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Background: The blood–brain barrier (BBB) inhibits the delivery of macromolecular chemotherapeutic drugs to brain tumors,
leading to low utilization rates and toxic side effects to surrounding tissues and organs. Ultrasonic targeted microbubble destruction
(UTMD) technology can open the BBB, leading to a new type of drug delivery system with particular utility in glioma.
Purpose: We have developed a new type of drug-loaded microbubble complex based on poly(lactic-co-glycolic acid) (PLGA) that
targets gambogic acid (GA) to the area of brain tumors through UTMD.
Methods: GA/PLGA nanoparticles were prepared by the double emulsification method, and cationic microbubbles (CMBs) were
prepared by a thin film hydration method. The GA/PLGA-CMB microbubble complex was assembled through electrostatic attractions
and was characterized chemically. The anti-glioblastoma effect of GA/PLGA-CMB combined with focused ultrasound (FUS) was
evaluated by biochemical and imaging assays in cultured cells and model mice.
Results: GA/PLGA-CMB combined with FUS demonstrated a significant inhibitory effect on glioblastoma cell lines U87 and U251 as
compared with controls (P<0.05). Tumor access and imaging analyses demonstrated that administration of GA/PLGA-CMBs combined
with FUS can open the BBB and target the treatment of glioblastoma in a mouse model, as compared with control groups (P<0.05).
Conclusion: The combination of PLGA-CMB with FUS provides an effective and biocompatible drug delivery system, and its
application to the delivery of GA in a mouse glioblastoma model was successful.
Keywords: microbubbles, cavitation effect, glioblastoma, focused ultrasound

Introduction
Glioblastoma (GBM), which is the most common intracranial tumor, originates in the glial cells. Current therapies,
including surgery, radiation therapy, and chemotherapy, present limited efficacies for treating malignant glioma.1–3

Standard treatment for newly diagnosed patients includes maximal safe resection followed by radiochemotherapy.4,5
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While several therapies have been employed, the treatment of GBM remains challenging. Even with treatment, the
median overall survival for patients diagnosed with GBM is two years.

In recent years, multiple drug delivery platforms based on nanotechnology have been developed, some of which have
been used in the clinical treatment of various cancers.6,7 Applications of nano-drugs include doxorubicin-containing
liposomes for sarcoma and breast cancer.8 Nanoparticles prepared with inorganic materials, such as hydrogen oxide
nanoparticles,9 have also been utilized in the treatment of cancer clinical oncology treatment.

However, the fact that currently available nanoparticles have only limited ability to permeate the blood-brain barrier
(BBB) and the blood-tumor barrier (BTB) limits the applicability of this technology to cancer research.10 Importantly,
studies have shown that nanoparticles must have diameters less than 40 nm in order to be likely to penetrate the
BBB.11,12 Thus, targeting across the BBB and ability to enter a tumor is an important factor to be considered in the
development of drug-loaded nanoparticles in the treatment of brain tumors, including GBM.8,12,13

Gambogic acid (GA) is the main active component of a traditional Chinese medicine called garcinia mandshurica.
Because of its demonstrated inhibitory effect on a variety of malignant tumor cells, it has become an important anti-
cancer candidate drug.14 Several in vitro and in vivo studies have shown that GA can inhibit a variety of malignant tumor
cells, including lung cancer, liver cancer, leukemia, colorectal cancer, pancreatic cancer and breast cancer cells.15,16 The
anti-tumor effects of GA are manifest through multiple mechanisms, such as inducing apoptosis, inhibiting cell
proliferation, preventing tumor angiogenesis and blocking tumor cell invasion and metastasis.17

Unfortunately, GA has several characteristics that lead to an increased potential for adverse effects. For example, GA is
most often administered intravenously and is thus widely distributed in vivo. In addition, because of its short half-life,
relatively high concentrations of GA must be administered. These two factors mean that normal tissues are vulnerable to
adverse effects during treatment with GA.15,18 GA has other disadvantages, such as poor solubility and low bioavailability, and
it does not readily pass through the BBB, which limits its application in the treatment of brain tumors. Therefore, it is important
to find a drug delivery system in order to optimize the utility of GA in the treatment of GBM.14–17

Ultrasound-targeted microbubble destruction (UTMD) is a novel delivery system for drugs and genes that represents
a technological revolution in cancer treatment.19–21 Exposure of tumor cells to ultrasound-activated microbubbles increases
the permeability of biological barriers, such as cell membranes and the BBB, and it disrupts the tumor microenvironment
directly and mechanically through the effects of heat and oxidative stress.22 The UTMD system therefore can not only be used
as a carrier, but it can also increase the permeability of biological barriers so as to improve the utilization rate and thus the
therapeutic effect of chemotherapeutic drugs.19 Accordingly, the UTMD-mediated drug/gene delivery system has shown great
potential in tumor therapy.23 Recently, multiple studies have shown that UTMD-mediated delivery of drugs can improve the
tumor-killing effect, thus reducing the toxicity of chemotherapeutic drugs, lowering the development of drug resistance, and
allowing the application of specialized drugs to the treatment of other cancers.

