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ABSTRACT Two major stumbling blocks exist in high-throughput sequencing (HTS) data analysis. The first
is the sheer file size, typically in gigabytes when uncompressed, causing problems in storage, transmission,
and analysis. However, these files do not need to be so large, and can be reduced without loss of
information. Each HTS file, either in compressed .SRA or plain text .fastq format, contains numerous
identical reads stored as separate entries. For example, among 44,603,541 forward reads in the
SRR4011234.sra file (from a Bacillus subtilis transcriptomic study) deposited at NCBI’s SRA database, one
read has 497,027 identical copies. Instead of storing them as separate entries, one can and should store
them as a single entry with the SeqID_NumCopy format (which I dub as FASTA+ format). The second is the
proper allocation of reads that map equally well to paralogous genes. I illustrate in detail a new method for
such allocation. I have developed ARSDA software that implement these new approaches. A number of HTS
files for model species are in the process of being processed and deposited at http://coevol.rdc.uottawa.ca
to demonstrate that this approach not only saves a huge amount of storage space and transmission
bandwidth, but also dramatically reduces time in downstream data analysis. Instead of matching the
497,027 identical reads separately against the B. subtilis genome, one only needs to match it once. ARSDA
includes functions to take advantage of HTS data in the new sequence format for downstream data analysis
such as gene expression characterization. I contrasted gene expression results between ARSDA and Cuf-
flinks so readers can better appreciate the strength of ARSDA. ARSDA is freely available for Windows, Linux.
and Macintosh computers at http://dambe.bio.uottawa.ca/ARSDA/ARSDA.aspx.
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High-throughput sequencing (HTS) is now used not only in charac-
terizing differential gene expression, but also inmanyotherfields,where
it replaces the traditional microarray approach. Ribosomal profiling,
traditionally done throughmicroarray (Arava et al. 2003; MacKay et al.
2004), is now almost exclusively donewith deep sequencing of ribosome-
protected segments of messages (Ingolia et al. 2009, 2011), although
the results from the two approaches for ribosomal profiling are largely

concordant (Xia et al. 2011). Similarly, EST-based (Rogers et al. 2012)
and microarray-based (Pleiss et al. 2007) methods for detecting al-
ternative splicing events and characterizing splicing efficiency is
now replaced by HTS (Kawashima et al. 2014), especially by lariat
sequencing (Awan et al. 2013; Stepankiw et al. 2015). The availabil-
ity of HTS data has dramatically accelerated the test of biologi-
cal hypotheses. For example, a recent study on alternative splicing
(Vlasschaert et al. 2016) showed that skipping of exon 7 (E7) in
human and mouse USP4 is associated with weak signals of splice sites
flanking E7. The researchers predicted that, in some species where the
splice site signals are strong, E7 skippingwould disappear. This prediction
is readily tested and confirmed with existing HTS data, i.e., E6-E8
mRNA was found in species with weak splice signals flanking E7,
and E6-E7-E8 mRNA in species with strong splice signals flanking E7
(Vlasschaert et al. 2016).

In spite of the potential of HTS data in solving practical biological
problems, severe underusage of HTS data has been reported (GB Ed-
itorial Team 2011). One major stumbling block in using the HTS data
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are the large file size. Among the 6472 HTS studies on human available
at NCBI/DDBJ/EBI by April 14, 2016, 196 studies each contribute.1
Terabyte (TB) of nucleotide bases, with the top one contributing
86.4 TB. Few laboratories would be keen on downloading and analyz-
ing this 86.4 TB of nucleotides, not tomention comparing this study to
HTS data from other human HTS studies.

The explosive growth of HTS data in recent years has caused serious
problems in data storage, transmission, and analysis (Leinonen et al.
2011; Kodama et al. 2012). Because of the high cost of maintaining
such data, coupled with the fact that few researchers had been using
such data, NCBI had planned the closure of the sequence read
archive a few years ago (GB Editorial Team 2011), but continued
the support only after DDBJ and EBI decided to continue their effort
of archiving the data. The incident highlights the prohibitive task of
storing, transmitting, and analyzing HTS data, and motivated the
joint effort of both industry and academics to search for data com-
pression solutions (Janin et al. 2014; Zhu et al. 2015b; Numanagic
et al. 2016).

