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In this study, we mined out hepatocellular carcinoma (HCC) driver genes from MEDLINE literatures by
bioinformatics methods of pathway crosstalk and protein interaction network. Furthermore, the relationship
between driver genes and their clinicopathological characteristics, as well as classification effectiveness was
verified in the public databases. We identified 560 human genes reported to be associated with HCC in 1074
published articles. Functional analysis revealed that biological processes and biochemical pathways relating to
tumor pathogenesis, cancer disease, tumor cell molecule, and hepatic disease were enriched in these genes.
Pathway crosstalk analysis indicated that significant pathways could be divided into three modules: cancer
disease, virus infection, and tumor signaling pathway. The HCC-related protein–protein interaction network
comprised 10,212 nodes, and 56,400 edges were mined out to identify 18 modules corresponding to 14 driver
genes. We verified that these 14 driver genes have high classification effectiveness to distinguish cancer
samples from normal samples and the classification effectiveness was better than that of randomly selected
genes. Present study provided pathway crosstalk and protein interaction network for understanding potential
tumorigenesis genes underlying HCC. The 14 driver genes identified from this study are of great translational
value in HCC diagnosis and treatment, as well as in clinical study on the pathogenesis of HCC.

Keywords: hepatocellular carcinoma, pathway crosstalk, protein interaction network, driver genes

Introduction

Hepatocellular carcinoma (HCC) is the fifth most
common cancer worldwide and remains the third most

frequent cause of cancer death, with nearly 321,200 deaths and
366,100 new cases reported in China (Torre et al., 2015; Chen
et al., 2016). Despite modern management, including the in-
troduction of improved surgical techniques, comprehensive
treatment, and targeted therapies, the survival rate of patients
is still quite low, largely attributable to late diagnosis, resistance
to treatment, tumor recurrence, and metastasis (Forner et al.,
2012). HCC has become a comprehensive health problem, not
only affecting on the HCC and their families but also bringing a
heavy burden to community (Jinjuvadia et al., 2017).

Although much effort has been dedicated to research, the
gene loci are associated with pathogenesis of HCC and clinical
therapeutic targets via various approaches, including gene
expression (Wei et al., 2013), autophagy (Liu et al., 2017),
exosome (Liu and Li, 2018), gut microbiota (Tao et al., 2015),
epigenetic dysregulation (Nakamura et al., 2018), and immu-
nologic mechanisms (Harding et al., 2016). However, the HCC
pathogenesis-related genes and biomarkers of genes were far
from being explored. It is generally admitted that HCC as a
result of the multifactorial and multistep complex process, is
influenced by both environmental and genetic factors (Chuang
et al., 2009). Importantly, it is well known that disruption of
the genetic machinery is closely associated with liver car-
cinogenesis (Zhang, 2015). Currently, some fully proven
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HCC-related driver genes, such as MET (Boix et al., 1994),
AXIN1 (Satoh et al., 2000), CTNNB1 (Devereux et al.,
2001), and tumor protein p53 (TP53) (Hsu et al., 1991), have
shown clinical implication as biomarker for diagnosis, in
clinical trials of epigenetic drugs, as well as pathogenic
research. However, those driver genes are only responsible
for a minority of population, specific experimental cell lines,
or animal models. Moreover, genetic analyses have sug-
gested that, a complicated pathogenesis may be under the
influence of other genes, and that individual differences can
be caused by many genes and their variants. Genes with
different biological functions may work together to promote
the tumorigenesis of HCC, with a moderate or small effect
exerted by each gene (Devereux et al., 2001).