We developed a new drug-loaded microbubble complex that includes GAwithin a poly(lactic-co-glycolic acid)-based
cationic microbubble (GA/PLGA-CMB) (Figure 1). This nanoparticle is designed to be used with a focused ultrasound
(FUS) probe, which can be placed with brain stereotaxic instrumentation so that it is focused on the area of a tumor. GA/
PLGA-CMBs oscillates violently under the action of FUS with specific parameters, creating a cavitation effect,24,25

which includes steady-state cavitation and instantaneous cavitation.26,27 When steady-state cavitation occurs in GA/
PLGA-CMBs, we predicted that the permeability of the BBB would increase, allowing the GA/PLGA to enter the tumor
tissue.28,29 In this report, we tested several values of ultrasonic intensity in order to optimize the instantaneous cavitation
of the GA/PLGA-CMBs, as the impact caused by cavitation may cause damage to the surrounding tumor cells. In
addition, after instantaneous cavitation of GA/PLGA-CMBs, we predicted that the GA/PLGA cargo would be uniformly
released into the tumor area. Thus, in this report, we present the development and assessment of a new drug-loaded
PLGA-CMB microbubble complex, which can target and release drugs under the guidance of ultrasound. This endeavor
promises to reduce systemic side effects of chemotherapeutic drugs, improve the utilization rate, prolong the action time,
and provide new strategic directions for the treatment of malignancies of the brain.
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Materials and Methods
Materials
U87, U251 and bEnd3 cells were purchased from the Chinese Academy of Sciences (Shanghai, China). LV-LUC-GFP-PURO
lentivirus was synthesized by Shanghai Hengyuan Biotechnology Co., Ltd (Shanghai, China). GA, PLGA, distearoylpho-
sphatidylcholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000, and polyethyleneimine (PEI)
were purchased from Avanti Polar Lipids (Beijing, China). D-Luciferin potassium salt was purchased from Cayman
Chemicals (Ann Arbor, MI, USA). Antibodies against the marker of proliferation Ki-67 and proliferating cell nuclear antigen
(PCNA) were purchased from Abcam (Cambridge, MA). Anti-TUNEL antibodies (ab179454) and a TUNEL Assay Kit
(ab66110) were from Abcam (Cambridge, MA). Cell viability assays were performed using the Cell Counting Kit-8 (CCK-8,
Abcam, Cambridge, UK) assay as per the manufacturer’s instructions. A YF488-Annexin V/PI apoptosis detection kit, and
Hoechst 33,342 were obtained from US Everbright (San Francisco, CA, USA).

A high-speed refrigerated centrifuge (Hunan Changsha Xiangyi Centrifuge Instrument Co., Ltd, Beijing, China),
a Zetasizer Nano ZS 90 (Malvern Instruments, Ltd., Malvern, U.K.), a flow cytometer (Millenia Biotech, Goldbach,
Germany), a multi-detection microplate reader (Bio Tek, USA), and stereotaxic instruments (SR-6, Scientific Instrument
Lab., Tokyo, Japan) were used. The small animal living imaging system (Lumina LT, PerkinElmer, Inc.) was used for
in vivo imaging.

Synthesis of PLGA-CMBs
PLGA and DSPC were dissolved at a mass ratio of 20:1 in 1 to 3 mL dichloromethane. The following ultrasonic
parameters were used: power 900 W, power ratio 60%, ultrasonic on time 3 s and off time 3 s, and working cycle 2 min.
After 5 mL 4% polyvinyl alcohol was added, the suspension was homogenized for 5 min. Double distilled water (10 mL)
was added to the homogenized liquid, and the mixture was stirred for 2 to 3 h. After centrifugation at 4500 rpm for 3

Figure 1 Pattern diagram of GA/PLGA-CMB. The positively charged CMB is combined with the negatively charged GA/PLGA to form a GA/PLGA-CMB microbubble
complex.
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min, the supernatant was discarded, 1 mL double distilled water was added, and the sample was incubated overnight at
−80 °C. After freeze-drying for 48 h, PLGA nanobubbles (NBs) were obtained and stored at −20 °C.

A cationic microbubble solution was prepared with DSPC, PEG-2000, PEI and stearic acid as the main components.
After air was removed with a vacuum, the cationic microbubble was filled with inert gas (C3F8), and the cationic
microbubble (CMB) suspension was obtained after shaking for 45s. Aliquots of 100 μL CMB suspension were mixed
with 80 μg PLGA NBs, resulting in a PLGA-CMB suspension. Defined amounts of GA were added to the PLGA-CMB
raw material to obtain CA/PLGA-CMBs.

Characterization of GA/PLGA-CMBs
The drug loading and entrapment efficiency were calculated by spectrophotometry. The drug loading and entrapment
efficiency of GA/PLGA dissolved in DMSO were then calculated. Drug loading was calculated as LE(%) = We/Wm ×
100%, where LE represents drug loading, We represents the amount of drug encapsulated in the lipid and Wm represents
the total weight of GA/PLGA NBs. Entrapment efficiency was calculated as EN% = (1 - Cf/Ct) × 100, where EN
represents the drug entrapment efficiency as a percentage, Cf is the amount of free drug and Ct is the total amount of drug
(free and entrapped). The particle size and potential distribution of GA/PLGA-CMBs were detected by a Malvern particle
size analyzer, scanning electron microscopy and transmission electron microscopy.