HTS data files do not need to be so huge. Take, for example, the
characterized transcriptomic data for Escherichia coli K12 in the file
SRR1536586.sra (where SRR1536586 is the SRA sequence file ID in
NCBI/DDBJ/EBI). The file contains 6,503,557 sequence reads of
50 nt each, but 195,310 sequences are all identical (TGTTAT
CACGGGAGACACACGGCGGGTGCTAACGTCCGTCGTGAA
GAGGG), all mapping exactly to sites 929–978 in E. coli 23S rRNA
genes (the study did use the MICROBExpress Bacterial mRNA
Enrichment Kit to remove the 16S and 23S rRNA, otherwise there
would be many more). There are much more extreme cases. For
example, one of the 12 HTS files from a transcriptomic study of
E. coli (SRR922264.sra), contains a read with 1,606,515 identical
copies among its 9,690,570 forward reads. There is no sequence
information lost if all these 1,606,515 identical reads are stored by
a single sequence with a sequence ID such as UniqueSeqX_1606515
(i.e., SeqID_CopyNumber format which I dub FASTA+ format with
file type .fasP). Such storage scheme not only results in dramatic
saving in data storage and transmission, but also leads to dramatic
reduction in computation time in downstream data analysis. At
present, all software packages for HTS data analysis will take the
1,606,515 identical reads separately, and search them individually
against the E. coli genome (or target gene sequences such as coding
sequences). The SeqID_CopyNumber storage scheme reduces the
1,606,515 searches to a single one.

A huge chunk of SRA data stored in NCBI/DDBJ/EBI consists of
ribosome profiling data (Ingolia et al. 2009, 2011), which is obtained by
sequencing the mRNA segment (�30 bases) protected by the ribosome
after digesting all the unprotected mRNA segments. Mapping these
ribosome-protected segments to the genome allows one to know spe-
cifically where the ribosomes are located along individual mRNAs. In
general, such data are essential to understand translation initiation,
elongation, and termination efficiencies. For example, a short poly(A)
segment with about eight or nine consecutive A immediately upstream
of the start codon in yeast (Saccharomyces cerevisiae) genes is signifi-
cantly associated with ribosome density and occupancy (Xia et al.
2011), confirming the hypothesis that short poly(A) upstream of the
start codon facilitates the recruitment of translation initiation factors,
but long poly(A) would bind to poly(A)-binding protein and interfere
with cap-dependent translation. Sequence redundancy is high in such
ribosomal profiling data and the FASTA+ format can lead to dramatic
saving in the disk space of data storage and time in data transmission.

Aside from the file size problem, HST data analysis also suffers from
the problem of how to allocatemultiple-matched reads to paralogous

genes (Trapnell et al. 2013; Rogozin et al. 2014). The commonly
used options of ignoring such multiple-matched reads or allocating
them equally among matched paralogous genes are unsatisfactory.
The software ARSDA I present here offers solutions to both the
problem of file size and the problem of read allocation to paralogous
genes.

ARSDA
I developed softwareARSDA (forAnalyzing RNA-SeqData, Figure 1A)
to alleviate the problem associated with storage, transmission and anal-
ysis of HTS data. ARSDA can take input .SRA files or .fastq files of
many gigabytes, build an efficient dictionary of unique sequence reads
in a FASTA/FASTQ file, keep track of their copy numbers, and output
them to a FASTA+ file in the SeqID_CopyNumber format (Figure 1B).
Both fixed-length and variable-length sequences can be used as input.
In addition, I have implemented functions in ARSDA to take advantage
of the new sequence format to perform gene expression, with the main
objective of demonstrating how much faster downstream data analysis
can be done with data in FASTA+/FASTQ+ format. Furthermore,
ARSDA includes a unique feature in assigning shared reads among
paralogous genes that I will describe below. ARSDA also includes se-
quence visualization functions for global base-calling quality, per-read
quality, and site-specific read quality (Figure 1, C and D), but these
functions are also available elsewhere, e.g., FastQC (Andrews 2017) and
NGSQC (Dai et al. 2010) and consequentlywill not be described further
(but see the attachedQuickStart.PDF). ARSDA includes nine programs
in the BLAST and sratoolkit from NCBI that enhance part of ARSDA
functions.