Thus, a comprehensive analysis of potential causal genes
within a pathway and/or a network framework might provide
many important insights beyond the conventional single-gene
analyses (Wang, 2013). Lin et al. detected four lncRNAs
gathered as a single prognostic signature, which could act as an
indicator for HCC patient outcome and a potential independent
biomarker for prognosis prediction of HCC (Sui et al., 2018).
Kim et al. reported that a novel gene expression signature
involving four epithelial–mesenchymal transition genes was
associated with the prognosis of HCC patients, and comple-
ment prognostic assessment based on important clinicopatho-
logic parameters (Kim et al., 2010). Chen et al. identified six
hub genes in association with HCC metastasis risk and prog-
nosis, which might improve the prognosis by influencing

FIG. 1. Flow diagram of the analysis procedure: data collection, preprocessing, analysis, and validation.
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amino acid metabolism and oxidation (Chen et al., 2017).
Existing studies are mainly target-based selected genes, and
there is a paucity of framework guided and comprehensive
examinations of driver genes.

In this study, we conducted a comprehensive collection of
HCC-related genes from genetic association literatures. Also,
the bioinformatics analysis of biochemical pathways was
then performed to reveal the important functional themes
within these genetic factors and to identify the interaction
and correlation between the pathways by pathway crosstalk
analysis. Furthermore, the protein–protein interaction (PPI)
associated with HCC-related genes was constructed to mine
out modules corresponding to driver genes. In addition, the
relationship between driver genes and clinicopathological
characteristics was verified by chi-squared test. Finally, we
used leave-one-out cross validation (LOOCV) algorithm to
verify the classification effectiveness of driver genes in other
public databases (Fig. 1). The set of driver genes which we
mined out has a high value for the diagnosis and treatment of
HCC. Besides, driver genes offered useful insights for un-
derstanding the molecular pathogenesis of HCC from a per-
spective of systems biology. Also, the frame of the research
methods could be applied to other disease models.

Materials and Methods

Identification of driver genes

The study was approved by the Clinical Research Ethics
Committee of College of Medicine, Zhejiang University
(2018983). We searched for genes genetically associated with
HCC by DigSee search engine, which searches MEDLINE
abstracts for evidence sentences describing that ‘‘genes’’ are
involved in the development of ‘‘cancer’’ through ‘‘biological
events’’ (Kim et al., 2013). Since the epigenetic changes in the
molecular mechanism of genes play an important role in the
development of HCC. Therefore, the key words, including
HCC, as well as mutation, gene expression, regulation, pro-
tein catabolism, phosphorylation, localization, binding, tran-
scription, hydroxylation, ubiquitination, DNA methylation,
glycosylation, acetylation, methylation, and catalysis, were
used to research the genes associated with HCC by DigSee
search engine

Functional analysis of HCC-related genes

Gene ontology (GO) analyses were performed to investi-
gate HCC-related genes attributes in any organism, including
molecular function, biological processes, and cellular com-
ponents. Besides, Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was performed to determine the
pathways associated with HCC-related genes. Org.Hs.eg.db
R package was used to convert HCC-related genes into Entrez
Gene Identifiers (Carlson et al., 2016). The clusterProfiler
R package offers a gene classification method (groupGO) to
classify genes based on the projection at a specific level of the
GO corpus, and provides enrichGO and enrichKEGG based
on hypergeometric distribution to calculate enrichment test
for GO terms and KEGG pathways (Yu et al., 2012). There-
fore, we used the enrichment analysis method clusterProfiler
to calculate enrichment test for GO and KEGG, and the
p value was corrected by false discovery rate (FDR). There-
after, either the GO biological process terms or KEGG path-

ways with FDR <0.05 were considered to be significantly
enriched.

Pathway crosstalk analysis

Analysis of crosstalk of relationships among pathways was
used to investigate interlinks and interactions of the signifi-
cant pathways, especially those with overlapping coefficients
of two significant pathway analysis results. The overlap be-
tween two pathways was determined based on overlap co-
efficient (OC) and the Jaccard coefficient ( JC) formulas:
JC = j(AXB)/(AWB)j and OC = jAXBj/min(jAj,jBj), where
A and B are the lists of genes of the two examined pathways.
Pathway pairs that were used to build the pathways crosstalk
and the overlap significance of each pathway pair were
measured based on the average scores of JC and OC. Then,
we performed the following procedures to construct the
pathway crosstalk: (1) pathways with five or more candidate
genes were included, resulted from the biological signifi-
cance of the association between pathways that was low if the
number of overlapping genes between pathway pairs was too
small; (2) counting the number of common candidate genes
of pathway pairs, in which only the pathways pairs with more
than six overlapped genes were taken into account; (3)
measuring the overlap of all pathway pairs by the value of JC
and OC algorithm; and (4) the pathways and correlations
between pathways were considered as node and edge, re-
spectively. We visualized the pathway crosstalk via software
Cytoscape (Shannon et al., 2003).

