency range from 4 to 12 Hz to capture the
properties of globally coupled oscillators. We also analyzed the
data with other frequency bands (1–4 Hz, 1–20 Hz, 8–12 Hz,
13–30 Hz, and 30–42 Hz).

Level of Network Synchronization and
Pair Correlation Function
In this study, the level of network synchronization is an
important factor to determine the brain network’s preference
for processing internal information of the network or external
information from the outside of the brain network. The
instantaneous level of network synchronization r(t) at time t was
measured by the order parameter,

r (t) eiψ(t) =
1
N

N∑
j=1

eiθj(t)

where θj(t) is a phase of oscillator j and ψ(t) is the average global
phase at time t. Here r(t) equals to 0 if phases of oscillators are
uniformly distributed and 1 if all oscillators have the same phase.
The r(t) was calculated for all parameter combinations in the
model, all states from EEG, and fMRI data.

We then measured a pair correlation function
PCF ≡ N

[
< r2 (t) > − < r (t) >2], which is a surrogate

measure of criticality, to define the critical state (Yoon et al.,
2015) in the model, under the assumption that the largest
synchronization fluctuations are associated with the largest
number of metastable states of brain network and should
be shown at criticality. We measured PCF for all parameter
combinations in the model, all states of EEG data.

Temporal Window Classification Based
on the Network Synchronization
To investigate the network’s information processing preference
with reliable time resolution, we classified the network transient
states into high and low R temporal windows. We calculated
an average network synchronization R as < r (t) >T for each
temporal window, where T is the size of the temporal window.
In the model, we set T = 250 msec with 50 msec overlaps and
classified the temporal windows into two different windows: one
of which is the incoherent state and the other is the highly
synchronized state (low and high R windows). In the model,
we set thresholds as R = 0.3 and R = 0.5 for low and high R
windows, respectively. We tested various threshold values such
as 0.25 and 0.55, and 0.2 and 0.6, and could not find qualitative
differences among them. We avoided using thresholds that were
too small or too large because it eliminates low and high R
time windows. For the EEG data, we set T = 250 msec with

50 msec overlaps for CS, PSY, ISO, and KET, and T = 300 msec
with 50 msec overlaps for MCS and UWS due to the sampling
frequency of the data. We concatenated R values across all
temporal windows, all subjects, and all six different states of
consciousness to find the total mean and standard deviation of R.
With thresholds < R >total ±0.5

√
< R2 (t) > − < R (t) >2, we

classified all temporal windows across all states into windows
with low and high R.

Symbolic Mutual Information and
Susceptibility
To calculate the information processing capabilities for each
temporal window, we measured symbolic mutual information
(SMI) and network susceptibility in the model and EEG
signals. The SMI measures the amount of information sharing,
quantifying the extent of non-random joint fluctuations between
two signals X and Y . To calculate the SMI, the signals X and Y are
first transformed into sequences of discrete symbols (X̂, Ŷ) with
a fixed symbol size m with a temporal separation τ. It calculates a
joint probability of co-occurring symbolic patterns between two
signals.

SMI
(
X̂, Ŷ

)
=

1
log (m!)

∑
x̂∈X̂

∑
ŷ∈X̂

p
(
x̂, ŷ

)
log

p(x̂, ŷ)
p
(
x̂
)
p(ŷ)

where p(x̂) is the probability occurring symbol x̂ in the time
series X̂. We set m = 3, leading to 3! = 6 of different symbol
pairs (x̂, ŷ) that can potentially exist in the transformed symbolic
time-series. In the model, we used τ = 14 (28 ms) to get
the maximum resolved frequency fm =

fs
k×τ
=

500 Hz
3×14 = 11.9 Hz,

which is suitable for our interest of frequency range (∼12 Hz)
(Imperatori et al., 2019). The SMI was calculated between all node
pairs in the model (all channel pairs of the EEG signals) for all
temporal windows we defined above. We took an average across
SMI values between pairs and defined the average SMI as the
amount of total information sharing in each temporal window.
For the EEG signals, we compared pairwise SMI values of real
data to the pairwise SMI values of twenty surrogate data set
with phase randomization technique and used only statistically
significant SMI values (p < 0.01, Wilcoxon rank-sum test). The
average SMI value of EEG channel pairs was used as an amount
of total information sharing in each temporal window.

The network susceptibility was also measured in both model
and EEG signals. The network susceptibility χ was defined as
following (Yoon et al., 2015):

χ = N
< r2 (t) > − < r (t) >2

< r (t) >

We defined the stationary dynamical susceptibility χ for each
temporal window to see how susceptible the brain state would be
to the external information from the outside of the brain in each
temporal window.

Topographic Similarity
To understand distinct functional network configurations
engaged in low and high R windows, we measured topographic
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similarity Samp, which is defined as Spearman correlation between
node degrees and node amplitudes.

In the model, the degree of brain regions was defined
as the number of structural connections between one region
and the other regions. The instantaneous amplitude Z(t) was
measured by the absolute value of the complex variable z (t).
The instantaneous Spearman correlation between degree and
amplitude, Samp(t), was calculated for each time point for 60 s
for all parameter combinations of the model. Then we took
average of Samp(t) for each temporal window. For the EEG data,
the degree of a node (channel) was inferred from the average
functional connectivity strength over time measured by weighted
phase lag index (wPLI) within a frequency range from 4 to 12 Hz
for each subject. The wPLI is a measure that captures phase
locking between two signals X and Y , relatively robust to volume
conduction of EEG (Vinck et al., 2011).

wPLIXY =
|E {I(CXY)}|

E{|I(CXY)|}
=

∣∣E {|I (CXY)| sgn(I (CXY))
}∣∣

E{|I(CXY)|}

where I(CXY) is an imaginary part of cross-spectrum CXY
between two signals X and Y . Here we used Hilbert-transformed
complex signals for the calculation of cross-spectrum Cxy. The
wPLIXY equals to 1 if the phases of one signal X always
lead or lag the phases of the signal Y , and equals to 0 if
the phase lead/lag relationship between two signals is perfectly
random. We constructed the wPLI matrix across all channels
for each 30-s epoch with a 5-s overlap and binarized the
wPLI matrix for each epoch with the top 30 % wPLI values.
We calculated the degree of channels for each epoch and
took the average over all epochs so that we can capture
the statistically intuitive structural degree that reflects the
strength of neural communication across brain regions associated
with each EEG electrode. Note that the degree is extracted
from the CS (baseline) for each subject and applied to the
analysis for the disrupted states of consciousness induced by
isoflurane and ketamine. Since MCS and UWS patients have
no baseline, we excluded those data set for this analysis. The
instantaneous amplitude was calculated by the absolute value
of the Hilbert transformed EEG signals from a frequency range
of 4–12 Hz. The instantaneous Spearman correlation between
degree and amplitude, Samp(t), was calculated for each subject
and CS, ISO, and KET.