Converting HTS data to FASTA+/FASTQ+
The output from processing the SRR1536586.sra file (with part of the
read matching output in Table 1) highlights two points. First, many
sequences in the file are identical. Second, although the transcriptomic
data characterized in SRR1536586 have undergone rRNA depletion by
using Ambion’s MICROBExpress Bacterial mRNA Enrichment Kit
(Pobre and Arraiano 2015), there are still numerous reads in the tran-
scriptomic data that are from rRNA genes. This suggests that storing
mRNA reads separately from rRNA reads can dramatically reduce file
size because most researchers are not interested in the abundance of
rRNAs.

While the conversion of FASTA/FASTQ files to FASTA+ files may
take a fewminutes, it needs tobe done onlyonce for data storage, and the
resulting saving in storage space, internet traffic, and computation time
in downstream data analysis is tremendous. The file size is 1.49 GB for
the original FASTQ file derived from SRR1536586.sra, but is only
66 MB for the new FASTA+ file, both being plain text files.

I have applied ARSDA to reduce the file size of transcriptomic data
from yeast (S. cerevisiae), nematode (Caenorhabditis elegans),
fruit fly (Drosophila melanogaster), zebrafish (Danio rerio), and
mouse (Mus musculus), and deposited the resulting reduced data
at coevol.rdc.uottawa.ca in the form of BLAST databases. BLAST
reduces sequences further by representing tetranucleotides AAAA,
AAAC, ..., TTTT by 0, 1, ..., 255 so that each tetranucleotide takes
only 1 byte in storage. The sequence ID in these BLAST databases
are in the form of SeqID_CopyNumber. These files reduce the com-
putation time for quantifying gene expression from many hours
to only a few minutes (.2 min for my Windows 10 PC with an
i7-4770 CPU at 3.4 GHz and 16 GB of RAM). This eliminates one
of the key bottlenecks in HTS data analysis (Liu et al. 2016), and
would make it feasible for any laboratory to gain the power of HTS
data analysis. I attach the gene expression characterized by ARSDA
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Figure 1 User interface in ARSDA. (A) The menu system, with database creation under the “Database” menu, gene expression characterization
under the “Analysis” menu, etc. (B) Converting a FASTQ/FASTA file to a FASTQ+/FASTA+ file. (C) Site-specific read quality visualization. (D)
Global read quality visualization.
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for the 4321 E. coli K12 coding sequences as Supplemental Material,
File S1. A part of it is reproduced in Table 2.

Onemayaskhowquality scores are treatedwhen readswith identical
sequences aregrouped into the formofSeqID_CopyNumber format.Let
me first highlight two observations. First, different reads with the
same sequence have similar quality scores. For example, sequence
“TGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTCG
TGAAGAGGG” occur many times in file SRR1526586.sra. I took the
first six reads with this 50-nt sequence, and computed Pearson correla-
tion among the associated quality scores (each read is associated with a
vector of 50 quality scores). The correlation coefficients are all high and
positive (Table 3). The same for sequences that occur just twice. Second,
quality score itself is a statistical estimate. For these reasons, when reads
with the same sequence are combined into the SeqID_CopyNumber
format in Fastq+ file, the quality scores for this combined sequence are
simply average quality scores. For a sequence of length L that occurred
twice in the transcriptomic data, the sequence ID will be SeqID_2, and
quality scores will simply be (Q1i + Q2i)/2, where i = 1, 2, . . ., L, and Q1
and Q2 are quality scores from the two reads of the same sequence.