Physiological Stability of GA/PLGA-CMBs
The GA/PLGA-CMBs showed a good physiological stability. B-mode scan ultrasonography was performed using
a Sonix SP High Performance B-mode System (Ultrasonix, Richmond, BC, Canada). The age of BALB/c mice is 6–7
weeks. Each mouse was injected with 100 μL GA/PLGA-CMBs suspension via tail vein. Ultrasound imaging experi-
ments were carried out at 0–40 min. The liver US image in comparative mode was recorded. Further analysis was
performed using a high frequency US scanning high-resolution B-mode ultrasonography system. High-resolution
B-mode ultrasonography of the right liver was performed with a linear 8 MHz frequency.

Cell Culture
Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum and 1% penicillin and streptomycin was used
for culturing U87 and U251 cells. Cells were cultured in an incubator at 37 °C and 5% CO2. Cells were passaged with
0.25% trypsin when confluence reached 80 to 90% at the logarithmic growth phase and were diluted to 1×105 cells/mL.
Cells were cryopreserved in a solution containing 10% DMSO. Drugs were dissolved in a solvent containing phosphate-
buffered saline (PBS) with DMSO (5%) and Tween-80. The concentration of drug was adjusted so that animals were
administered 1.5 μmol/L.

Measurements of Drug-Release Behavior
Aliquots (100 μL) of a suspension of GA/PLGA-CMBs were placed in wells of a 96-well plate. The samples were subjected
to ultrasound under the following conditions: frequency 949 KHz, 10,000 cycles, 5% duty cycle, 1 s pulse time and 60s
action time. The sound pressure intensity was increased from 0 to 0.88 MPa, and the concentration of GA/PLGA-CMBs in
suspension at each sound pressure intensity interval was detected by enzyme labeling and spectrophotometry at λ = 500 nm.

Using the same ultrasonic parameters as above, the viability of U251 cells treated with different sound pressure
intensities was detected via CCK-8 assays. Then, U251 cells were incubated with different concentrations of GA for 24
hours, and the cell viability of U251 cells in each group was detected via CCK-8 assays. The GA concentrations of all
treatment groups in Figures 2–4 were consistent. The concentration was 1.5 μmol/L.

CCK-8 Assays for Cell Viability
Wells of a 96-well platewere seededwith 100 μL of a 5×104 cells/mL suspension, and the plateswere then incubated at 37 °C and
5%CO2 for 24 h in serum-free medium. Then, 10 μL of CCK-8 solution was added to each well. The absorbance at 450 nmwas
measured 1 h later. Cell viability was determined with the following equation: viability rate = ((As − Ab)/(Ac − Ab)) × 100, where
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Aswas the absorbance of the experimental well includingmedium, CCK-8 reagent andGA, Acwas the absorbance of the control
well without GA and Ab was the absorbance of the blank well without cells or CCK-8 reagent.

Detection of Apoptosis
In order to detect apoptosis by flow cytometry, cells growing in suspension were collected by centrifugation at 500g for 5 min,
and adherent cells were collected by trypsin digestion without EDTA. Cells were washed with 10 mL PBS and collected by
scraping in 5 mL PBS followed by centrifugation at 2000 RPM for 5 min at 4 °C. Then, 300 μL of binding buffer and 195 μL
Annexin V-FITC binding buffer were added, followed by incubation with 5 μL annexin V-FITC and 10 μL propidium iodide
(PI) for 20 min in the dark. Dual parameter dot plots combining signal from annexin V-FITC and PI revealed living cells in the
lower-left quadrant (annexin V−/PI−), early apoptotic cells in the lower-right quadrant (annexin-V+/PI−), late apoptotic cells
in the upper-right quadrant (annexin V−/PI+), and necrotic cells in the upper-left quadrant (annexin-V+/PI+).

Apoptosis was also quantified using a microscopy-based kit. Double staining of U87 cells with AlexaFluor 488-
annexin V and PI enabled the discrimination of live (AlexaFluor 488-/PI-), early apoptotic (AlexaFluor 488+/PI-), late
apoptotic (AlexaFluor 488+/PI+), or necrotic (Alexa Fluor 488-/PI+) cells. Cell nuclei were counterstained with DAPI,
and fluorescence images were acquired using a fluorescence microscope (DMI3000B, Leica, Germany). Fluorescent
signal was quantified by ImageJ software.

Animals and Tumor Models
Female nude BALB/c mice, aged 6 to 8 weeks, were purchased from Beijing HFK Bioscience (Beijing). They were
raised in a specific pathogen-free (SPF) animal room at a constant temperature (25 °C). All animal procedures were
reviewed and approved by the Institutional Animal Care and Use Committee at Xinxiang Medical University and are in