Correlation Between Network
Synchronization, Symbolic Mutual
Information, Network Susceptibility, and
Topographic Similarity
According to our hypothesis, levels of network synchronization
are associated with the network’s preference for internal and
external modes in the brain on a sub-second time scale.
Therefore, we calculated Spearman correlation between
the level of network synchronization and the information
processing metrics (SMI and χ). We also calculated Spearman
correlation between the level of network synchronization and
the topographic similarity. The correlation between R, SMI,
χ, and Samp were calculated across all temporal windows.

For the model, we calculated Spearman correlations for
each parameter combinations with one hundred different
simulations (Figure 2). For the EEG data, we calculated
Spearman correlations between R, SMI, χ, and Samp

for each subject and each state to investigate whether
the relationships we found from the model hold for the
empirical EEG data.

Joint Histogram Between Symbolic
Mutual Information and χ
To visualize the distinct network preferences for internal and
external processing modes, a joint histogram of SMI and χ of
low and high R windows was calculated. The joint histogram
for the model was calculated near and far from the critical
state across all temporal windows of one hundred frequency
distributions with the bin size 0.02 for SMI and 0.1 for χ.
For the EEG data, we calculated a joint histogram of SMI
and χ for each temporal window with the bin size 0.02
for SMI and 0.1 for χ during CS, ISO, KET, PSY, MCS,
and UWS. We can easily figure out the temporal window’s
preference for internal or external information by calculating the
joint histogram.

Power-Law Analysis for Dwell-Time of
the Positive Correlation Between Degree
and Amplitude
It has been known that one of the characteristic features
of criticality is the power-law distributions of dynamics. The
dynamics following probability distribution p(x) ∝ x−β imply
that all values x can occur without a characteristic size or scale
(Alstott et al., 2014). It has been also known that the frequency
density of phase-locking intervals and the change in the number
of phase-locked pairs between successive time points display
power-law distributions at criticality in the Ising model and
Kuramoto model (Kitzbichler et al., 2009). Since the network
synchronization is correlated with the topographic similarity
Samp (relationship between functional network configuration
constrained by network structure in the brain), we estimated the
probability distribution of dwell-time of Samp to check whether
the relationship between functional network configuration
and network structure follows power-law during conscious
wakefulness. For the EEG data, we measured dwell-time
of positive correlation periods (hub-dominant configuration
periods) across all subjects for each state. We used a python
package “power-law”1 to estimate the probability distributions of
positive correlation periods. We fitted dwell-time distributions
to power-law and exponential distributions and compared their
loglikelihood values to determine which distribution is well-
fitted to the data. Using the loglikelihood ratio RL and p-value,
we obtained the estimated probability distribution with the
exponent β. RL has a positive value if the power-law fit is more
appropriate, while it has a negative value if the exponential
fit p(x) ∝ e−β is more appropriate. We set the minimal value
xmin as 200-ms for the EEG data to match the speed of

1https://pypi.org/project/powerlaw/
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FIGURE 2 | Relationships between network synchronization, symbolic mutual information, network susceptibility, and topographic similarity in the brain network
model near and far from criticality. (A) The average network synchronization <R> across all parameter sets K and λ. (B) Pair correlation function (PCF), a surrogate
indicator of criticality in parameter space K and λ Accordingly, a critical state is defined with the maximum PCF. Spearman correlations between network
synchronization R and (C) symbolic mutual information SMI, (D) network susceptibility χ, and (E) topographic similarity Samp. The brain network model shows a
maximum positive (negative) correlation between R and SMI (R and χ) near the critical states (states with maximum PCF along with K for each λ). The Samp also
shows a maximum positive correlation with R near the critical states. A representative example for the correlation between (F) R and SMI, (G) R and χ, and (H) R
and Samp relationship was investigated at λ = −0.6. The critical state appears K ∼= 0.42.

the brain network dynamics and focused on a “heavy-tailed”
characteristic of power-law.

Functional Magnetic Resonance Imaging
Experimental Protocol, Data Acquisition,
and Preprocessing
The fMRI data were collected at two different research sites,
Wisconsin and Shanghai. The experimental protocol for the
first data set recorded from Wisconsin was approved by the
Institutional Review Board of Medical College of Wisconsin
(MCW). Propofol was administrated to 15 healthy volunteers
(male/female 9/6; 19-35 years) and the OAAS (observer’s
assessment of alertness/sedation) was quantified to measure
the level of behavioral responsiveness. This dataset has been
previously analyzed with a different hypothesis and published
(Huang et al., 2020). In the current study, we used conscious
states (baseline) that subjects responded readily to verbal
commands (OAAS score = 5) and deep sedation that subjects
have no response to verbal commands (OAAS score = 2–1). At
the deep sedation level, the plasma concentration of propofol
was maintained at equilibrium by continuously adjusting the
infusion rate. The corresponding target plasma concentrations

of propofol vary across subjects (1.88 ± 0.24 µg/ml) due to the
individual variability of anesthetic sensitivity. Total 14 subjects
were analyzed in the current study because one subject had
to be excluded due to excessive movements. Rs-fMRI data
of the conscious state and deep sedation both consisted of a
15-min scan. Gradient-echo EPI images of the whole brain
were acquired on a 3T Signa GE 750 scanner (GE Healthcare,
Waukesha, Wisconsin, United States) with a standard 32-channel
transmit/receive head coil (41 slices, TR/TE = 2000/25 ms, slice
thickness = 3.5 mm, field of view = 224 mm, flip angle = 77◦,
image matrix: 64 × 64). Rs-fMRI was co-registered by high-
resolution anatomical images. See (Huang et al., 2020) for a more
detailed experimental protocol.

The second dataset includes 28 healthy participants
(male/female 14/14) and 21 patients with disorders of
consciousness (male/female 18/3). The study was approved
by the Institutional Review Board of Huashan Hospital, Fudan
University. The healthy controls had no history of neurological
or psychiatric disorders or were taking any kind of medication.
The patients were diagnosed as either minimally conscious or in
the vegetative state/unresponsive wakefulness syndrome (UWS)
according to the Coma Recovery Scale-Revised (CRS-R) on the
day of fMRI scanning. We analyzed the data of 13 patients who
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were diagnosed as UWS in the current study. This dataset also
has been published using different a hypothesis (Huang et al.,
2020). Gradient echo EPI images of the whole brain for the
second dataset were acquired on a Siemens 3T scanner (Siemens
MAGNETOM, Germany) with a standard 8-channel head coil
(33 slices, TR/TE = 2000/35 ms, slice thickness = 4 mm, field of
view = 256 mm, flip angle = 90, image matrix: 64 × 64). Total
two hundred EPI volumes (6 min and 40 s) were acquired with
high-resolution anatomical images.