Size-reduction differs dramatically with read quality (Figure 2). For
high-quality data, e.g., SRR922267 (Figure 2, where an overwhelming
majority of bases are at the high-quality end), ARSDA can shrink file
size to �0.05 of the original. However, for poor-quality data, e.g.,
SRR5484239 (Figure 2), ARSDA can shrink file size only to 0.64 of
the original. The reason is that, with high-quality data, reads from the
same segment of the transcript are identical, as one would expect, but,
with low-quality data, reads from the same segment of the transcript
have “mutated” during the amplification and sequencing step, and are
often no longer identical. For SRR922267, the most redundant se-
quence has 2,341,386 identical copies out of 14,872,404 forward reads.
In contrast, the most redundant sequence in SRR5484239 has only
1540 identical copies out of 10,702,871 reads. This implies that
the paired-end reads, especially long ones, will likely have low size-
reduction efficiency because reverse read quality is typically much
worse than forward read quality. Size-reduction with the ARSDA ap-
proachworks best with high-quality reads. Base-calling quality typically
decreases rapidly with read length (Figure 1C). Trimming off the low-
quality 39 end of the reads typically leads to dramatically increased
size-reduction efficiency.

One of the frequently used sequence-compression scheme is to use a
reference genome so that each read can be represented by a starting and
an ending number on the genome (Benoit et al. 2015; Kingsford and
Patro 2015; Zhu et al. 2015a). This approach has two problems. First,
many reads do not map exactly to the genomic sequence because of
either somatic mutations or sequencing errors, so representing a
read by the starting and ending numbers leads to loss of information.

Second, RNA-editing and processing can be so extensive that it
becomes impossible to map a transcriptomic read to the genome
(Abraham et al. 1988; Lamond 1988; Alatortsev et al. 2008; Li et al.
2009; Simpson et al. 2016). Furthermore, there are still many scientif-
ically interesting species that do not have a good genomic sequence
available. One could add additional annotation and indexing for se-
quence variants resulting from RNA-editing and “mutants” resulting
from amplification and sequencing to avoid information loss, but such
additional steps reduces the efficiency of compression as well as in-
creases an extra layer of complexity for downstream data analysis.

Software tools for compressing HTS files are often benchmarked
against general-purpose GZIP tools (Numanagic et al. 2016). Among
nonreference compression tools for FASTQ files, LFQC (Nicolae et al.
2015) was benchmarked to be the most efficient (Numanagic et al.
2016), partly because LFQC uses several compression programs sepa-
rately for sequence IDs, sequences, and quality scores. I compared file
size reduction from FASTQ+ format against compression results from
GZIP and LFQC (Table 4). Because FASTQ+ files are simple text files
that can be further compressed by GZIP and LFQC, Table 4 also in-
clude compression output of GZIP+FASTQ+ and LFQC+FASTQ+.
The results (Table 4) confirms the previous finding (Numanagic
et al. 2016) that LFQC is much more efficient than GZIP. They also
show FASTQ+ to offer a substantial further reduction of file sizes.
For SRR1536586, file size reduction efficiency is comparable between
LFQC and FASTQ+ (Table 4). However, further compression with
GZIP+FASTQ+ and LFQC+FASTQ+ both leads to much reduced file
size than using GZIP or LFQC alone (Table 4), the same being true for
the paired-end file SRR922270 (Table 4). Furthermore, FASTQ+ has
one additional advantage in that it dramatically reduces computation
time in downstream data analysis. Take SRR1536586 for example,
FASTQ+ would reduce computation time for read-matching (which
is themost time-consuming part of any transcriptomic data analysis) to
a fraction of roughly 0.075 (�119,596,093/1,604,183,348).

Assigning sequence reads to paralogous genes
One of the most fundamental objectives of RNA-Seq analysis is to
generate an index of gene expression (FPKM: matched fragment/reads
per kilobases of transcript permillionmapped reads) that can be directly
compared amongdifferent genes and amongdifferent experimentswith
different total number of matched reads (Mortazavi et al. 2008). The
main difficulty in quantifying gene expression arises with sequence
reads matching multiple paralogous genes (Trapnell et al. 2013;

n Table 1 Part of read-matching output from ARSDA, with
195,310 identical reads matching a segment of large subunit
(LSU) rRNA, 86,308 identical reads matching another segment of
LSU rRNA, and so on