Construction of PPI network

We constructed a PPI network to explore the correlation
and interaction among the HCC-related genes. First, the PPI
data of Homo sapiens were downloaded from protein in-
teraction network analysis (PINA) database* (Cowley et al.,
2012). Meanwhile, we used UniProt Retrieve/ID mapping
tool to transfer protein identifier to gene symbol (Pundir
et al., 2016). In addition, another human PPI datum was
selected from STRING database of Homos sapiens.** The
STRING database was aimed to collect and integrate this
information, by consolidating known and predicted protein–
protein association data for a large number of organisms.
The associations in STRING include physical interactions as
well as functional interactions (Szklarczyk et al., 2017). For
each protein–protein association stored in STRING, a score
was provided, which indicated the estimated likelihood that
a given interaction was biologically meaningful, specific,
and reproducible, given the supporting evidence. Thus, we
selected the PPI data with score >900. Finally, we merged
the two interactome databases by excluding the self-
interacting and redundant pairs. The interaction pairs con-
taining HCC-related genes were retained in the PPI network.

Data mining of driver genes

Several molecular alterations are known to occur in the
genes that encode signaling proteins critical for tumorigenesis,
cellular proliferation, tumor growth, diffusion, and survival.
These genes, which contain driver mutations, have been
defined as ‘‘driver genes’’ (Bailey et al., 2018). Thus, the

*(http://omics.bjcancer.org/pina/)
**(https://string-db.org/cgi/input.pl)
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‘‘specific genes,’’ which were mined out from HCC-related
genes in this research could be defined as driver genes be-
cause they have multiple biological associations with tu-
morigenesis. The HCC-related PPI network was imported
into Cytoscape platforms. ClusterONE algorithm was used
to discover densely connected and possibly overlapping
models within the Cytoscape network. ClusterONE is a
method for detecting potentially overlapping protein com-
plexes from PPI data based on the score of matching partial
protein complex, geometric precision prediction, and max-
imum matching rate. The algorithm was built on the concept
of the cohesiveness score and used a greedy growth process
to find groups in a PPI network that are likely to correspond
to protein complexes (Nepusz et al., 2012). The number of
genes in the models was calculated, and minimum number
>20 was used as the screening criteria. Finally, we selected
the highest degree genes in the HCC-related PPI network
of each model as HCC driver genes. The higher the degree
was, the more connected the gene was, and the genes were
also associated with each other. The more the degrees, the

more likely the genes were to participate in the occurrence
of HCC.

Correlation between clinicopathological characteristics
and driver genes

The RNA-Seq was downloaded from The Cancer Genome
Atlas Cancer Genome (TCGA) database, including 421 liver
cancer patient samples (corresponding to 371 pathological
tissue samples). In the meantime, 378 clinically clinico-
pathological characteristics were also downloaded. We
standardized the expression values of these driver genes, and
obtained the standardized genes expression matrix, which
contained N rows and M columns. N and M stood for the
number of samples and the number of driver genes, respec-
tively. Then the mean value of driver genes expression values
of each sample was obtained, and a vector of length of N was
received. Following, we calculated the mean of this vector to
obtain the mean value of all the samples. If the expression
value of a sample was higher than the mean value, the sample

FIG. 2. Functional analysis of HCC-related genes. (A) GO analysis and (B) KEGG pathway analysis. (1) Signal trans-
ducer, downstream of receptor, with serine/threonine kinase activity. (2) AGE-RAGE signaling pathway in diabetic
complications. GO, gene ontology; HCC, hepatocellular carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was classified as high expression group. The sample was
classified as low expression group when the expression value
of a sample was lower than the mean value. The correlation
between clinicopathological characteristics (tumor grading,
tumor staging, tumor, node, metastasis [TNM], age, gender,
and cancer-normal) was analyzed by Pearson chi-squared.
Data analyses were conducted using SPSS software (SPSS
22.0, Chicago, IL). Data measured using continuous vari-
ables are expressed as means – standard deviations. The p
values <0.05 were considered statistically significant.