Figure 2 Ultrasound controlled drug release in vitro. (A) When the ultrasonic intensity is 0.63–0.88Mpa, GA/PLGA-CMBs can have “cavitation effect” (**p<0.01, ***p<0.001 versus
control group, ##p<0.01 versus each other group). (B) The activity of U251 cells decreased significantly when the ultrasound intensity was 0.76–0.88 Mpa (**p<0.01, ***p<0.001
versus“0”Mpa group). (C) After coincubation of U251 cells with 1.5 μmol/L GA for 24 h, The cell viability of U251 cells was 48.71 ±2.84% (*p<0.05 versus “0”µmol/L group). (D)
Different treatment groups correspond to the NaF fluorescence signal values in the liquid under the Transwell chamber (***p<0.001, #p<0.05 versus each other group). (E) The BBB
model in vitrowas constructed by bEend3 cells. TheZo-1 antibodywas labeledwith green immunofluorescence. The nucleuswas labeledwithDAPI, and thewhite arrowwasmarked as
the open part of tight junction. Ruler: Bar=50 µm.
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Figure 3 To evaluate the inhibitory effect of FUS combined with GA/PLGA-CMBs on U251 cells. (A) Different treatments of U251 cells correspond to the results of flow cytometry.
(B) After 24 hours of different treatments, the viability of U251 cells in each group was detected by CCK-8. The cell viability of U251 cells in FUS+GA/PLGA-CMBs group was 0.81 ±
0.26% (***p<0.001 versus control group, #p<0.05 versus other groups). (C) After 24 hours of different treatments, the apoptosis rate of U251 in each group was detected by flow
cytometry. The apoptosis rate of U251 cells in FUS+GA/PLGA-CMBs group was 76.73 ± 2.70% (***p<0.001 versus control group, ##p<0.01 versus each other group).

Figure 4 To evaluate the inhibitory effect of FUS combined with GA/PLGA-CMBs on U87 cells. (A) Different treatments of U87 cells correspond to the results of flow
cytometry. (B) After 24 hours of different treatments, the viability of U87 cells in each group was detected by CCK-8. The cell viability of U87 cells in FUS+GA/PLGA-CMBs
group was 49.34±1.95% (**p<0.01 versus control group, ###p<0.001 versus each other group). (C) After 24 hours of different treatments, the apoptosis rate of U251 in
each group was detected by flow cytometry. The apoptosis rate of U87 cells in FUS+GA/PLGA-CMBs group was 27.68±0.89% (**p<0.01 versus control group, ###p<0.001
versus each other group).
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accordance with the Guide for the Care and Use of Laboratory Animals of Chinese Academy of Sciences. Ethical review
approval number: XYLL—2020516-6.

Mice were anesthetized with 4% isoflurane/O2 gas, and anesthesia was maintained with 1.5% isoflurane/O2 gas. U87-
Luc cells carrying luciferase (Luc) gene fragments were implanted in order to generate the mouse glioma model.
According to the mouse brain atlas, the anterior fontanelle was coordinate zero, and 2.5 μL of a U87-Luc cell suspension
in PBS with a cell density of 2×105 cells/mL was injected at the coordinate (1.0 mm, 1.5 mm, 2.0 mm). The injection
time was 5 min, and the needle was retained for 10 min. Penicillin (10,000 U/day) was injected intramuscularly
every day for 1 week following surgery.

Construction of the in vitro BBB Model
Cells of the mouse brain microvascular endothelial cell line bEend3 were inoculated on a Transwell membrane. After 5
days of routine culture, the in vitro BBB model was established. High glucose medium (500 μL) was added to the upper
and lower chambers of the Transwell apparatus, and 500 μL of NaF (10 µg/mL) was added to the upper chamber.

The BBB model was treated with 5 different treatments: untreated (control), ultrasound-only (FUS), empty phospholipid
microbubbles (MB), ultrasound combined with empty phospholipid microbubbles (FUS+MB) and ultrasound combined with
drug-loaded microbubble complex (FUS+GA/PLGA-CMB). The system was treated with ultrasound following the parameters
noted above, and the sound pressure intensity was 0.63 MPa. Cells were stained with an anti-Zo-1 antibody and a secondary
antibody that was indicated by green fluorescence, and DAPI-labeled nuclei were blue as observed by fluorescence microscopy.
The fluorescence signal value of NaF in the lower chamber was detected by an enzyme labeling instrument.

In vivo Assays of BBB Opening
The experiment was divided into three groups: a group treated only with ultrasound (FUS), a group treated with ultrasound
and GA/PLGA microbubbles (FUS+GA/PLGA) and a group treated with ultrasound combined with the drug-loaded
microbubble complex (FUS+GA/PLGA-CMB). For treatment, 50 μL of a GA/PLGA or GA/PLGA-CMB suspension was
injected into the tail vein of each mouse. After 1 min, the sound pressure intensity was adjusted to 0.50, 0.63, 0.76, 0.88 or
1.01 MPa for 30s. After the treatment of FUS combined with GA/PLGA-CMBs, the corresponding brain tissue was
perfused and processed under different sound pressure intensities, embedded in paraffin, stained with hematoxylin and
eosin, and stained with DAPI (nuclei) and TUNEL (apoptotic cells). Hematoxylin and eosin (H&E) staining was performed
according to a standard H&E protocol. The apoptosis rate, as determined by TUNEL labeling, was assessed with ImageJ
software.

In vivo Imaging
Anesthesia of mice was induced with continuous application of 1.5% isoflurane. Each mouse was injected intraper-
itoneally with 100 μL of a solution of D-fluorescein potassium salt (Alameda, CA, USA; 15 mg/mL in normal saline).
After 15 min, the fluorescence signal was detected with a live animal imaging system (IVIS) (Lumina LT;
PerkinElmer, Inc.).