Gene Ncopy Gene Ncopy

LSU rRNA 195,310 SSU rRNA 30,417
LSU rRNA 86,308 LSU rRNA 29,508
LSU rRNA 58,400 5S rRNA 28,187
SSU rRNA 47,323 LSU rRNA 24,982
LSU rRNA 45,695 SSU rRNA 23,286
LSU rRNA 36,258 LSU rRNA 19,991
5S rRNA 33,674 SSU rRNA 19,268

Results generated from ARSDA analysis of the SRR1536586.sra file from NCBI.

n Table 2 Partial output of gene expression, with the gene
locus_tag (together with start and end sites) as Gene ID

Gene ID SeqLen Count Count/Kb FPKM

b0001|190_255 66 76 1151.515 389.894
b0002|337_2799 2463 2963 1203.004 407.328
b0003|2801_3733 933 1121 1201.501 406.819
b0004|3734_5020 1287 1782 1384.615 468.82
b0005|5234_5530 297 97 326.599 110.584
b0006|C5683_6459 777 113 145.431 49.242
b0007|C6529_7959 1431 143 99.93 33.836
b0008|8238_9191 954 1561 1636.268 554.028
b0009|9306_9893 588 289 491.497 166.417
b0010|C9928_10494 567 100 176.367 59.716
b0011|C10643_11356 714 13 18.207 6.165
b0013|C11382_11786 405 2 4.938 1.672
b0014|12163_14079 1917 6863 3580.073 1212.186
b0015|14168_15298 1131 1671 1477.454 500.255
. . . . . . . . . . . . . . .
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Rogozin et al. 2014). This problem, which has plagued microarray data
analysis, is now plaguing RNA-Seq analysis. Most publications of com-
monly used RNA-Seq analysis methods (Langmead et al. 2009, 2010;
Trapnell et al. 2009, 2012; Roberts et al. 2011, 2013; Langmead and
Salzberg 2012; Dobin et al. 2013; Deng et al. 2014) often avoided
mentioning read allocation to paralogous genes. The software tools
associated with these publications share two simple options for han-
dling matches to paralogous genes. The first is to use only uniquely
matched reads, i.e., reads that match to multiple genes are simply
ignored. The second is to assign such reads equally among matched
genes. These options are obviously unsatisfactory. Here, I describe a
new approach which should substantially improve the accuracy of HTS
data analysis such as gene expression characterization.

Allocating sequence reads to paralogous genes in a
two-member gene family
We need a few definitions to explain the allocation. Let L1 and L2 be the
sequence length of the two paralogous genes. Let NU.1 and NU.2 be the
number of reads that can be uniquely assigned to paralogous gene 1 or 2,
respectively (i.e., the reads that matches one gene better than the
other). Now for those reads that match the two genes equally well,
the proportion of the reads contributed by paralogous gene 1 may be
simply estimated as

P1¼ NU:1

NU :1 þ NU :2
(1)

Now, for any read that matches the two paralogous genes equally well,
we will assign P1 to paralogous gene 1, and (12P1) to paralogous
gene 2. In the extreme case when paralogous genes are all identical,
then NU.1 = NU.2 = 0, and we will assign 1/2 of these equally matched
read to genes 1 and 2. We should modify Equation (1) to make it
more generally applicable as follows

P1¼ 0:01þ NU:1

0:02þ NU :1 þ NU :2
(2)

where 0.01 in the numerator and 0.02 in the denominator are pseudo-
counts. The treatment in Equation (2) implies that, whenNU.1 =NU.2 = 0
(e.g., when two paralogous genes are perfectly identical), then a read
matching equally well to these paralogous genes will be equally divided
among the two paralogues.

One problem with this treatment is its assumption of L1 = L2. If
paralogous gene 1 is much longer than the other, thenNU.1 is expected
to be larger thanNU.2, everything else being equal. Onemay standardize
NU.1 andNU.2 to number of uniquematches per 1000 nt, designated by
SNU.i = 1000NU.i/Li (where i = 1 or 2) and replace NU.i in Equation (2)
by SNU.i as follows (Mortazavi et al. 2008):

n Table 3 Correlation among quality scores from first six reads (Q1–Q6) of the same sequence of 50 nt
(TGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTCGTGAAGAGGG)

Q1 Q2 Q3 Q4 Q5

Q2 0.804889
Q3 0.662242 0.873874
Q4 0.71594 0.938951 0.918316
Q5 0.784977 0.968069 0.864678 0.945969
Q6 0.634808 0.850372 0.926804 0.931704 0.866401

Each read is associated with a vector of 50 quality scores (one for each nucleotide).

