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A linear matrix inequality (LMI) based criterion for the global asymptotic stability of discrete-time systems with multiple state-
delays employing saturation nonlinearities is presented.Numerical examples highlighting the effectiveness of the proposed criterion
are given.

1. Introduction

When discrete-time systems are implemented in finite word
length processor using fixed-point arithmetic, nonlinearities
are introduced due to quantization and overflow. Such non-
linearities may result in the instability of the designed system.
The global asymptotic stability of the null solution guarantees
the nonexistence of limit cycles in the realized system. A
number of researchers [1–20] have extensively investigated
the global asymptotic stability of discrete-time systems in the
presence of overflow nonlinearities.

Time delays are generally encountered in various physi-
cal, industrial, and engineering systems due to measurement
and computational delays, transmission, and transport lags
[21, 22]. The presence of time delays may cause instability of
the designed discrete-time systems. The problem of stability
analysis of discrete-time state-delayed systems has drawn the
attention of many researchers [23–37].

Stability analysis of discrete-time systems in the simul-
taneous presence of nonlinearities and time delays in their
physical models is an important problem.

This paper, therefore, deals with the problem of stability
analysis of a class of discrete-time state-delayed systems in
state-space realization employing saturation overflow arith-
metic.The paper is organized as follows. Section 2 introduces
the system under consideration. A computationally tractable

criterion for the global asymptotic stability of discrete-
time state-delayed systems employing saturation overflow
arithmetic is established in Section 3. It is demonstrated in
Section 4 that a previously reported criterion is recovered
from the presented approach as a special case. In Section 5,
two examples highlighting the effectiveness of the presented
approach are given.

2. System Description

In this section, the description of the system under consider-
ation is given. The following notations are used throughout
the paper:

R𝑝×𝑞: set of 𝑝 × 𝑞 real matrices,

R𝑝: set of 𝑝 × 1 real vectors,

0: null matrix or null vector of appropriate dimen-
sions,

I: identity matrix of appropriate dimensions,

B𝑇: transpose of a matrix (or vector) B,

B > 0: B is positive definite symmetric matrix,

‖ ⋅ ‖: any vector norm or matrix norm.
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The system under consideration is given by

x (𝑘 + 1) = f (y (𝑘))

= [𝑓1 (𝑦1 (𝑘)) 𝑓2 (𝑦2 (𝑘)) ⋅ ⋅ ⋅ 𝑓𝑛 (𝑦𝑛 (𝑘))]
𝑇
,

(1a)

y (𝑘) = Ax (𝑘) +

𝑚

∑

𝑖=1

A𝑑𝑖x (𝑘 − 𝑑𝑖)

= [𝑦1 (𝑘) 𝑦2 (𝑘) ⋅ ⋅ ⋅ 𝑦𝑛 (𝑘)]
𝑇
,

(1b)

x (𝑘) = 𝜑 (𝑘) , ∀𝑘 = −𝑑, −𝑑 + 1, . . . , 0, (1c)

𝑑 = max {𝑑1, 𝑑2, . . . , 𝑑𝑚} , (1d)

where x(𝑘) ∈ R𝑛 is the state vector; A, A𝑑𝑖 (𝑖 = 1, 2, . . . , 𝑚) ∈

R𝑛×𝑛 are the known constant matrices; 𝑑𝑖 (𝑖 = 1, 2, . . . , 𝑚) is
the positive integer for time delays; and𝜑(𝑘) ∈ R𝑛 is the initial
state value at time 𝑘. The function 𝑓𝑖(𝑦𝑖(𝑘)) representing the
saturation nonlinearities given by

𝑓𝑖 (𝑦𝑖 (𝑘)) =

{{

{{

{

1, 𝑦𝑖 (𝑘) > 1

𝑦𝑖 (𝑘) , −1 ≤ 𝑦𝑖 (𝑘) ≤ 1

−1, 𝑦𝑖 (𝑘) < −1,

𝑖 = 1, 2, . . . , 𝑛,

(2)

is under consideration.
Let

A = [A
.
.
. A𝑑1

.

.

. A𝑑2
.
.
. ⋅ ⋅ ⋅

.

.

. A𝑑𝑚
] = [𝑎𝑖𝑗] . (3)

Define [14]

𝑠𝑖 =

𝑛(𝑚+1)

∑

𝑗=1


𝑎𝑖𝑗


, 𝑖 = 1, 2, . . . , 𝑛 (4)

and assume that the elements of the matrix A satisfy

𝑠𝑖 > 1, 𝑖 = 1, 2, . . . , 𝑞, (5a)

𝑠𝑖 ≤ 1, 𝑖 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛, (5b)

where 𝑞 is an integer between 0 and 𝑛. Such assumption does
not pose any real difficulty due to the fact that, by relabeling
the states, any discrete-time system can easily be transformed
into an equivalent system such that (5a) and (5b) hold.