Verification of the driver genes

We used support vector machines method to construct
classifiers by R e1071 package (parameter used default val-
ue), which were further used to classify cancer samples and
normal samples with the characteristics of the driver genes
identified in this study. The LOOCV approach was used to
evaluate the classification effectiveness and to verify the
accuracy of the classification results. LOOCV is one of the
most commonly used methods of evaluating predictive per-
formances of a model, which is given a priori or developed
by a modeling procedure. Under cross-validation, the avail-
able data are divided into k disjoint sets; k models are then
trained, each on a different combination of k–1 partitions and
tested on the remaining partition. The k-fold cross-validation
estimate of a given performance statistic is then simply the
mean of k models over the corresponding test partitions of the
data (Cawley, 2006). Finally, the corresponding receiver
operating characteristic curve was drawn and the area under
curve (AUC) value under the curve was used to evaluate the

classification effectiveness. We made comparison between
the targeted driver genes and same number of random genes
to verify the classification effectiveness of driver genes based
on AUC. The random gene sets were randomly selected in
TCGA expression profile with sample command in R lan-
guage package. In addition, the same methods were used
to verify the external two datasets from Gene Expression
Omnibus (GEO) database (GSE73708, GSE14520).

Results

Identification of HCC-related genes reported
to be associated with HCC

Understanding the HCC-related genes could be further
enhanced by identifying biological events (e.g., gene ex-
pression, regulation, epigenetic modification, localization,
and protein catabolism), in which the genetic effect is valid
for the HCC development. We used DigSee, a search engine
to find explicit association between genes and cancer through
biological events in evidence sentences of MEDLINE ab-
stracts. DigSee is a robust and accessible search engine,
which using fine-grained information extraction techniques
to mine out the specific information from the literature (Kim
et al., 2013). According to the user’s request, it can serve the
sentences of the identified triple relationship, which requires
‘‘what genes’’ to participate in the ‘‘what kind of disease’’
through ‘‘what biological events.’’ A gene was considered a
disease-associated gene if it was directly or indirectly related
to the cause of the disease or helps to increase or decrease
the properties of the disease in the cell. Then, the DigSee
algorithm collected and sorted the sentences, called evidence

FIG. 3. Pathway crosstalk analysis amid HCC pathways. Yellow nodes represent pathways, and edges represent crosstalk
between pathways. The three big circles were used to delineate the main functional areas. Each big circular path represented
a functional module and the function pathways in each circle would perform the function intersection.
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sentences, to clearly indicate that the disease gene alters the
characteristics of the diseased cells through biological events.
In this study, we used HCC as disease to research the asso-
ciational gene in the search engine website. Since the oc-
currence of epigenetic changes of genes contributed to the
tumorigenesis, gene epigenetic changes, such as mutation,
gene expression, regulation, protein catabolism, phosphor-
ylation, localization, binding, transcription, hydroxylation,
ubiquitination, DNA methylation, glycosylation, acetyla-
tion, methylation, and catalysis, were used as key words to
find out the HCC-related genes from literatures. Thereafter,
we identified 560 HCC-related genes corresponding to 1074
published research articles that were found out to be sig-
nificantly associated with HCC. These HCC-related genes
are highly variable in functions, such as mutation, gene ex-

pression, protein catabolism, DNA methylation, transcrip-
tion, and localization. This underscored the complexity
which indicates that the HCC-related genes are involved in
the complex process of tumorigenesis.