Evaluation of Anti-Tumor Effects
Brain glioma model mice were treated on the 10th day after successful establishment of the glioma model. The treatment
occurred once every 2 days for a total of 3 treatments. The mice in each group were imaged by IVIS on days 10, 17 and
24 after successful establishment of the glioma model. On day 17, the brains were perfused, and the tumor tissues were
sectioned in paraffin. An anti-PCNA antibody and an anti-Ki-67 antibody were used to detect tumor proliferation.
TUNEL assays were performed using a TUNEL Apoptosis Detection Kit (Keygentech, China) for the detection of
apoptotic tumor cells in the paraffin-embedded tumor tissue. At day 37 following establishment of the model, the brains
were perfused to observe the appearance of the tumor tissue, and the tumor volumes were measured. The number of mice
surviving in each group on day 60 was recorded.
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Statistical Analysis
Data were analyzed using SPSS 22.0 statistical software and presented as the mean ± SD. The one-way ANOVA test was
applied for evaluating possible statistical differences among three or more groups of data. P < 0.05 was considered statistically
significant (In each figure, statistical significance is indicated with the following symbols: *P < 0.05, **P < 0.01, ***P < 0.001,
#P < 0.05, ##P < 0.01, ###P < 0.001, nsP > 0.05).

Results
Synthesis and Characterization of GA/PLGA-CMB
The results of scanning electron microscopy (SEM) and tunneling electron microscopy (TEM) analyses showed that the GA/
PLGAwas spherical, the surface contained both drug molecules and pores, and the particle sizes were dispersed uniformly
(Figure 5A and B). CMBs were manifest as spherical and hollow structures under TEM (Figure 5C). The GA/PLGA-CMB
complexes were confirmed to be composed of both CMBs and GA/PLGA (Figure 5D) according to TEM images.

The entrapment efficiency and drug loading was quantified by adding varying amounts of GA nanoparticles to
a constant mass (50 mg) of PLGA. Here, the entrapment efficiency and drug loading of GA/PLGA prepared by adding
GA in a ratio of 4 mg GA to 50 mg PLGAwere 83.04 ± 7.51% and 6.64 ± 0.60%, respectively (Figure 5E and F). Malvern
particle size analyses showed that the average particle size distribution of the GA/PLGA-CMBs was 951.37 ± 110.32 nm,

Figure 5 Characterizations of GA/PLGA-CMBs. (A) GA/PLGA was spherical and uniformly dispersed under scanning electron microscope (SEM). (B) GA/PLGA was
spherical and wrinkled under transmission electron microscope (TEM). (C) CMBs showed spherical and hollow structure under TEM. (D) GA/PLGA-CMBs is composed of
CMBs and GA/PLGA under transmission electron microscope. (E and F) Every 50 mg PLGA, 4 mg GA is added to prepare GA/PLGA. The entrapment efficiency of GA/
PLGA was 83.04% ± 7.51% (*p<0.05 versus each other group). The drug loading of GA/PLGA was 6.64 ± 0.60% (*P <0.05 versus other three groups). (G and H) The
particle size distribution of GA/PLGA-CMBs is 951.37 ± 110.32 nm.The potential distribution of GA/PLGA-CMBs was 5.30 ± 0.49 mV.
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and the potential distribution was 5.30 ± 0.49 mV (Figure 5G and H). The distribution was shown to be normal. The results
of physiological stability test showed that GA/PLGA-CMBs could persist around 30 min in vivo (Figure 6).

Drug Loading and Release
To measure the ability of the particles to release drug upon application of ultrasound, FUS was applied under conditions
noted in Materials and Methods, and the quantity of drug released was determined by measuring the spectroscopic
absorbance of the supernatant at 500 nm. The concentration of drug released upon application of a sound pressure of 0.63
MPa (OD500 = 1.07 ± 0.07) was significantly different from that when the sound pressure was zero (OD500 = 1.51 ± 0.03)
(P < 0.01, Figure 2A).

The biological effects of this sound application were also tested. When the sound pressure intensity was 0.63 MPa,
FUS had no effect on the viability of U251 cells, as detected by CCK-8 assays. The U251 cell viability was 68.17 ±
7.70% when the sound pressure intensity was 0.76 MPa, and the U251 cell viability was 54.59 ± 4.01% when the sound
pressure intensity was 0.88 Mpa. The difference in cell viability following treatment with 0.76 MPa was significantly
higher than that following treatment with 0.88 MPa FUS (P < 0.01, Figure 2B).

After U251 cells were incubated with free GA at 1.5 μmol/L for 24 h, the cell viability was 48.71 ± 2.84%, which was
significantly lower than the viability of cells treated with vehicle for 24 h, which was defined as 100% (p < 0.05,
Figure 2C).

Figure 6 The stability of the GA/PLGA-CMBs under physiological condition. (A–C) each mouse was injected with 100 μL GA/PLGA-CMBs suspension via tail vein. In
B mode and enhanced contrast mode, liver imaging was detected before and after injection of suspension. The in vivo imaging duration of GA/PLGA-CMBs was 30 min. n=3.
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Application of FUS combined with GA/PLGA-CMBs was found to open the model BBB (see, especially, the white
arrow in Figure 2D). After opening the model BBB, NaF was able to infiltrate from the upper chamber of the model
apparatus into the liquid in the lower chamber. The opening of the BBB was demonstrated by an increase of the NaF
signal to 1.30 ± 0.04% in the lower chamber solution, which was significantly higher than the signal in the control system
(p < 0.001, Figure 2D and E).