A class of discrete-time systems can be described with
(1a), (1b), (1c), (1d), and (2); it includes digital filters imple-
mented in finite word length [1–18], digital control systems
with saturation arithmetic [5], neural networks defined on
hypercubes [38], and so forth.

The equilibrium state x𝑒 = 0 of the system (1a), (1b), (1c),
(1d), and (2) is asymptotically stable, if, for any 𝜀 > 0, there
exists 𝛽 > 0 such that if ‖𝜙(𝑘)‖ < 𝛽, 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,
then ‖x(𝑘)‖ < 𝜀, for every 𝑘 ≥ 0 and lim𝑘→∞x(𝑘) = 0.

3. Main Results

In this section, a linear matrix inequality (LMI) based
criterion for the global asymptotic stability of the system (1a),
(1b), (1c), (1d), (2), (4), (5a), and (5b) is established.

Suppose C = [𝑐𝑖𝑗] ∈ R𝑛×𝑛 is a matrix characterized by

𝑐𝑖𝑖 =

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

(𝛼𝑖𝑗 + 𝛽𝑖𝑗) , 𝑖 = 1, 2, . . . , 𝑞, (6a)

𝑐𝑖𝑗 =

{{{{{{

{{{{{{

{

𝛼𝑖𝑗 − 𝛽𝑖𝑗,

𝑖, 𝑗 = 1, 2, . . . , 𝑞 (𝑖 ̸= 𝑗) ,

𝛼𝑖𝑗 − 𝛽𝑖𝑗

𝑠𝑗
,

𝑖 = 1, 2, . . . , 𝑞, 𝑗 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛 (𝑖 ̸= 𝑗) ,

(6b)

𝛼𝑖𝑗 > 0, 𝛽𝑖𝑗 > 0,

𝑖 = 1, 2, . . . , 𝑞, 𝑗 = 1, 2, . . . , 𝑛 (𝑖 ̸= 𝑗) ,

(6c)

where it is implicit that, for 𝑛 = 1, C corresponds to a scalar
𝜇 > 0.

For 𝑛 = 3 and 𝑞 = 2, the matrix C takes the form

C =

[
[
[
[

[

𝛼12 + 𝛽12 + 𝛼13 + 𝛽13 𝛼12 − 𝛽12
𝛼13 − 𝛽13

𝑠3

𝛼21 − 𝛽21 𝛼21 + 𝛽21 + 𝛼23 + 𝛽23
𝛼23 − 𝛽23

𝑠3
𝑐31 𝑐32 𝑐33

]
]
]
]

]

,

(7)

where 𝛼𝑖𝑗 > 0 and 𝛽𝑖𝑗 > 0 𝑖 = 1, 2, 𝑗 = 1, 2, 3 (𝑖 ̸= 𝑗).
Now, we have the following lemma.

Lemma 1. The matrix C = [𝑐𝑖𝑗] ∈ R𝑛×𝑛 defined by (6a), (6b),
and (6c) satisfies

𝑐𝑖𝑖 ≥

𝑞

∑

𝑗=1,𝑗 ̸=𝑖


𝑐𝑖𝑗


+

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

𝑠𝑗

𝑐𝑖𝑗


,

𝑖 = 1, 2, . . . , 𝑞.

(8)

Proof. Using (6a), (6b), and (6c), we obtain

𝑐𝑖𝑖 =

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

(𝛼𝑖𝑗 + 𝛽𝑖𝑗)

=

𝑞

∑

𝑗=1,𝑗 ̸=𝑖

(𝛼𝑖𝑗 + 𝛽𝑖𝑗) +

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

(𝛼𝑖𝑗 + 𝛽𝑖𝑗)

>

𝑞

∑

𝑗=1,𝑗 ̸=𝑖


𝛼𝑖𝑗 − 𝛽𝑖𝑗


+

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

𝑠𝑗


𝛼𝑖𝑗 − 𝛽𝑖𝑗



𝑠𝑗

=

𝑞

∑

𝑗=1,𝑗 ̸=𝑖


𝑐𝑖𝑗


+

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

𝑠𝑗

𝑐𝑖𝑗


, 𝑖 = 1, 2, . . . , 𝑞.