Biological function enrichment and biochemical
pathway of HCC-related genes

The biological function enrichment analysis enabled us to
produce a more specific function spectrum of HCC-related
genes. As a result, we identified 560 HCC-related genes that
were significantly enriched in 211 GO terms. We selected the
top 20 items of GO with the lowest p value to show in the
Figure 2A. Among them, some GO terms were previously
studied to be associated with the pathogenesis of HCC and

FIG. 4. Functional analysis of modules and acquirement of driver genes. (A) GO analysis and (B) KEGG pathway
analysis. (C) Distribution of driver genes based on degree. Orange triangles and green circles represented 18 modules and
GO/KEGG items, respectively. The detail information of GO/KEGG items (green circles) in the figure could be found in
Supplementary Table S1 and Supplementary Table S2.
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liver disease, such as cytokine activity (Diao et al., 2012),
RNA polymerase II transcription factor binding (Stefanska
et al., 2013), signal transducer, downstream of receptor, with
serine/threonine kinase activity (Hou et al., 2019), and
mitogen-activated protein kinase binding (Yang et al., 2014).
These results were consistent with the finding that compli-
cated connections exist within the mechanism of HCC. Fur-
thermore, we searched for enriched pathways of HCC-related
genes and identified 144 significant enrichment pathways for
HCC. The top 20 items of KEGG with the lowest p value are
represented in the Figure 2B. Consistent with previous re-
search, some pathways are related to HCC signaling pathway,
such as transforming growth factor-beta signaling pathway
(Chen et al., 2018), NF-kB signaling pathway (Lu et al.,
2018), Hippo signaling pathway (Wang et al., 2018), and
JAK-STAT signaling pathway (Shen et al., 2017). Several
pathways involved in cellular physiological process that were
generally admitted to link to tumor cell proliferation were
included, such as apoptosis, necroptosis, adherens junction,
and cell cycle. Also, we found HCC-related genes enriched in
other cancer types, included PTEN for pancreatic cancer
(Gu et al., 2019), MYC of bladder cancer (Wu et al., 2016),
CYP1B1 of prostate cancer (Gu et al., 2016), and CXL12 of
endometrial cancer (Krikun, 2018). These results indicated

that the HCC-related genes participate in the pathogenic
molecular mechanism underlying HCC, and also proved that
the identified HCC-related genes are relatively reliable for
further bioinformatics analysis.

Crosstalk among significant enrichment pathways

Crosstalk among significant enrichment pathway analysis
was not only to identify significantly enriched pathways but
also to understand the interactions among them. Thus, we
performed a pathway crosstalk analysis for the top 50 enriched
pathways with 256 genes. Based on their crosstalk, those
pathways could be roughly divided into three major modules,
each module has more interactions between the pathways
within the module than with those outside of this module,
likely to be associated with the same or similar biological
procedure (Fig. 3). The first module mainly is consisted of
tumor pathogenesis signaling pathways, such as T cell receptor
signaling pathway, TNF signaling pathway, Toll-like receptor
signaling pathway, and prolactin signaling pathway. The sec-
ond module is primarily dominated by theme of virus infection,
including viral carcinogenesis, Human T lymphocyte leukemia
virus I type (HTLV-I) infection, Kaposi sarcoma-associated
herpesvirus infection, human cytomegalovirus infection,

FIG. 4. (Continued)
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human papillomavirus infection, hepatitis B, and hepatitis
C. The major contents of third modules are cancer disease,
such as bladder cancer, pancreatic cancer, non-small cell lung
cancer, HCC, colorectal cancer, endometrial cancer, and gas-
tric cancer. In the meantime, the three modules are interlinked
with each other via a couple of pathway interactions.