Figure 2 Contrasting read quality between two transcriptomic data files (SRR5484239.sra from M. musculus and SRR922267.sra from E. coli. It
does not imply that E. coli data are always better than mouse data as there are also poor-quality E. coli data and high-quality mouse data.
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P1 ¼ 0:01þ SNU :1

0:02þ SNU :1 þ SNU:2
¼ 0:01þ 1000NU :1

L1

0:02þ 1000
�
NU:1
L1

þ NU :2
L2

� (3)

Allocating sequence reads in gene family with more
than two members
One might, mistakenly, think that it is quite simple to extend Equation
(3) for a gene family of twomembers to a gene familywithFmembers by
writing

Pi ¼
0:01þ 1000NU :i

Li

0:01Fþ1000
PF

i¼1
NU:i
Li

(4)

This does not work. For example, if we have three paralogous genes
designated A, B, andC, respectively. Suppose that the gene duplication
that gave rise to B and C occurred very recently so that B and C are
identical, but A and the ancestor of B and C have diverged for a long
time. In this case, NU.B = NU.C = 0 because a read matching B will
always match C equally well, but NU.A may be .0. This will result in
unfair allocation of many transcripts from B and C to A according to
Equation (4). I outline the approach below for dealing with gene
families with more than two members.

With three or more paralogous genes, one may benefit from a
phylogenetic tree for proper allocation of sequence reads. I illustrate
the simplestcasewithagene familywiththreeparalogousgenesA,B, and
C, idealized into three segments in Figure 3. The three genes shared one
identical middle segment with 23 matched reads (that necessarily
match equally well to all three paralogues). Genes B and C share an
identical first segment to which 20 reads matched. Gene A has its first
segment different from that of B and C, and got four matched reads.
The three genes also have a diverged third segment where A matched
three reads, B matched six and C matched 12. Our task is then to
allocate the 23 reads shared by all three, and 20 reads shared by B
and C to the three paralogues.

One could apply maximum likelihood or least-squares method for
the estimation,butARSDAuses a simplecountingapproachbyapplying
the following

PA¼ 3þ 4
3þ 4þ 20þ 6þ 12

¼0:15556

PB¼ð1-PAÞ 6
6þ12

¼ 0:28148

PC¼ð1-PAÞ 12
6þ12

¼ 0:56296

(5)

Thus, we allocate the 23 reads (that matched three genes equally)
to paralogous genes A, B, and C according to PA, PB, and PC, re-
spectively. For the 20 reads that matched B and C equally well, we
allocate 20�6/(6 + 12) to B and 20�12/(6 + 12) to C. This gives the
estimated number of matches to each gene as

NA¼3þ 4þ 23PA¼10:57778

NB¼6þ 23PB þ 20

�
6

6þ 12

�
¼19:14074

NC¼12þ 23PC þ 20

�
12

6þ 12

�
¼38:28148

(6)

These numbers are then normalized to give FPKM (Mortazavi et al.
2008). The current version of ARSDA assume that gene families with
more than two members to have roughly the same sequence lengths.
This is generally fine with prokaryotes but may become problematic
with eukaryotes.

In practice, one can obtain the same results without actually un-
dertaking the extremely slow process of building trees for paralogous
genes.Onefirst goes through reads shared by twoparalogous genes (e.g.,
the 20 reads shared by genes B and C in Figure 3) and allocate the reads
according to PB = 6/(6 + 12) = 1/3 and PC = 12/(6 + 12) = 2/3. Now
genes B and C will have 12.66667 (= 6 + 20�PB) and 25.33333
(= 12 + 20�PC) assigned reads, i.e., NU.B = 12.66667 and NU.C =
25.33333. Once we have done with reads shared by two paralogous
genes, we go through reads shared by three paralogous genes, e.g., the
23 reads shared by genes A, B, andC in Figure 3.WithNU.A = 7,NU.B =
12.66667,NU.C = 25.333333, andN = NU.A + NU.B + NU.C = 45, so
we have