Preprocessing steps were implemented in AFNI2,
which included slice timing correction, head motion
correction/realignment, frame-wise displacement estimation,
coregistration with high-resolution anatomical images, spatial
normalization into Talaraich stereotactic space, high-pass
filtering (>0.008 Hz), regressing out undesired components (e.g.,
physiological estimates, motion parameters), spatial smoothing
(6 mm full-width at half-maximum isotropic Gaussian kernel),
temporal normalization (zero mean and unit variance). Global
signal regression (GSR) was not applied to preserve whole-
brain patterns of co-activation or co-deactivation. More
detailed preprocessing steps were described in the paper
(Huang et al., 2020).

Co-activation Pattern Analysis for
Functional Magnetic Resonance Imaging
Data
An unsupervised machine-learning approach named k-means
clustering algorithm was used to define co-activation patterns
(CAPs). The algorithm operates as a classifier of a set of
objects (e.g., fMRI volumes) to minimize within category (e.g.,
patterns) differences and maximize across category differences.
Specifically, the fMRI volumes were pooled together across states
(baseline, propofol-induced states, ketamine-induced states, and
UWS) and subjects, and classified into k number of clusters
(patterns) based on their spatial similarity, yielding a set of CAPs
or brain states (Huang et al., 2020). As such, we obtained time-
series of discrete CAP labels from the original fMRI time-series
(voxels × volumes). The volumes containing motion artifact
tagged by motion censoring procedure were not included in the
CAP analysis. We evaluated the validity of the number of clusters
by measuring the inter-dataset similarity (Euclidean distance) of
the average CAP occurrence rate distributions of conscious and
unresponsive conditions. We searched the number of k from 2
to 30 using an index, (CC + UU)/(2× CU), as the ratio of inter-
dataset similarity among conscious conditions (CC) and among
unresponsive conditions (UU) versus the inter-dataset similarity
among conscious and unresponsive conditions (CU) across all
datasets and found the optimized number of k as 8. Therefore,
each fMRI volume from all datasets corresponded to one of the
patterns from 8 CAPs. In the current study, we used pre-defined
CAPs and analyzed a subset (n = 69) of originally published
datasets including subjects under wakefulness baseline condition
(n = 42), deep sedation induced by propofol (n = 14), and UWS
patients (n = 13).

2http://afni.nimh.nih.gov/

Dominant Co-activation Patterns for
Incoherent and Highly Synchronized
States
In the EEG data, we defined the incoherent and highly
synchronized state that presumably corresponds to externally
susceptible/internally integrated state using certain thresholds
of the level of synchronization. To define the incoherent/highly
synchronized state for the fMRI data, we also measured
the level of synchronization r(t) across voxels for each
fMRI volume. Then we classified fMRI transient state to
incoherent or highly synchronized state using the thresholds
< r(t) >total ±0.5

√
< r2 (t) > − < r (t) >2. The < r (t) >total

were calculated from all concatenated fMRI volumes of
three different states of consciousness (baseline, propofol-
induced deep sedation, and UWS). Then we investigated
occurrence rate distributions of CAPs for the incoherent
or highly synchronized state with a permutation test.
For the permutation test, we generated null CAP time-
series by 20000 permutations, randomly and uniformly
exchanging CAPs in time. Then the original fMRI time
points (volumes) that levels of synchronization have below
(above) threshold < r (t) >total −0.5

√
< r2 (t) > − < r (t) >2

(< r (t) >total +0.5
√
< r2 (t) > − < r (t) >2) for each state

of consciousness were selected and patterns corresponding to
those time points were used to examine whether the occurrence
probabilities significantly deviate from uniformly random
sequences. The significantly dominant CAPs were determined
at the significance level of p < 0.005 (0.5% percentile of the null
distributions: one-sided).

RESULTS

Criticality Produces Distinct Preferences
for Internal Information and External
Stimuli in the Brain Network: A
Computational Model Study
We propose that criticality in the brain network produces
distinct preferences for internal information of the network and
external stimuli, which may result from the general property
of the network responsiveness with high and low levels of
global network synchronization. By contrast, the preferences may
vanish when the brain network is positioned far from criticality.
To test this hypothesis, we used a large-scale human brain
network model, simulating various brain network behaviors near
and far from criticality.

The coupled Stuart-Landau model, which has successfully
described the characteristics of EEG, MEG, and fMRI in different
states of consciousness, was used in this study. Spontaneous
oscillations of the brain network were simulated with different
sets of model parameters including the bifurcation parameter
λ, coupling strength K, and diffusive coupling α (see “Materials
and Methods” for details), which produces different brain
states near and far from criticality. The level of network
synchronization R was measured with a temporal average of
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the order parameter r(t). Figure 2A presents < R >, which
is an average r(t) over 60 s, in the parameter space (λ,K).
Figure 2B presents a pair correlation function (PCF) in the
parameter space (λ,K). The PCF measures a temporal variance
of network synchronization as a surrogate indicator of criticality
(Yoon et al., 2015). The critical state was defined with the
maximal PCF, indicating the largest synchronization fluctuation
at criticality. For instance, we defined the brain state at K ∼= 0.42
as one of the critical states in the model (Figure 2B). The brain
network’s preferences for integrating internal information of the
network and external stimuli were respectively evaluated with
symbolic mutual information SMI (King et al., 2013) and network
susceptibility χ (Yoon et al., 2015). SMI quantifies the amount
of shared information and χ quantifies network susceptibility to
external stimuli. Figures 2C,D show that both measures have
maximal (minimal) Spearman correlation coefficients withR near
the critical states. In other words, a brain network with a larger R
has a larger SMI and smaller χ (preference for integrating internal
information of the network), whereas a brain network with a
smaller R has a smaller SMI and larger χ (preference for external
stimuli). Here, R, SMI, and χ were calculated within each 250-
ms temporal window with 50-ms overlap, and the correlations
among them were calculated across the temporal windows. Note
that the sub-second temporal scale is a suitable time resolution for
the information integration processing in a large-scale network
level (Bressler and Tognoli, 2006).

We also examined the functional network configurations
of high and low R windows to investigate any structural
difference in functional brain networks for two different
preferences. We first calculated topographic similarity Samp,
which is defined as a Spearman correlation between node
degrees of the anatomical brain network and average amplitudes
of the simulated brain activities. In this analysis, a larger
Samp implies that hub nodes are more dominant in network
dynamics along with higher amplitudes. Then we calculated
the Spearman correlation coefficient between Samp and R.
Figure 2E shows that the correlation between R and Samp is
also maximal near the critical state, suggesting that a highly
synchronized brain network is more likely to have a hub-
dominant functional network configuration that is optimal
for integrating internal information of the brain network.
We present a representative example of the relationships at
λ = −0.6 with the diffusive coupling of α = 0.5. Figures 2F–H
show that those relationships are the largest near the critical
state (ρR−SMI

= 0.50 at K = 0.42, ρR−χ
= −0.59 at K = 0.38,

and Samp
= 0.41, respectively). The results are consistent

with different diffusive coupling parameters, α = 0 and α = 1
(Supplementary Figures 1, 2).