Acquirement of driver genes

The acquirement of driver genes was based on the con-
struction of PPI and data mining of module. At first, 166,776
interactions, corresponding to 5211 proteins were obtained
from PINA database (last update: May 21, 2014). At the same
time, we selected the human-related protein interactions with
score >900 from STRING database. We received PPI network
comprised 17,170 proteins and 360,061 interactions after
merging the two interactome databases by excluding the self-
interacting and removing redundant pairs. ‘‘Merging’’ referred
to the merging of network edges that were obtained from two
databases, while ‘‘excluding the self-interacting’’ referred to
remove the edges from which interacted with themselves.
‘‘Removing redundant pairs’’ meant the retention of only one
edge that was common to both databases. Then, the PPI net-
work comprised 10,212 proteins and 56,400 interactions,
which is associated with HCC-related genes that were retained
to further mine out modules. We imported the PPI network
with 10,212 proteins and 56,400 interactions related to HCC
into Cytoscape software. Next, the mining modules were
carried out using the ClusterONE plug-in Cytoscape software.
The minimum gene number threshold value of parameter se-
lection module was 20, and all other parameters were default.
Totally, 18 modules were selected with each containing at least
20 genes. These 18 modules went through GO and KEGG
functional analysis (Fig. 4A, B). We can see that 18 modules
(orange triangles) were associated with all kinds of biologi-
cally functional items and they were also interconnected with
each other (Supplementary Tables S1 and S2). Functional
analysis revealed a more specific function of modules related
to tumorigenesis, such as TNF-activated receptor activity,
mismatched DNA binding, protein kinase inhibitor activity,
and activity involved in apoptotic process in GO terms, as well
as p53 signaling pathway, NF-kB signaling pathway, Ras
signaling pathway, and mTOR signaling pathway in KEGG
pathways. In each module, we selected the highest ‘‘degree’’
genes, which were regarded as driver genes from HCC-related
PPI network. After deleting the repeated genes, we acquired 14
driver genes, included APP, TP53, CDK2, EGFR, SRC,
CDKN1A, CDK4, RPLP0, STAT3, ALB, XRCC5, TNFRSF1A,
TGFB1, and VEGFA (Fig. 4C).

Verification of driver genes

We validated the average value of expression of driver
genes and investigated the relationship between the 14 driver
genes and clinicopathological characteristics. Using median
expression level as the cutoff point, the 14 driver genes were
categorized into high-expression group and low-expression
group. As shown in Table 1, the significant association was
represented between driver genes expression and cancer-
normal ( p = 1.63E-07), grading ( p = 0.0257). There was no
significant relationship between 14 driver genes expression
and the other clinicopathological characteristics ( p > 0.05).
The result indicated that the level of the 14 driver genes

expression could be used to distinguish cancer samples from
normal samples.

Furthermore, we made comparison between the 14 driver
genes and same number of random genes to verify the clas-
sification effectiveness of driver genes by LOOCV algorithm.
The classification effectiveness of 14 driver genes and same
number of random genes is represented in Figure 5A and B,
respectively. We can see that the classification effectiveness
of 14 driver genes was 0.929 (AUC) larger than any of the 6
groups of randomly selected same number of genes (Fig. 5C).
This result indicated that the classification effectiveness of
the 14 driver genes was better than that of randomly selected
genes. Moreover, to further confirm the reliability of the 14
driver genes, the same methods were used to verify the ex-
ternal dataset from GEO database (GSE73708). As expected,
the classification effectiveness of the 14 driver genes was
1 (AUC), which was larger than any of the six groups of
randomly selected same number of genes (Fig. 6). Con-
sistently, we could obtain the same result on the other GEO
database (GSE14520) (Supplementary Fig. S1). This result
further confirmed the reliability of classification effective-
ness of the 14 driver genes, which could be used to distin-
guish cancer samples from normal samples.

Discussion

Although more and more genes potentially involved in HCC
have been identified with the improvement of sequencing

Table 1. The Result of Chi-Square Test

on the Relationship Between 14 Driver Genes

and Clinicopathological Characteristics

Clinicopathological
characteristics

Driver gene
expression

(No. of patients)

pHigh Low

Cancer-normal 1.63E-07
Cancer 156 181
Normal 30 1

T 0.2217
T1 99 82
T2 39 55
T3 40 40
T4 6 7

Stage 0.2596
S1 93 78
S2 36 50
S3 40 45
S4 2 3

Grading 0.0257
G1 34 21
G2 94 83
G3 52 70
G4 3 9

Age 0.1451
Young (age <60) 81 96
Old (age >60) 104 89

Sex 1
Male 125 125
Female 61 60
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platform and microarrays technology, a thorough analysis of
the biochemical processes associated with the HCC driver
genes is still uncompleted. Thus, it was urgent to dissect the
tumorigenesis genes underlying HCC at systems biology level.
In this study, we collected HCC-related genes in published
literatures, and systematically delineated the interaction of
those genes by means of pathway crosstalk and protein inter-
action network to discover 14 HCC driver genes, which have
robust classification effectiveness to distinguish HCC samples
from normal samples.