PA¼NU:A

N
¼0:15556; PB ¼ NU:B

N
¼ 0:28148; PC ¼ NU :C

N
¼ 0:56296

(7)

NA ¼ 7þ 23PA ¼ 10:57778
NB ¼ 12:66667þ 23PB ¼ 19:14074
NC ¼ 25:33333þ 23PC ¼ 38:28148;

(8)

which are the same as shown in Equation (6). This progressive process
continues until wehave allocated reads shared by the largest number of
paralogous genes. The gene expression output in File S1 was obtained
in this way.

There are alternative approaches for read allocation among paralo-
gous genes. ARSDA also has an alternative allocation scheme based
on BitScores and e-values. For example, when a read exhibits strong
homology to N paralogous genes, but with different e-values or
BitScores, I will not assign the read to the paralogous gene with the
smallest e-value (or largest BitScore). Instead, all N paralogous genes
will get a share of the read according to sequence similarity reflected in
e-value and BitScore. The simplest scheme based on BitScore is to
allocate such a read to paralogous gene i according to

Pi¼ BitScoreiP
BitScorei

; (9)

which would give a paralogous gene with high BitScore a higher share.
An alternative based on e-value is

Pi¼KminðEÞ
Ei

; (10)

n Table 4 Comparison of different compression methods from the
original single-read file (SRR1536586) and paired-end read file
(SRR922270) in FASTQ format

File Size (in Bytes)

Methods SRR1536586 SRR922270_1 SRR922270_2
FASTQ 1,604,183,348 2,647,494,360 2,647,494,360
GZIP 299,347,123 441,010,173 466,626,719
LFQC 101,191,680 159,732,224 174,810,624
FASTQ+a 119,596,093 493,950,425 493,950,425
GZIP+FASTQ+ 35,078,888 130,605,692 130,546,296
LFQC+FASTQ+ 16,506,880 61,696,000 62,689,280

SRR1536586 and SRR922270 are SRA file IDs in NCBI SRA database.
a
After converting FASTAQ+ format, the quality score for an entry such as
SeqID_200 is the mean for the 200 reads and not for individual sequences.
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where E is e-value and K is a scaling factor to ensure that
P

pi = 1.
Equation (10) allocates shared reads more to the paralogous gene
with a small e-value than those with large e-value. In practice, Equa-
tion (9) is often close to equal allocation, whereas Equation (10)
results in more biased allocation favoring the best-match paralogous
genes.

CONTRAST BETWEEN ARSDA AND CUFFLINKS IN
CHARACTERIZING GENE EXPRESSION
The most frequently used software for gene expression is Cufflinks
(Trapnell et al. 2012), which is why I am contrasting ARSDA against it.
I will use the transcriptomic data for an E. coli wild type (Pobre and
Arraiano 2015), archived in NCBI’s SRA database as SRR1536586.sra.

Figure 3 Allocation of shared reads in a gene family with three paralogous genes A, B, and C with three idealized segments with a conserved
identical middle segment, strongly homologous first segment that is identical in B and C, and a diverged third segment. Reads and the gene
segment they match to are of the same color.
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The Cufflinks-quantified gene expression for this file is in file
GSM1465035_WT.txt.gz from NCBI Geo DataSets GSM1465035.
Gene expression from ARSDA and Cufflinks in mostly concordant
(Figure 4), but four points (labeled in Figure 4) stand out as outliers
(although many more discordant points will be revealed by a log-log
plot). Such dramatic differences demand an explanation. Take rpmJ for
example. Either ARSDA severely overestimated, or Cufflinks severely
underestimated, the gene expression (Figure 4). I originally expected
the discrepancy to be due to different allocation of paralogous genes.
The expectation is only partially true.