The Preferences for Internal Information
and External Stimuli of the Brain
Network Are Prominent Near Criticality
in a Sub-Second Time Window: A
Computational Model Study
To test whether the preferences of the brain network are
significantly different in the time domain, we classified the

simulated brain signals into low and high R windows and
investigated SMI and χ values for each temporal window (250-
ms). Figure 3A shows a temporal evolution of R during 60 s
in the brain network model near a critical state at λ = 0.6.
The low R and high R windows were defined with thresholds
R < 0.3 and R > 0.5, respectively (blue: low R and red: high R
in Figure 3A). The high R windows are characterized by large
SMI and small χ, whereas the low R windows have relatively
small SMI and large χ (∗∗∗p < 0.001 for SMI; ∗∗∗p < 0.001 for
χ, Wilcoxon rank-sum test, in Figures 3B,C). The results show
that the brain states of these high and low R windows define
preferences for internal information vs. external responsiveness
in the network. We also showed that high R windows have a
large positive Samp; by contrast, low R windows have negative
Samp (∗∗∗p < 0.001, Wilcoxon rank-sum test, Figure 3D). The
Samp value itself was variable across different parameter sets, but
the positive correlation between R and Samp near criticality was
consistent (Supplementary Figures 1, 2). Our results suggest
that the fluctuation of network synchronization near criticality
naturally produces a continuous switching between internal and
external modes in the brain network with different functional
network configurations. In Figure 3E, the joint histograms of
SMI and χ (see “Materials and Methods” for more details) clearly
show the distinct preferences of high (right) and low (left) R
windows for internal information of the network and external
stimuli (i.e., larger SMI and smaller χ for high Rwindows; smaller
SMI and larger χ for low R windows), respectively. Notably,
such typical preferences of high and low R windows only appear
near criticality. We also compared the mean values of R, SMI,
and χ of low and high R windows for three different states in
the model (critical state Cr, below critical state Crb, and above
critical state Cra); the results were presented in Supplementary
Figure 3. The results show that the mean value of R is not
linearly correlated with SMI and χ, rather it shows obvious state-
dependence. For instance, for Cra, the SMI of low R windows
are larger than those of high R windows for Cr and Crb, even
though their R values are smaller. Such state dependence also
holds true for χ .

The Preferences of the Brain Network for
Internal Information and External Stimuli
Are Prominent in the Conscious State:
An Electroencephalography Study
To test the modeling results empirically, we analyzed EEG signals
of conscious eye closed-resting states in humans (n = 24).
Computational model and empirical studies suggested that theta
and alpha-band (4–12 Hz) oscillations are globally networked
in the cortex and spatiotemporally organize neural processing
with traveling waves across the human cortex (Zhang et al., 2018;
Roberts et al., 2019). Thus, here we focused on the EEG signals
of 4–12 Hz that is suitable to test the characteristic behavior
of the brain network near criticality. We also observed that the
results of this frequency band (4–12 Hz) are most consistent
with the model predictions (Supplementary Figure 4). As in
the model data analysis, we calculated R, SMI, χ, and Samp for
each temporal window of 250-ms. Figure 4A presents a temporal
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FIGURE 3 | The preferences of the brain network for internal information integration and external responsiveness are prominent in sub-second time windows
(250-ms) in the model. (A) An example of a network synchronization fluctuation near a critical state. Red and blue bars indicate temporal windows classified into low
and high R. The SMI, χ, and Samp were calculated for each window. Comparisons of (B) SMI, (C) χ, and (D) Samp between temporal windows of low R (blue) and
high R (red) are presented. The black lines of the colored bars indicate from 25% to 75% quantiles. A Wilcoxon rank-sum test was performed (***p < 0.001). (E)
Joint histograms of the low (left) and high (right) R windows. The low R window is characterized by relatively low SMI and high χ, while the high R window is
characterized by relatively high SMI and low χ.

evolution of R for 60 s. We used thresholds R =< R >total
±0.5

√
< R2 (t) > − < R (t) >2, where < R >total is an average

of R across all subjects and all states of EEGs (see “Materials and
Methods” for more details), to classify the temporal windows into
high R and low R windows (blue and red blocks in Figure 4A).
Note that we used different thresholds for the source signals
(model) and sensor signals (EEG) due to the differences in their

signal variability. The results of the EEG analysis were consistent
with the results of the computational model and show large SMI
and small χ for high R windows and small SMI and large χ

for low R windows (∗∗∗p < 0.001 for SMI; ∗∗p < 0.01 for χ,
Wilcoxon rank-sum test, Figures 4B,C). The high R windows
also presented a large positive Samp (∗∗p < 0.01, Wilcoxon rank-
sum test, in Figure 4D). For Samp, we used average degrees
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FIGURE 4 | EEG functional brain networks in conscious state present distinct preferences for internal information integration and external responsiveness in the time
domain. (A) An example of a network synchronization fluctuation during a conscious state. Red and blue bars respectively indicate temporal windows classified into
low and high R. The SMI, χ, and Samp were calculated for each 250-ms window. Comparisons of (B) SMI, (C) χ, and (D) ρamp between low R (blue) and high R (red)
windows are presented. The black lines of the colored bars indicate from 25% to 75% quantiles. A Wilcoxon rank-sum test was performed (***p < 0.001 and
**p < 0.01). (E) Functional brain network configurations for low and high R windows. As expected in the model study, the amplitudes of the posterior area (hub
regions) in high R windows are larger than those in low R windows. (F) Joint histograms of the temporal window of low (left) and high (right) R. The low R windows
are characterized by relatively low SMI and high χ, while the high R windows are characterized by relatively high SMI and low χ. The empirical data are consistent
with the model prediction.

of wPLI networks and average amplitudes of EEG signals of a
temporal window, assuming that the wPLI network averaged over
a long time may resemble its underlying structural network (Kim
et al., 2018). Similar to the brain network model near criticality,
the brain network during conscious states demonstrates the
distinct preferences of high and low R windows for internal
information and external stimuli as well as the posterior hub-
dominant network configuration in high R windows (Figure 4E).