Our study conducted a comprehensive and systematic
framework to analyze HCC-related genes and mine out driver
genes, which has its own significant advantages. At first, the
HCC-related genes came from genetic association literatures
on HCC that have been proved or believed to have important
relationship with pathogenesis of HCC. Therefore, we could
obtain reliable HCC-related gene source for further bioin-
formatics analysis. Besides, to understand the biological in-
teraction of HCC-related genes, functional enrichment and
pathway crosstalk were taken into account, it not only verifies
HCC-related genes involved in HCC tumorigenesis but also

provides view of the molecular mechanisms underlying
HCC. Furthermore, the driver genes were mined out based on
PPI network. PPI network represents an essential aspect of
cellular systems biology. Identification of key genes players
and their interaction networks provides crucial insights into
the regulation of cellular developmental processes and into
physical connections between gene products (VanderSluis
et al., 2018). Fourteen driver genes came from HCC-related
PPI network, which supplied a close relationship between the
14 driver genes and HCC molecular mechanisms. Moreover,
as alterations in different types of genes were responsible for
tumorigenesis, and only when several genes were mutated
does an invasive cancer develop. We mined out several driver
genes collectively showing connection with HCC, which
indicated significantly genetic association with HCC (Vo-
gelstein and Kinzler, 2004). Finally, the robust classification
effectiveness of 14 driver genes was verified twice (in TCGA
and GEO databases) by LOOCV algorithm to confirm its
accuracy. The result suggested the potentially clinical im-
plication of 14 driver genes in the diagnosis, treatment, and
study of HCC.

FIG. 5. Verification of classification effectiveness on driver genes. Classification effectiveness of (A) 14 driver genes and
(B) random same number of genes. (C) Comparison of classification effectiveness between 14 driver genes and random
genes.
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Of importance, we detected three major modules in path-
ways crosstalk. One module mainly involved in the pathways
associated with tumor pathogenesis signaling pathways.
Among these pathways, T cell receptor signaling pathway
(Matsumoto et al., 2014), TNF signaling pathway (Sayers,
2011), Toll-like receptor signaling pathway (Chen et al.,
2007), and prolactin signaling pathway (Ben-Jonathan et al.,
2002) have been well proved to be related to molecular
mechanisms of tumorigenesis. These molecular mechanisms
included signal transmission, immunologic suppression,
cellular metabolism, and hormonal factors and indicated that
the pathways significantly associated with HCC were diverse
in function and consistent with the complexity of tumori-
genesis. The second module was mainly dominated by the
pathways of virus infection. It was generally admitted the
associations of hepatitis B and C virus with liver cancer,
human papillomaviruses with cervical cancer, and a subset of
head and neck cancers (Cantalupo et al., 2018). For third
module, the major contents of pathways were different cancer
diseases, hinted that different cancer diseases were caused by

the altered expression of a lot of genes, which acted in concert
to affect the same biological functions of pathways that
eventually contributed to the different types of cancer. In
addition, we found that the three modules were interacted via
multiple edges formed by pathways, indicated each modules
and pathways, and acted as a concerted manner to lead to the
tumorigenesis of HCC.

We constructed HCC-related PPI network to mine out
driver genes. As demonstrated by the results described above,
this PPI network approach not only understands the protein
functions in biological systems of HCC but also possesses the
potentiality to detect promising relevant genes. Fourteen
driver genes identified from HCC-related PPI network have
close interaction with pathogenesis related to the biological
processes involved in the HCC. Notably, these 14 driver
genes possess robust classification effectiveness to distin-
guish cancer samples from normal samples. The result was
consistent with previous findings that complicated connec-
tions existed between the pathophysiology of HCC and the 14
driver genes. The functions of 14 driver genes are not alone.