Inhibition of Growth of Brain Glioma Cell Lines
U251 cells were treated with FUS and GA/PLGA-CMBs for 24 h. The final drug concentration was 1.5 µmol/L relative
to GA, the sound pressure intensity was 0.63 MPa, the action time was 30s, and other FUS parameters were as noted in
Materials and Methods. Following the treatment, the rate of apoptosis was detected by flow cytometry. The rate of
apoptosis of cells treated with FUS and GA/PLGAwas 76.73 ± 2.70%, and the rate of apoptosis of cells treated with FUS
and GA/PLGA-CMB was 83.43 ± 1.43%. As shown in Figure 3A and C, the difference in the rate of apoptosis between
these two treatment groups was significant (p < 0.001).

The viability of U251 cells post-treatment was detected by CCK-8 (Figure 3B). The viability of cells treated with
FUS and GA/PLGA-CMB was 0.81 ± 0.26%, which was significantly different from the viability of control cells 100 ±
13.62% (p < 0.001).

We performed the same test with another GBM cell line, U87, and the results were similar to those found for U251.
Here, the rate of apoptosis of U87 cells treated with FUS and GA/PLGA-CMB (27.68 ± 0.89%) was significantly higher
than that of apoptosis of cells treated with FUS and GA/PLGA (18.9 ± 0.78%; p < 0.01; Figure 4A and C). The viability
of U87 cells treated with FUS and GA/PLGA-CMB was 49.34 ± 1.95% and was significantly different from that of the
control group (p < 0.01; Figure 4B).

After U87 cells were cultured for 24 h under various treatments, rates of apoptosis were detected using a YF488-
Annexin V/PI apoptosis detection kit (Figure 7A). Early apoptotic cells were labeled with YF488, and late apoptotic cells

Figure 7 FUS+GA/PLGA-CMBs treatment inhibits the growth of U87 glioma cells. (A–C) Apoptosis was also evaluated by YF488-Annexin V/PI apoptosis detection kit,
after the U87 cells of different treatment were incubated for 24 h. Values were presented as mean ± SD, n= 5.*** P <0.001, between groups. Compared with the Control
group, Values were presented as mean ± SD, n= 5. # P <0.05. ### P <0.001.
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were labeled with PI. The nuclei of cells in each group were labeled with DAPI, and the cells in each group were counted
using ImageJ. The results showed that compared with other groups, the number of U87 cells in the group treated with
FUS and GA/PLGA-CMB was the lowest (P < 0.001; Figure 7B). The results also demonstrated that apoptosis and
necrosis occurred in all of the groups of U87 cells. The apoptotic rate of U87 cells treated with FUS and GA/PLGA-
CMB was the highest, and it was significantly higher than that of other groups (P < 0.001; Figure 7C). In addition, this
experiment demonstrated that FUS combined with GA/PLGA-CMB induced the apoptosis of U87 cells only under
certain ultrasound parameters (Figure 7). These results suggest that the sound pore effect mediated by GA/PLGA-CMB
under the action of FUS increased the permeability of the U87 cell membrane, promoted the entry of GA/PLGA into U87
cells, stimulated the release of GA, and increased the apoptotic rate of U87 cells.

Opening of the BBB in vivo
We used a mouse model to further explore the opening of the BBB in vivo. The permeability of the blood-brain barrier
was evaluated using Evans blue dye (EB, Sigma Co. USA). The results of permeability studies show that FUS combined
with GA/PLGA-CMBs enhanced the opening of the BBB when the ultrasonic intensity was between 0.63 and 1.01 MPa.
FUS alone or FUS with GA/PLGA did not open the BBB (Figure 8). The brain tissues of mice treated with different
ultrasound intensities were embedded in paraffin and stained with H&E (Figure 9A). Microscopic analyses of these
tissues showed that when the ultrasound intensity was between 0.69 and 0.88 MPa, the erythrocyte extravasation became
obvious (Figure 9B). The relative amount of erythrocyte exudation (86.67 ± 9.53) was significantly higher than that in
tissues treated with an ultrasound intensity of zero MPa (7 ± 1.63; p < 0.05).

We also labeled apoptotic cells using a TUNEL kit and labeled nuclei with DAPI. Quantification of the rate of
apoptosis demonstrated that the rate of apoptosis was relatively high when the ultrasound intensity was between 0.69 and
0.88 MPa. When the ultrasound intensity was 0.88 MPa, the rate of apoptosis was 79.03 ± 5.12% and was significantly
higher than that in tissues treated with an ultrasound intensity of zero MPa (16.03 ± 2.41%; p < 0.05) (Figure 9C).