Furthermore, joint histograms of SMI and χ clearly visualize the
distinctive preferences of high (right) and low (left) R windows
in conscious states (Figure 4F). In sum, the brain network
constructed from EEGs during conscious states shows the typical
network properties of high and low R windows in terms of SMI
and χ, which is predicted by the model study, and temporally
yields continuous switching between preferences for internal
information and external stimuli.
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The Preferences of the Brain Network for
Internal Information and External Stimuli
Vanishes in Different States of
Consciousness: An
Electroencephalography Study
Our modeling results predict that the distinct preferences
of high and low R windows for internal information and
external stimuli vanish when the brain network deviates
from criticality, with reduced synchronization fluctuation
(Figure 2). To test this model prediction, we analyzed EEGs
from conscious eyes-closed resting states in humans (CS,
n = 24), isoflurane-induced unconsciousness (ISO, n = 9),

ketamine-induced unconsciousness (KET, n = 15), subanesthetic
ketamine-induced psychedelic state (PSY, n = 15), and
disorders of consciousness such as minimally conscious
states (MCS, n = 16) and unresponsive wakefulness syndrome
(UWS, n = 9). We first calculated the PCF to evaluate the
synchronization fluctuation and demonstrated that the PCF
significantly decreases in all altered and disrupted states of
consciousness (p < 0.001, Kruskal-Wallis test, Figure 5A).
The PCFs of the five different states of consciousness are
significantly different from one another (p < 0.001, multiple-
comparison test with Tukey-Kramer method) except for the
ISO and PSY (p = 0.59) pair and the KET and MCS pair
(p = 0.08).

FIGURE 5 | The preferences of the brain network for internal information integration in the network and external responsiveness are significantly disrupted in different
states of consciousness (CS: conscious state, ISO: isoflurane-induced unconsciousness, KET: ketamine-induced unconsciousness, PSY: subanesthetic
ketamine-induced psychedelic state, MCS: minimally conscious state, and UWS: unresponsive wakefulness syndrome). (A) PCF in different states of consciousness
(Mean ± SD). The CS shows the largest PCF as expected in the brain network model. PCFs are significantly different among the states except for the ISO and PSY
pair and the KET and MCS pair (p < 0.001, Kruskal-Wallis test with a multiple-comparison test using Tukey-Kramer method). Spearman correlations between (B) R
and SMI and (C) R and χ in different states of consciousness. Dots indicate the correlation values of subjects. As expected in the model study, CS shows a
maximum positive (negative) correlation between R and SMI (R and χ), and these relationships are disrupted in the different states of consciousness. (D) SMI and (E)
χ for low and high R windows in different states of consciousness. Only CS shows significant differences between high and low R windows in both SMI and χ

(***p < 0.001 and **p < 0.005; Wilcoxon rank-sum test). (F) Joint histograms of different states of consciousness. The distinct preferences of low and high R
windows disrupt in all different states of consciousness (ISO, KET, PSY, MCS, and UWS).
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We also calculated the R, SMI, and χ for each temporal
window and calculated the correlations between them. With
reduced PCFs, as expected, all of the altered and disrupted states
of consciousness lost the correlations between R and SMI and
between R and χ, except for R and SMI of PSY (Figures 5B,C).
While investigating several other frequency bands (1–4 Hz,
1–20 Hz, 8–12 Hz, 13–30 Hz, and 30–42 Hz), we found that the
frequency band of 8–12 Hz is also consistent with the results
from 4 to 12 Hz (Supplementary Figure 3). Furthermore, we also
classified the temporal windows of all states into high and low R
windows with the same thresholds of CS. The distinct preferences
between internal information and external stimuli observed in
CS (large SMI/small χ for high R and small SMI/large χ for low
R window) faded away in the different states of consciousness
(SMI; CS: ∗∗∗p < 0.001, ISO: p = 0.03, KET: p = 0.48, PSY:
∗∗p< 0.005, MCS: p = 0.90, and UWS: p = 1, χ; CS: ∗∗p< 0.005,
ISO: p = 1, KET: p = 0.06, PSY: p = 0.10, MCS: ∗∗∗p < 0.001,
UWS: p = 0.14, Wilcoxon rank-sum test) (Figures 5D,E). We
also found that the SMI of high R windows in CS is significantly
reduced in ISO, KET, PSY, MCS, and UWS (p < 0.001; CS vs. all
other states, one-way ANOVA with multi-comparison test with
Tuckey-Kramer method, suggesting that disrupting the brain’s
capability for processing internal information may be a common
mechanism for inducing both altered and depressed states of
consciousness. The χ of low R windows of ISO, KET, MCS,
and UWS was significantly decreased or maintained compared
to that of CS. In Figure 5F, joint histograms of SMI and χ

visualize that only CS shows distinctive preferences of low and
high R windows for internal information of the network and
external stimuli. Furthermore, we investigated association of
the posterior hub-dominant structure in the various states of
consciousness (Supplementary Figure 5). Different from CS,
ISO shows anterior dominant network configuration for the
high R windows and KET shows no difference between low
and high R windows. However, similar to CS, PSY presents the
posterior hub-dominant structure in high R windows. Notably,
the significant network preference for internal integration with
the posterior hub-dominant configuration only occurred in CS
and the altered state of consciousness (PSY) associated with
consciousness (Supplementary Figure 5), implying that the
brain’s capability for internal information integration with the
specific network configuration might play a more prominent role
in maintaining consciousness than network susceptibility.

Dominant Functional Magnetic
Resonance Imaging Co-activation
Patterns at High and Low Levels of
Synchronization in Conscious and
Unconscious States
Finally, we tested whether the preference of high and low R
windows can be confirmed using a different brain imaging
modality such as fMRI BOLD signals, investigating an association
with well-known fMRI networks that are activated while the brain
carries out tasks requiring internal and external information
processing. We predicted that the fMRI networks relevant to
internal or external information processing may be preferentially

activated in high or low R windows and such preferences may
change in disrupted states of consciousness.