FIG. 6. Verification of driver genes in external database. Classification effectiveness of (A) 14 driver genes and
(B) random same number of genes. (C) Comparison of classification effectiveness between 14 driver genes and random
genes.
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Instead, they interact with each other to promote HCC tu-
morigenesis. Of note, cyclin-dependent kinase 2 (CDK2) and
cyclin-dependent kinase 4 (CDK4) encode members of a
family of serine/threonine protein kinases that in association
with cyclin E and cyclin D promote the G1/S phase transition
(Padmakumar et al., 2009). CDK2 and CDK4 play an im-
portant role in the development of HCC from cirrhosis by the
molecular mechanism underlying perturbation of cell cycle
regulation during hepatocarcinogenesis (Masaki et al., 2003).
However, the function of CDK2 and CDK4 could be inhibited
by cyclin-dependent kinase inhibitor 1A (CDKN1A), which is
functioned as a regulator of cell cycle progression at G1 to
suppress the tumorigenesis (Cazzalini et al., 2010; Jalili et al.,
2012). Importantly, the expression of CDKN1A is tightly
controlled by the TP53 (Soto et al., 2005), which was mul-
tifunctional transcription factor that, along with number of
other functions, regulates genes involved in cell cycle arrest,
apoptosis, and senescence in response to various types of
stress (Kandoth et al., 2013). Vascular endothelial growth
factor A (VEGFA) is upregulated in many known tumors and
its expression is correlated with tumor stage and progression
(Claesson-Welsh and Welsh, 2013). However, it was reported
that TP53 can inhibit VEGFA expression by regulating the
transcriptional activity of Sp1 and also by downregulating the
Src kinase activity to arrest angiogenesis and tumor growth
(Pal et al., 2001). It cannot be denied that epidermal growth
factor receptor (EGFR) is commonly expressed in a variety of
malignant epithelial cells. The methods of resistance to
EGFR-targeted therapy were major research hotspots in HCC
treatment (Wang et al., 2016). Besides, one of the important
signaling mediators downstream of normally and abnormally
activated EGFR is signal transducer and activator of tran-
scription 3 (STAT3). STAT3 is regarded as oncogene, which is
latent transcription factors that mediate cytokine- and growth
factor-directed transcription. In many human cancers (in-
cluding HCC) and transformed cell lines, STAT3 is persis-
tently activated, and in cell culture, active STAT3 is either
required for transformation, enhances transformation, or
blocks apoptosis (Gao et al., 2007). Many studies found that
STAT3 is activated by EGFR tyrosine kinases. EGFR is up-
stream of STAT3 and is frequently overexpressed or over-
activated in tumor cells (Yu et al., 2009). As specified by the
results detailed above, these 14 driver genes had close in-
teraction with each other to be related to the process of tu-
morigenesis and development involved in HCC, they may
also provide a list of potential candidates for further tumor-
igenesis pathogenesis exploration. Thus, the set of 14 driver
genes could be used as targets of clinical utilities of diagnosis
and treatment.

Conclusion

In this study, we investigated the integrative pathway
crosstalk and protein interaction network related to HCC based
on the genes associated with the disease by systems biology
framework. By using integrating analysis of biological func-
tion, biochemical process, and pathway crosstalk analyses, we
identified the biological processes and pathways associated
with tumorigenesis underlying HCC. Moreover, HCC patho-
logical PPI network was constructed to mine out 14 HCC
driver genes, which were proved to have high classification

effectiveness to distinguish cancer samples from normal
samples. Such comprehensive analysis of genes involved in
HCC will not only enhance our understanding of the genetic
factors and their interaction with the pathogenesis of HCC but
also improved our knowledge to capability to identify potential
targets for HCC diagnosis and treatment. In the meantime, the
framework represented in our study can be used to investigate
the integrative pathway crosstalk, protein interaction network,
and corresponding genes related to other disease models.
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