There are 6426 reads can bemapped unambiguously to rpmJ (which
is in fact a single-copy ribosomal protein gene). Although there are
rpmA, rpmB, . . ., rpmJ genes in E. coli, they are not paralogous. One
particular read “AGTGCCGAGCCGAAGCATAAACAGCGCCAAG
GCTGATTTTTTCGCATATT” occurs 2684 times in SRR1536586.sra.
It matches perfectly to the 36 nt at the 39 end of rpmJ and 14 nt
immediately downstream. However, Cufflinks output reported a count
of only 2114 reads for rmpJ instead of 6426 (and consequently the
much reduced RPKM in Figure 4). I originally suspected that rpmJ
may be in an operon with an immediate downstream gene so that some
read overlapping rpmJ and the downstream gene would be divided
between the two. However, the downstream gene, which is rpsM, is
146 nt away. It is difficult to reconcile 6426 nonambiguous read

matches to Cufflinks’ 2114. Similarly, rpmD and rplV (Figure 4) has
14,468 and 22,747 unambiguous read matches, respectively, but the
corresponding counts in Cufflinks output are only 8108 and 11,801,
respectively. Note that rpmD and rplV are also single-copy genes with
no ambiguous read matches. E. coli genes rpmA–rpmJ are not paralo-
gous, neither are rplA–rplY.

The last outlying gene (cpsA in Figure 4) does involve a paralogous
gene family (Figure 5). cspA has 19,776 unambiguous readmatches, but
Cufflinks output has only 10,957, which resulted in a much lower
RPKM than that from ARSDA (Figure 4). Also puzzling are the counts
involving cspF and cspH. There are 264 unambiguous read matches to
cspF and 58 to cspH. There are also 55 reads that match well to both
cspF and cspH, with 27 of them matching cspF better than cspH, and
28 matching cspH better than cspF. So we may assign (264 + 27) reads
to cspF and (58 + 28) reads to cspH, with relative proportions of 0.7719
and 0.2281 for cspF and cspH, respectively. Twelve reads match cspF
and cspH equally well (the same e-value and the same BitScore), so we
assign them proportionally to the two genes, i.e., 12�0.7719 to cspF and
12�0.2281 to cspH. The final counts for cspF and cspH are 300.2626
and 88.7374, respectively. However, Cufflinks output shows counts of
2 and 63 for cspF and cspH, respectively. The discrepancy is particularly
striking given that gene expression from ARSDA and Cufflinks are
mostly concordant (Figure 4). The alternative allocation to paralogous

Figure 4 Contrast in gene expression (RPKM)
between ARSDA and Cufflinks output for the
same transcriptomic data in file SRR1536586.sra
for E. coli wild type.

Figure 5 Phylogenetic relationship among
paralogous genes cspA to cspI in E. coli,
based on coding sequences, with bootstrap
values next to internal nodes. Sequences
were aligned by MAFFT (Katoh and Toh
2008) with accurate L_INS-i option and a max-
imum of 16 iterations. Coding sequences
were first translated in amino acid sequences,
which are aligned with BLOSUM62 matrix.
Nucleotide sequences were then aligned
against aligned amino acid sequences. Phylo-
genetic analysis was done with PhyML (Guindon
et al. 2010). All these analyses were automated
in DAMBE (Xia 2013, 2017).
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genes as specified in Equations (9) and (10) does not help reconcile
the discrepancy. I hope that these numbers will prompt authors of
Cufflinks to be more explicit about how they treats counts.

Software and data availability
ARSDA is freely available at http://dambe.bio.uottawa.ca/ARSDA/
ARSDA.aspx, together with a QuickStart.PDF file showing HTS file
conversion from FASTA/FASTQ file to FASTA+ format, three types
of HTS data quality visualization tools, and downstream characteriza-
tion of gene expression. It is a Windows program, but can run on any
computer with .NET framework installed (e.g., Macintosh and Linux
with MONO installed and activated). The BLAST databases derived
from HTS reads for several model species, in which sequence IDs are
in the format of SeqID_CopyNumber, are deposited at coevol.rdc.
uottawa.ca. One can use these BLAST databases with ARSDA to char-
acterize gene expression or other analysis. The QuickStart.PDF file
available at the same site details the use of ARSDA, either alone or in
conjunction with the free DAMBE software (Xia 2013, 2017). The
source code is available as a zipped supplemental file ARSDA.Src.zip
in https://github.com/xuhuaxia/ARSDA.
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