To determine which fMRI networks are dominant in
high and low Rs, we first classified human fMRI BOLD
signals from conscious states (CS, n = 42), propofol-induced
unconscious states (Prop, n = 14), and UWS (n = 13) into
low and high R windows with the thresholds Rth =< R >total
±0.5

√
< R2 (t) > − < R (t) >2, where < R >total is an average

network synchronization across all subjects and all states. We
then investigated the occurrence rates of co-activation patterns
(CAPs) for the low and high R windows, comparing them
with the occurrence rates of a null CAP time-series generated
by 20,000 permutations of BOLD signals (Figure 6A). The
CAPs were defined as 8 typical patterns of BOLD co-activation
across voxels such as default mode network (DMN+), dorsal
attentional network (DAT+), frontoparietal network (FPN+),
sensory and motor network (SMN+), visual network (VIS+),
ventral attention network (VAT+), and a global network of
activation and deactivation (GN+ and GN−). More detailed
explanation of the CAP analysis is in “Materials and Methods”
and Supplementary Figure 7. According to our hypothesis, the
low R windows should be characterized by networks that are
sensitive to external stimuli, whereas the high R windows should
be more relevant to networks that are insensitive to external
stimuli. Our results show that in CS the low R windows are
dominated by DMN+, DAT+, and FPN+, which are sensitive to
external stimuli (Sadaghiani et al., 2015), and the high R windows
are dominated by GN+ and GN−, which are known as arousal
networks that are insensitive to external stimuli (Figure 6B;
Chang et al., 2016; Liu et al., 2018; Turchi et al., 2018). The
dominant CAPs in CS were replaced with other CAPs in Prop and
UWS, mostly deactivating DMN+. Thus, the distinct preferences
of high and low Rs for internal information of the brain network
and external stimuli observed near criticality in the conscious
state can be confirmed with fMRI BOLD signals. The disrupted
preferences were also observed universally in the brain network
that distant from criticality and the EEG and fMRI data in
different states of consciousness.

DISCUSSION

With a computational model, we demonstrated that when
the brain network resides near a critical state, the network
synchronization R correlates with the amount of shared
information (SMI) within the network and the network
susceptibility (χ) to external stimuli, respectively. The highly
synchronized states prefer internal information integration
within the network (large SMI and small χ), while the incoherent
states prefer external stimuli (small SMI and large χ). However,
the correlations between R, SMI, and χ were diminished when
the brain network deviated from criticality. The modeling study
also showed that a highly synchronized brain network displays
predominant hub activities, providing a network condition
favorable for internal information integration. The modeling
results were compared with empirical data across diverse states
of consciousness. First, the brain network during conscious states
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FIGURE 6 | Dominant fMRI co-activation patterns (CAPs) for low and high R windows in conscious states (CS), propofol-induced unconsciousness (Prop), and
unresponsive wakefulness syndrome (UWS). (A) Occupancy percentages of CAPs in CS (1st row), Prop (2nd row), and UWS (3rd row) for low R (left) and high R
(right) windows. Gray areas indicate quantiles ranging from 0.5% to 99.5% from the distributions of 20000 permutation sets. Significantly dominant CAPs are
marked as ‘*’ in the figure. The CAPs consist of eight different functional networks such as a default-mode network (DMN+), dorsal attention network (DAT+),
frontoparietal network (FPN+), sensory and motor network (SMN+), visual network (VIS+), ventral attention network (VAT+), and a global network of activation and
deactivation (GN+ and GN−). Functional networks including DMN+(DAT−), DAT+(DMN−), and FPN+(SMN−) are dominant in low R windows, while functional
networks including GN+ and GN- are dominant in high R windows in CS. (B) Spatial maps of CAPs for low and high R windows in CS. Spatial maps of other CAPs
are presented in the Supplementary Figure 7.

exhibited the largest synchronization fluctuation compared to
the different states of consciousness (ISO, KET, PSY, MCS, and
UWS), which confirms criticality of the conscious brain. Second,
the EEG functional brain networks during CS showed temporally
fluctuating preferences between the internal information of the
network and external stimuli, presenting a large SMI/small
χ at high R and a small SMI/large χ at low R. These
preferences were significantly diminished in the different states of
consciousness. Additionally, the dwell-time of the hub-dominant
network configurations at high R windows were organized in
a scale-free manner. The power-law distribution of the dwell-
time changed into a random organization (i.e., exponential
distribution) in unconscious states (Supplementary Figure 8).
Finally, the most frequently observed CAPs at high (low) R in
the fMRI signals corresponded to internally integrative (highly
susceptible) brain states.

In sum, distinct network preferences for the internal
information within the network or external stimuli
spontaneously emerge when the brain network is positioned
near criticality and in conscious states. The brain loses such
distinct preferences far from criticality and in different states of

consciousness (ISO, KET, PSY, MCS, and UWS), which results in
a disruption of temporal information processing capability.

Criticality’s Novel Role in Conscious
Brain Function
Biological systems can obtain many functional benefits from
operating near a critical point of a phase transition. Criticality in
biological systems, conjectured to emerge as the result of adaptive
and evolutionary processes, produces an optimal balance between
stability and instability, optimal computational capacity, large
dynamical repertoires, and greater sensitivity to stimuli (Beggs,
2008; Kitzbichler et al., 2009; Tagliazucchi et al., 2012; Haimovici
et al., 2013; Cocchi et al., 2017; Kim and Lee, 2019). The brain
near criticality should display characteristic features that are
empirically measurable: maximal sensitivity, large spatiotemporal
correlations, and large variances in synchronization. Maximal
sensitivity is an important property for sensory systems in
the brain, such as the olfactory, visual, and auditory systems,
optimizing responses to environmental cues (Chialvo, 2006;
Kinouchi and Copelli, 2006; Bushdid et al., 2014; Hudspeth, 2014;
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Shew et al., 2015). A large spatiotemporal correlation is crucial
for the brain to induce coordinated neural activities across space
and time (Tagliazucchi et al., 2012), which is a useful mechanism
for the generation of long-lasting and slow-decaying memories
at multiple timescales (Deco and Jirsa, 2012). A large variance
of synchronization induces large statistical complexity and large
repertoires in the brain, which is due to the maximal variety of
attractors and metastability (Haldeman and Beggs, 2005; Deco
and Jirsa, 2012; Haimovici et al., 2013) in corresponding state
spaces. It facilitates the spontaneous generation of complex
patterns required for optimizing the brain’s capability for storing
and processing information, enabling the brain to constantly
traverse different network configurations, which is associated
with cognitive flexibility. Based on our findings in the model
study and the empirical data analyses, we propose a novel role
for criticality in brain function, which is the provision of a
platform that enables the brain to rapidly transition between
distinct temporal preferences for internal information within the
network and external stimuli. The large network synchronization
fluctuation that spontaneously emerges near criticality enables
the brain network to integrate internal information or be sensitive
to external information in the time domain. Furthermore, the
temporally variable network preferences might play the role
of a functional platform for continuous switching between
internal and external information modes in the brain, which
is essential for constructing inner models of the outside world
through the recursive learning process (Honey et al., 2017) as
well as for the emergence of consciousness. In addition, as
the network becomes distant from a critical state along with
reduced synchronization fluctuation, such distinct preferences
vanish as altered and depressed states of consciousness occur.
Our model simulation and empirical data analyses explicitly
demonstrate that the variance of synchronization (PCF) is
maximal at a critical state (Figure 2B) and in conscious
states (Figure 5A). By contrast, the variance is significantly
diminished in different states of consciousness such as general
anesthesia, psychedelic experiences, and pathological disorders of
consciousness (Figure 5A).