Evaluation of the Anti-Tumor Effect
IVIS was used to detect the growth of tumors in mice treated under various conditions. The treatment began on the day
10 after the establishment of the model and was performed once every 2 days, for a total of 3 treatments. The luciferase

Figure 8 The blood-brain barrier (BBB) was opened by FUS combined with GA/PLGA-CMBs. 100 µL GA/PLGA or GA/PLGA-CMBs suspension was injected into the tail
vein of mice. After 1min, the FUS with sound pressure intensity of 0.50,0.63,0.76,0.88 or 1.01Mpa worked for 30 seconds. When the ultrasonic intensity is 0.63–1.01 Mpa,
FUS combined with GA/PLGA-CMBs can open BBB. FUS alone or FUS combined with GA/PLGA cannot open BBB. n=3.
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signal from the tumors was detected with a living imaging system (Figure 10A and B) and indicated the presence of
tumor cells. The corresponding fluorescence signal in mice treated with FUS and GA/PLGAwas 181.00 ± 13.52, and that
of mice treated with FUS and GA/PLGA-CMB was 70.8 ± 8.03 (p<0.05). On day 24, the corresponding fluorescence
signals of mice treated with FUS and GA/PLGA and mice treated with FUS and GA/PLGA-CMB were 148.4 ± 8.26 and
36.00 ± 4.82, respectively (Figure 10C, p < 0.05).

Tumor proliferation and apoptosis were detected by immunohistochemistry. The positive expression of markers of
proliferation and apoptosis was observed by microscopy (Figure 11A). The tumor proliferation rate of each group was
detected with immunohistochemistry utilizing an anti-PCNA antibody, and the tumor proliferation rate in mice treated with
FUS and GA/PLGA-CMB was 31.77 ± 3.57% (p < 0.001 vs control group; Figure 11B). In addition, the tumor proliferation
rate of each group was detected by an anti-Ki-67 antibody, and the tumor tissue growth rate of mice treated with FUS and GA/
PLGA-CMB was 25.94 ± 3.12% (p<0.001 vs control group; Figure 11C). ATUNEL antibody was used to detect apoptosis
within the tumors of each group of similarly treated mice. The results showed that the rate of apoptosis of tumor tissue in mice
treated with FUS and GA/PLGA-CMB group was 78.98 ± 7.15% (p<0.001 vs control group; Figure 11D).

Mice were also subjected to general tests for anti-tumor viability following the treatment. On the 37th day after the
establishment of the model, the brains of the mice in each treatment group were perfused for observation (Figure 12A).
The volume of tumors from mice treated with FUS and GA/PLGA was 0.17 ± 0.04 mm3, while the volume of tumors
from mice treated with FUS and GA/PLGA-CMB was 0.04 ± 0.01 mm3 (p<0.001 vs control group; Figure 12B). This
reduction in tumor size correlated with life span, as the longest lived mice were those treated with FUS and GA/PLGA-
CMB group, which lived 45±11 d (p<0.05 versus GA/PLGA group; Figure 12C).

Discussion
Delivering chemotherapeutic drugs into brain tumors remains an important challenge.30 The existence of biological
barriers such as the BBB and BTB limits the penetration of most chemotherapeutic agents.8 In addition, the complexity

Figure 9 It is the most suitable and safe to open the ultrasonic parameters of BBB. (A) After the treatment of FUS with different sound pressure intensity combined with
GA/PLGA-CMBs, the corresponding brain tissue was embedded in paraffin, stained with H&E, labeled with nucleus by DAPI and labeled with apoptotic cells by TUNEL. (B)
When the ultrasonic intensity is 0.69–0.88Mpa, the erythrocyte extravasation is obvious (*p<0.05, **p<0.01, ***p<0.001 versus control group). (C) The apoptosis rate of
TUNEL labeled apoptotic cells was counted by ImageJ software. The apoptosis rate is proportional to the sound pressure intensity (*p<0.05, **p<0.01, ***p<0.001 versus
control group).
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of brain tumors and the lack of effective brain drug delivery techniques have had a significant impact on the survival of
patients. Among different types of brain tumors, GBM is a highly invasive, aggressive and malignant tumor. New
treatments for this important disease are needed. Recent studies have shown that ultrasound targeted microbubble
destruction (UTMD) can safely and effectively open the BBB and BTB and deliver drugs to brain tissue, which provides
a new strategy for the treatment of brain diseases.19,23,24,31,32

Because of the potential advantages of the UTMD system, we developed a new drug-loaded microbubble complex
(PLGA-CMB) using DSPC, PEG-2000, PEI and PLGA as raw materials. PLGA-CMB was found to be stable, to have
a high drug loading content, and to provide a long imaging duration in vivo. To take advantage of these properties, we
prepared PLGA-CMB complexes containing GA (Figure 1).

PLGA-CMB complexes consist of drug-loaded PLGA nano-microbubbles and phospholipid cationic microbubbles,
and in particular, our previous studies have shown that drug-loaded PLGA nano-microbubbles have good stability.33 In
addition, the core of phospholipid cationic microbubbles is an inert gas (C3F8) that has been shown to be relatively
stable under physiological condition.34–37 The results of Omata et al, who found that perfluoropropane and perfluor-
obutane-loaded MBs (MB-C3F8 and MB-C4F10) showed sustained ultrasound imaging stability in vitro and in vivo
compared with sulfur hexafluoride-loaded MBs (MB-SF6),37 suggested that perfluoropropane and perfluorobutane could
be useful for the production of MBs with high stability to allow for US imaging and drug delivery.37 In this study, the

Figure 10 The anti-tumor effect was evaluated by in vivo imaging system (IVIS). (A and B) U87 cells carrying GFP-Luc-Puro gene fragments were selected for modeling. The
glioma model mice were treated on the 10th day, once/2 days, for 3 times. The mice in each group were detected by IVIS on the 10th day, 17th day and 24th day, respectively.
(C) The fluorescence signal values of mice in different treatment groups. The corresponding fluorescence signal curves of FUS+GA/PLGA-CMBs group and FUS+GA/PLGA
group were lower.
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results shows that PLGA-CMB complexes, with C3F8 core, have optimal stability under physiological conditions
(Figure 6).