(9)

This completes the proof of Lemma 1.

Now, we prove our main result.
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Theorem 2. The zero solution of the system described by (1a),
(1b), (1c), (1d), (2), (4), (5a), and (5b) is globally asymptotically
stable if there exist positive scalars 𝛼𝑖𝑗, 𝛽𝑖𝑗 𝑖 = 1, 2, . . . , 𝑞, 𝑗 =

1, 2, . . . , 𝑛 (𝑖 ̸= 𝑗) and positive definite symmetric matrices P ∈

R𝑛×𝑛, Q𝑖 ∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑚) such that the following LMI
holds:

Z =

[
[
[
[
[
[
[
[

[

P −

𝑚

∑

𝑖=1

Q𝑖 0 . . . 0 −A𝑇C

0 Q1 . . . 0 −A𝑑1
𝑇C

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 . . . Q𝑚 −A𝑑𝑚
𝑇C

−C𝑇A −C𝑇A𝑑1 . . . −C𝑇A𝑑𝑚 −P + C + C𝑇

]
]
]
]
]
]
]
]

]

> 0,

(10)

where C is characterized by (6a), (6b), and (6c).

Proof. Let

x̂ (𝑘) = [x𝑇 (𝑘) x𝑇 (𝑘 − 𝑑1) x𝑇 (𝑘 − 𝑑2) ⋅ ⋅ ⋅ x𝑇 (𝑘 − 𝑑𝑚)]
𝑇

.

(11)

In view of (1a), (1b), (1c), (1d), we have
𝑥𝑖 (𝑘)

 ≤ 1, 𝑖 = 1, 2, . . . , 𝑛 (𝑚 + 1) . (12)

Using (1b), (12), and (5b), one obtains

𝑦𝑖 (𝑘)
 =



𝑛(𝑚+1)

∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 (𝑘)



≤

𝑛(𝑚+1)

∑

𝑗=1


𝑎𝑖𝑗




𝑥𝑗 (𝑘)



≤

𝑛(𝑚+1)

∑

𝑗=1


𝑎𝑖𝑗


= 𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑛.

(13)

It follows from (5b) and (13) that
𝑦𝑖 (𝑘)

 ≤ 1, 𝑖 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛, (14)

which, together with (2), yields

𝑓𝑖 (𝑦𝑖 (𝑘)) = 𝑦𝑖 (𝑘) , 𝑖 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛. (15)

Consider a quadratic Lyapunov function [19]

V (x (𝑘)) = x𝑇 (𝑘)Px (𝑘) +

𝑚

∑

𝑖=1

−1

∑

𝑗=−𝑑𝑖

x𝑇 (𝑘 + 𝑗)Q𝑖x (𝑘 + 𝑗) .

(16)

Application of (16) to (1a), (1b), (1c), and (1d) gives

ΔV (x (𝑘)) = V (x (𝑘 + 1)) − V (x (𝑘))

= f𝑇 (y (𝑘))Pf (y (𝑘)) − x𝑇 (𝑘) [P −

𝑚

∑

𝑖=1

Q𝑖] x (𝑘)

−

𝑚

∑

𝑖=1

x𝑇 (𝑘 − 𝑑𝑖)Q𝑖x (𝑘 − 𝑑𝑖) .

(17)

Now choose the quantity “𝛿” as [14]

𝛿 = 2

𝑞

∑

𝑖=1

[𝑦𝑖 (𝑘) − 𝑓𝑖 (𝑦𝑖 (𝑘))]

× [

[

𝑐𝑖𝑖𝑓𝑖 (𝑦𝑖 (𝑘)) +

𝑞

∑

𝑗=1,𝑗 ̸=𝑖

𝑐𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘))

+

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

𝑐𝑖𝑗𝑠𝑗

𝑓𝑗 (𝑦𝑗 (𝑘))

𝑠𝑗

]

]

+ 2

𝑛

∑

𝑖=𝑞+1

[𝑦𝑖 (𝑘) − 𝑓𝑖 (𝑦𝑖 (𝑘))]

× [

[

𝑐𝑖𝑖𝑓𝑖 (𝑦𝑖 (𝑘)) +

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘))
]

]

,

(18)

when 𝑛 ≥ 2 and

𝛿 = 2𝜇 [𝑦1 (𝑘) − 𝑓1 (𝑦1 (𝑘))] 𝑓1 (𝑦1 (𝑘)) , (19)

when 𝑛 = 1.
From (13) and (15), we obtain
𝑓𝑖 (𝑦𝑖 (𝑘))