Brain Network Preferences Vanish in
Different States of Consciousness
In different states of consciousness (ISO, KET, PSY, MCS, and
UWS), brain networks no longer possessed distinct preferences
for the internal information of the network or external stimuli. It
is important to consider how brain networks in different states
of consciousness lose such preferences and what differentiates
altered vs. depressed states of consciousness. Decreased SMI,
especially in high R windows, is a common feature across altered
and depressed states of consciousness regardless of the type of
anesthetic or traumatic injury. However, network susceptibility
χ was relatively unchanged across different states (ISO, KET,
PSY, MCS, and UWS). These results imply that the brain
network preferentially loses its capability to integrate internal
information, while its susceptibility to external stimuli remains
relatively intact. In other words, the brain network may be able
to receive external stimuli, but it cannot be globally integrated

during different states of consciousness, which may be specifically
related to functional deafferentation and disconnection from the
external world due to the isolation of the thalamocortical network
(Mhuircheartaigh et al., 2013). In addition, loss of consciousness
accompanied the disruption of the posterior hub-dominant
network configuration (Supplementary Figure 5), which impairs
the functional role of hubs for integrating and transmitting
information within the hierarchical brain network (Stam and
van Straaten, 2012; van den Heuvel and Sporns, 2013). This
hub disruption also causes the selective inhibition of top-down
processes by preferentially impeding information flow from hub
nodes to peripheral nodes in the brain network (Marinazzo et al.,
2012; Stam and van Straaten, 2012; Cohen et al., 2018). Numerous
studies have demonstrated that anesthetics selectively inhibit
higher-order information integration in top-down processes
while preserving the bottom-up and primary sensory processes,
highlighting the importance of top-down processes for the
emergence of consciousness (Liu et al., 2012; Schroter et al.,
2012). Our model and empirical data analyses suggest that such
preferential inhibition of internal information integration in
the brain network, specifically, via the disruption of the hub-
dominant network configuration in high R windows, which
is likely associated with high-order information integration, is
a characteristic phenomenon that can occur when a complex
network deviates from criticality. If the network moves to
states far from criticality (super- or subcritical states), it will
preferentially hamper the normal functions of hubs that have
dense connections.

The altered and depressed states of consciousness were
associated with distinctively impaired network properties,
SMI and χ, in high and low R windows, all of which
differentiate these states. Interestingly, the psychedelic and
minimally conscious states showed opposite network properties
(Figure 5D). The psychedelic state preserved the network
preference for integrating the internal information of the network
(i.e., positive correlation between R and SMI); however, the
network preference for susceptibility to external stimuli between
high and low R windows vanished. The low R windows no
longer retained the bias toward external stimuli. In contrast,
the MCS lost the capability for integrating internal information
(i.e., it exhibited a small SMI in a high R window), but instead
presented larger network susceptibility in high R windows, which
is the opposite compared to consciousness (Figure 5E). In other
words, the brain network of the MCS disrupted the network’s
capability for internal information integration with an abnormal
relationship between network synchronization and susceptibility.
Conversely, the brain network of the psychedelic state still
functioned for internal information integration, however, it
did not respond to external stimuli properly, which suggests
an impaired network preference for external stimuli. Finally,
we found that the dwell-time for the hub-dominant network
configuration (a positive correlation between node degree and
amplitude; Samp > 0) follows a power-law distribution while
conscious but follows an exponential distribution during ISO
and KET (Supplementary Figure 8). Considering the association
of a hub-dominant network configuration (Samp > 0) with high
R and SMI in both critical and conscious states (Figures 3, 4),
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the power-law of the dwell times implies that when the brain
integrates internal information (higher SMI) in high R windows,
the hub structure dominates the integration process in the
brain network. Also, the posterior hub-dominant brain network
configuration is organized temporally in a scale-free manner,
which enables the brain to efficiently process higher-order
information integration at various time scales. In contrast, the
anesthetized states (ISO and KET) lose the brain’s capacity
to process internal information (low SMI and R) and their
temporal organization becomes close to random processes. More
specifically, even with similar levels of R, the SMI values in
high R windows are different across states, revealing a state
dependence of the brain in relation to its capability for internal
information integration in high R windows and emphasizing
the significance of functional brain network configurations
(Supplementary Figure 6).

Dominant Functional Magnetic
Resonance Imaging Co-activation
Patterns at High and Low Levels of
Synchronization
Functional magnetic resonance imaging studies have
demonstrated that conscious states are correlated with critical
dynamics (e.g., see Tagliazucchi et al., 2016). Dominant fMRI
co-activation patterns for incoherent and synchronized windows
in conscious states were presumably associated with brain
networks that are sensitive and insensitive to external stimuli,
respectively. We showed that, in conscious states, the co-
activation patterns for incoherent windows were dominated
by DMN+, DAT+, and FPN+. These networks have complex
interactions and support higher-order cognitive functions. For
example, the DMN engages in a variety of processes such as
autobiographical memory, imagination, and self-referencing
(Raichle, 2015). The DAT mediates cognitive processes such
as goal-driven attention, inhibition, and top-down guided
voluntary control (Corbetta and Shulman, 2002; Vossel et al.,
2014). The FPN+ is known to flexibly alter its functional
connections dynamically according to current task demands
(Cole et al., 2013) and has a strong association with working
memory (Murphy et al., 2020). Furthermore, these three
networks are at a high position of a representational hierarchy,
relatively far from the sensory and motor systems in terms of
both functional connectivity and anatomical distance (Margulies
et al., 2016). Such a hierarchical disposition is thought to allow
these networks to process transmodal information in a way that
is unconstrained by immediate external stimuli. We suggest that
these spatially segregated co-activation patterns (DMN+, DAT+,
and FPN+) may be associated with high sensitivity to stimuli.
As supported by a previous study by Sadaghiani et al. (2015),
pre-stimulus brain states with higher modularity (i.e., higher
spatial segregation and lower global integration) bias toward
detecting external stimuli, whereas pre-stimulus brain states with
lower modularity (i.e., higher spatial homogeneity and higher
global integrity) bias toward misses.

In contrast, we found that highly synchronized states
during consciousness are dominated by GN+ and GN−. The
two co-activation patterns are correlated with global EEG

synchronization in the alpha frequency band (Liu et al., 2018)
and associated with arousal fluctuations regulated by subcortical-
cortical connectivity (Chang et al., 2016; Liu et al., 2018; Turchi
et al., 2018). Particularly, it has been suggested that GN+ is
specific to lapses in alertness associated with a transition to a state
of lower arousal (Liu et al., 2018), rendering the neural system less
sensitive to external stimuli. Taken together, our results suggest
that the distinct preferences of the brain network for internal
information or external stimuli in low and high levels of network
synchronization, regardless of imaging modalities, are common
network properties near critical states.