Our previous studies have shown that porous lipid GA/PLGA microbubbles combined with FUS have led to an
opening of an in vitro BBB model.33 However, we found that the opening effect of porous lipid GA/PLGA microbubbles
combined with FUS on the BBB in vivo is not ideal. Therefore, here, we developed a new type of GA/PLGA-CMBs
complex that incorporates microbubble technology. Compared with GA/PLGA, GA/PLGA-CMBs have a more obvious
opening effect on the BBB in vivo under the action of FUS.

In this study, PLGA nanoparticles containing GA were prepared by the double emulsion method.38,39 Negatively
charged GA/PLGA nanoparticles were connected to the surface of positively charged cationic microbubbles (CMBs) to
form GA/PLGA-CMB microbubble complexes.34,40 We demonstrate that GA/PLGA-CMBs can produce a sound pore
effect under the action of FUS, which leads to the increase of cell membrane permeability.41 In in vitro experiments, the
cavitation effect supported by GA/PLGA-CMB under the action of low frequency FUS induced permeability of the cell
membrane, which further improved the killing effect of GA on two GBM cell lines, U87 and U251.42,43

When a suspension containing GA/PLGA-CMB was injected into the caudal vein of mice, it ultimately reached the
area of the induced brain tumor via the circulation. Under the action of FUS with specific sound pressure intensities,
steady-state cavitation occurred in the GA/PLGA-CMB complexes, resulting in an increase in the permeability of the
BBB and BBTB. GA/PLGA-CMB was uniformly distributed in the tumor tissue area, which resulted in increased sound

Figure 11 The anti-tumor effect was evaluated by immunohistochemistry. (A–D) On the 17th day of modeling, the brains of mice in different treatment groups were
perfused and the corresponding tumor tissues were sectioned in paraffin. Tumor proliferation was detected by PCNA antibody and Ki-67 antibody, and tumor apoptosis was
detected by TUNEL antibody (*p<0.05, **p<0.01, ***p<0.001 versus control group, ###p<0.001 versus each other group).
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pressure intensity, causing instantaneous cavitation of the GA/PLGA-CMB, destroying the tumor tissue and releasing
GA/PLGA to the tumor area. Thus, we have demonstrated a means to provide targeted treatment of brain tumors. It is
important to note that PLGA has good biocompatibility and improves the efficiency of GA. Overall, our experimental
results show that application of GA/PLGA-CMB combined with FUS has positive anti-tumor effects.

Notably, these results suggest that these efforts may be expanded to the visual targeting of anti-tumor therapies.
Visual targeting makes use of ultrasonic imaging, which is a real-time imaging technology that can visualize the
structures of organs.44–46 MBs in particular can be used as contrast agents to enhance the utility of ultrasound
images.45 By choosing the appropriate ultrasound frequency and other ultrasound parameters, we predict that it will be
possible to realize tumor imaging and tracking of the drug release process of GA/PLGA-CMBs under the action of FUS.
In addition, this technique will allow the detection of the viability of microbubbles in vivo through passive cavitation
detection, which has been tested widely in clinical trials.28,47,48

The ultrasonic parameters such as sound pressure intensity, duty cycle, action time, cycle time and pulse interval have
obvious influences on the effects of FUS. Our results show that when other parameters are constant and microbubbles are
combined with ultrasound, as the sound pressure intensity increases, the cavitation effect becomes more obvious, and the
permeability of the physiological barrier becomes higher. For our next step, then, we plan to use this method to carry out
in vivo experimental research to explore the safety range of FUS parameters. Whether the shell will cause inflammation
after the rupture of microbubbles will also be a focus of attention. The biosafety of microbubbles is also of great concern,
and we plan to systematically evaluate the biosafety of GA/PLGA-CMB.28,49,50

Conclusion
We have developed a new type of drug-loaded microbubble complex (PLGA-CMB). The microbubble complex can carry
drugs with high volume. PLGA-CMBs can produce a cavitation effect under the action of UTMD and can thus open up
the BBB and BBTB to efficiently target brain tumors. This microbubble complex provides a new strategy for the

Figure 12 The anti-tumor effect was evaluated by general index. (A) After 37 days of modeling, the mice in different treatment groups corresponded to the gross view of
glioma. (B) Quantification of tumor volume in mice with different treatment groups (***p<0.001 versus control group, #p<0.05 versus each other group). (C) The survival
rate of six groups of mice was counted. The life cycle of mice in FUS+GA/PLGA-CMBs group was the longest, which was 59 days.
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ultrasound-targeted treatment of tumors. Effective on-demand drug delivery can be achieved by using PLGA-CMBs in
a sonodynamic-dependent manner both in vitro and in vivo. The explosion of PLGA-CMBs under the action of FUS
provides a promising platform for the delivery of anti-tumor therapeutic agents.
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