 =
𝑦𝑖 (𝑘)

 ≤ 𝑠𝑖, 𝑖 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛. (20)

Therefore,


𝑓𝑗 (𝑦𝑗 (𝑘))

𝑠𝑗



≤ 1, 𝑗 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑛. (21)

Using Lemma 1 and (21), it is easy to show that the first term
of (18) is nonnegative for the nonlinearities given by (2) if (8)
is satisfied. In view of (15), the second term of (18) is zero.
Thus, the quantity “𝛿” given by (18) is nonnegative. Equation
(18) can also be expressed as

𝛿 = y𝑇 (𝑘)Cf (y (𝑘)) + f𝑇 (y (𝑘))C𝑇y (𝑘)

− f𝑇 (y (𝑘)) (C + C𝑇) f (y (𝑘)) .

(22)

Adding to and subtracting from (17), the quantity “𝛿” yields,
after some rearrangement,

ΔV (x (𝑘)) = −x̃𝑇 (𝑘)Zx̃ (𝑘) − 𝛿, (23)

where

x̃𝑇 (𝑘) = [x̂𝑇 (𝑘) f𝑇 (y (𝑘))] , (24)

and Z is given by (10). Therefore, if Z > 0, then ΔV(x(𝑘)) < 0
for x̃(𝑘) ̸= 0. Thus, condition Z > 0is a sufficient condition
for the global asymptotic stability of the system (1a), (1b), (1c),
(1d), (2), (4), (5a), (5b), andΔV(x(𝑘)) = 0 only when x̃(𝑘) = 0.
This completes the proof of Theorem 2.

Remark 3. The matrix inequality (10) is linear in the
unknown parameters 𝛼𝑖𝑗,𝛽𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑞, 𝑗 = 1, 2, . . . , 𝑛

(𝑖 ̸= 𝑗)), P, and Q𝑖 (𝑖 = 1, 2, . . . , 𝑚). Thus, it can be easily
solved using MATLAB LMI toolbox [39, 40].
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Remark 4. Note that condition (10) is independent of the
delay. Therefore, one need not know the size of the delays
to establish the global asymptotic stability of the system (1a),
(1b), (1c), (1d), (2), (4), (5a) and (5b) via Theorem 2.

Remark 5. Condition (10) provides a limit cycle-free realiz-
ability condition for the system with saturation arithmetic.

Remark 6. Stability of the system can be established via
Theorem 2 for one combination of the elements of the matrix
A, that is, where the elements of first 𝑞 rows of A satisfy (5a)
and those of the remaining (𝑛 − 𝑞) rows satisfy (5b). The
stability results for the other possible combinations of the
elements of matrix A can easily be worked out.

4. Comparison

In this section, we will compare the main result of this paper
with the result stated in [41].

Theorem7 (see [41]). Thezero solution of the systemdescribed
by (1a), (1b), (1c), (1d), (2), and (4) is globally asymptotically
stable if there exist 𝑛 × 𝑛 positive definite symmetric matrices
P = [𝑝𝑖𝑗] and Q𝑖 (𝑖 = 1, 2, . . . , 𝑚) such that

[
[
[
[
[
[
[
[
[
[

[

P−

𝑚

∑

𝑖=1

Q𝑖 0 . . . 0 −A𝑇P

0 Q1 . . . 0 −A𝑑1
𝑇P

.

.

.

.

.

. d
.
.
.

.

.

.

0 0 . . . Q𝑚 −A𝑑𝑚
𝑇P

−PA −PA𝑑1 . . . −PA𝑑𝑚 P

]
]
]
]
]
]
]
]
]
]

]

> 0, (25)

𝑝𝑖𝑖 ≥

𝑞

∑

𝑗=1,𝑗 ̸=𝑖


𝑝𝑖𝑗


+

𝑛

∑

𝑗=𝑞+1,𝑗 ̸=𝑖

𝑘𝑗

𝑝𝑖𝑗


, 𝑖 = 1, 2, . . . , 𝑞. (26)

Proposition 8. Theorem 2 implies Theorem 7.

Proof. It can be easily conceived that, with

C = C𝑇 = P, (27)

matrix C reduces to a positive definite symmetric matrix
P; as a result, (10) reduces to (25). Therefore, Theorem 7 is
recovered fromTheorem 2 as a special case.

Remark 9. The present work may be treated as an extension
of [41]. Moreover, the present approach leads to generalized
and improved result over the result appearing in [41].

5. Numerical Examples

In this section, two numerical examples are given to demon-
strate the usefulness of the present result.