Notably, the temporal scales of the network preference
switching in EEG and fMRI data are inherently different due
to the measurement of different proxies of brain activity (EEG:
neuronal processing; fMRI: blood-oxygenation level). Because
of the lack of time resolution of fMRI data, we focused on
identifying the relevant brain network structures in high and low
R windows. However, since the fMRI signals near and far from
criticality can be modeled by networked oscillators (Deco et al.,
2017, 2018), we expect the general relationship between SMI, R,
and χ near criticality we found with the networked canonical
oscillator model also holds for the fMRI signals. Further study
will be needed to confirm this.

Potential Mechanisms for the
Emergence of Distinct Preferences in the
Brain Network
recent studies of brain network characteristics near criticality
have provided some evidence of the potential mechanism for the
emergence of continuous switching between internal and external
modes. One of the potential mechanisms is a global fluctuation in
neural gain mediated by ascending neuromodulatory nuclei such
as the pontine locus coeruleus (Lee and Dan, 2012; Shine et al.,
2018). A series of studies has suggested that the modulation of
neural gain with the dynamic changes in noradrenaline results in
a large fluctuation between network integration and segregation
in the brain (Shine et al., 2018; Li et al., 2019). When the
neural gain dynamics (presynaptic afferent input) of the locus
coeruleus reside near criticality, a small fluctuation produces a
sharp transition between network integration and segregation,
which respectively accompanies optimized information transfer
and optimized information storage in the brain (Li et al.,
2019). Network integration and segregation have also been
associated with an increased spatial correlation (correlated with
elevated information transfer) and increased autocorrelation
times (correlated with increased information storage) with
correspondence to high and low levels of phase synchronization
(Shine et al., 2018; Li et al., 2019).

A previous computational model study from our research
team found that brain network responsiveness significantly
depends on the level of network synchronization as well as
the distance from criticality when a stimulus is applied (Kim
and Lee, 2020). Based on these results, we suggested that a
potential mechanism for the relationship between brain network
synchronization and responsiveness is the phase response curve
in physics, which is a general property of networked oscillators
ubiquitously observed in physical and biological systems. The
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phase response curve describes the way that a system with a
collective periodic behavior (for instance, circadian rhythms,
cardiac rhythms, and spiking neurons) responds to external
stimuli (Granada et al., 2009; Hannay et al., 2015). The
response of an oscillating system is measured by the phase
shift from the original phase. This phase shift (i.e., advancing
or delaying the original phase) is an inherent characteristic of
the oscillatory system, which is determined by given network
configurations. Previous analytic studies discovered that a low
(high) phase synchronization induces a large (small) phase
response to a stimulus, proving that stimulating the phases
around a stable fixed point of the phase response curve
increases phase response, whereas stimulating the phases around
an unstable fixed point decreases phase response (Hannay
et al., 2015). These properties generally hold for networks
with different coupling functions, network structures, and
connectivity (Levnajić and Pikovsky, 2010).

The present study advances previous results by analyzing
the role of synchronization fluctuations in the brain network,
modulating the distance from criticality in the human brain
network model and analyzing the empirical data from EEG
and fMRI for various states of consciousness. We directly
calculated the amount of information sharing (SMI) and network
susceptibility (χ) with the network synchronization R in the
time domain for both the model and data. We propose the large
synchronization fluctuation is a functional platform for creating
temporal windows that process internal or external information.
In particular, the temporal windows characterized by large SMI
and small χ play a role in internal information integration
while defending against interventions from the outside world.
These characteristics of a highly synchronized network create
temporal windows shielded from external perturbations and
simultaneously enable the brain to integrate globally distributed
information across brain regions. Empirically, we demonstrated
that such selective roles for temporal windows, observed in
human brain networks in conscious states, are disrupted in
different states of consciousness (ISO, KET, PSY, MCS, and
UWS). Notably, in our model study, we did not consider
the neuromodulation system, which implies that the temporal
windows for internal or external information processing can
arise through the interplay between regional brain activities
while the interactions are close to criticality. In other words,
the emergence of the network preference for internal or external
information and the continuous fluctuation between these two
modes originate as a generic network feature near criticality,
regardless of the specific neurobiology.

Limitations
There are several limitations in this study. First, our brain
network model simulated source signals of the brain network,
not the EEG signals themselves in conscious and unconscious
states. Instead, we focused on identifying the generic features of
brain networks near and far from criticality to study the alteration
of the brain network preference for internal/external modes
in conscious and unconscious states. Second, we quantitatively
evaluated the preferences for internal information and external
stimuli without external stimulation. Since we cannot directly

measure the response of unconscious subjects for cognitive tasks,
which is beyond the scope of the current study, quantitative
evaluations were limited to investigating the relationship between
R, SMI, and χ at a system level. However, we expect that the
results would be similar to the model results where we have
already shown the relationship between R and responsiveness
with external stimuli (Kim and Lee, 2020). Third, we focused
on 4–12 Hz because this frequency band demonstrates global
network features in conscious states that are suitable for the
application of our brain network model (Zhang et al., 2018).
However, how the EEG of 4–12 Hz is globally networked
in the cortex and the relevant neuroanatomy is still unclear.
Furthermore, higher frequency oscillations—which might be
important for information processing—were excluded. Fourth,
in our previous model study, we found more specific amplitudes
and phases of oscillators that determine large and small
responsiveness to external stimuli. However, in this study, we
only used the level of synchronization as a criterion to classify
the temporal windows due to the complexity of the application
to the EEGs of various states of consciousness. Fifth, we limited
our fMRI analysis to the comparison of co-activation patterns
between high and low R windows due to the small data length for
measuring critical dynamics in fMRI data. Future studies should
directly compare the relationships between R, SMI, and χ in both
EEG and fMRI data with longer fMRI data.

CONCLUSION

Based on both a computational model and empirical data
analyses from EEG and fMRI, we propose a novel role for
criticality in facilitating continuous switching between internal
and external modes in the brain. We found that a large network
synchronization fluctuation that emerges near criticality creates
continuous switching between distinct network preferences for
internal information and external stimuli. Specifically, we found
high SMI and posterior hub dominant network configuration
in high R windows, which naturally occur near criticality, play
essential roles in maintaining consciousness in conscious states
and psychedelic states. The distinct network preferences at
high and low levels of synchronization that we found with a
canonical networked oscillator model at criticality and EEGs
during conscious states supported our argument together with
the results of the fMRI co-activation pattern analysis and the EEG
analysis of different states of consciousness (ISO, KET, PSY, MCS,
and UWS). The computational model study and empirical data
analyses lead us to propose that criticality creates a functional
platform for network transitions between internal and external
modes in the brain, which presumably play an essential role in
constructing models of the self and the world.
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