Example 1. Consider a second-order system (1a), (1b), (1c),
(1d), (2), (4), (5a), and (5b) with

A = [
1.7 −2.5

0.3 0.1
] , A𝑑1 = [

0 0.001

0.001 0
] . (28)

Here, 𝑠1 = 4.201 > 1, 𝑠2 = 0.401 < 1, 𝑚 = 1, and 𝑞 =

1. Using MATLAB LMI toolbox [39, 40], it can be verified
thatTheorem 7 does not provide any feasible solution for this
example.

We now applyTheorem 2 in the example under consider-
ation. To check the feasibility of (10), we choose the matrix C
in the following form:

C = [

[

𝛼12 + 𝛽12
𝛼12 − 𝛽12

𝑠2
𝑐21 𝑐22

]

]

, (29)

where 𝛼12 > 0 and 𝛽12 > 0. With the help of MATLAB LMI
toolbox [39, 40], it turns out that (10) yields the following
solutions for the present system:

P = [
3.7407 −9.7872

−9.7872 30.3330
] , Q1 = [

0.1201 −0.3006

−0.3006 1.0939
] ,

C = [
3.5890 −8.6693

−9.3390 27.3297
] ,

(𝛼12 = 0.0563, 𝛽12 = 3.5327) .

(30)
Therefore, Theorem 2 affirms the global asymptotic stability
of the present system. Figure 1 shows the trajectory of the state
variable for the present example with

𝑥 (0) = [
0.1

0.1
] , 𝑥 (−1) = [

0.01

0.01
] . (31)

The global asymptotic stability of the system under
consideration (via Theorem 2) has also been verified for a
number of randomly generated initial conditions with the
help of trajectories traces of the system.

Example 2. Consider a system described by (1a), (1b), (1c),
(1d), (2), (4), (5a), and (5b) with

A = [
0.25 −2.5

0.3 0.1
] , A𝑑1 = [

0 0.001

0.001 0
] ,

A𝑑2 = [
0 0.001

0.001 0
] .

(32)

Here, 𝑠1 = 2.752 > 1, 𝑠2 = 0.402 < 1, 𝑞 = 1, and 𝑚 = 2.
Using MATLAB LMI toolbox [39, 40], it can be verified that
(10) leads to the following feasible solutions:

P = [
46.2533 −10.7064

−10.7064 364.9293
] ,

Q1 = Q2 = [
4.6440 −0.6299

−0.6299 25.7668
] ,

C = [
47.5470 −12.7868

−8.9295 316.4069
] ,

(𝛼12 = 21.2034, 𝛽12 = 26.3436) .

(33)

Therefore, for this example,Theorem 2 succeeds to determine
the global asymptotic stability of the system. However, (25)
becomes infeasible and, consequently, Theorem 7 fails to
ensure the global asymptotic stability of the present example.
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Figure 1: Trajectory for the state variables.

6. Conclusions

AnLMI-based sufficient condition (Theorem 2) for the global
asymptotic stability of discrete-time systems with multiple
state-delays employing saturation nonlinearities has been
established. It is shown that Theorem 2 is less stringent
than Theorem 7. Two numerical examples highlighting the
usefulness of the presented result have been discussed.

The potential extensions of the proposed idea to the prob-
lems of stability of linear discrete-time systems with interval-
like time-varying delay in the state [42, 43], stability of fixed-
point state-space digital filters with saturation arithmetic
[44], robust stability of discrete-time state-delayed systems
using generalized overflow nonlinearities [19], stability of
linear systems with input saturation and asymmetric con-
straints on the control increment or rate [45], and stability of
linear two-dimensional systems with multidelays and input
saturation [46], to other situations such as [47, 48], appear to
be appealing problems for future investigation.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthorwishes to thankProfessor FernandoTadeo and the
anonymous reviewers for their constructive comments and
suggestions.

References

[1] J. H. F. Ritzerfeld, “Condition for the overflow stability of
second-order digital filters that is satisfied by all scaled state-
space structures using saturation,” IEEE transactions on circuits
and systems, vol. 36, no. 8, pp. 1049–1057, 1989.

[2] V. Singh, “A new realizability condition for limit cycle-free
state-space digital filters employing saturation arithmetic,” IEEE

Transactions on Circuits and Systems, vol. 32, no. 10, pp. 1070–
1071, 1985.

[3] V. Singh, “Elimination of overflow oscillations in fixed-point
state-space digital filters using saturation arithmetic,” IEEE
Transactions on Circuits and Systems, vol. 37, no. 6, pp. 814–818,
1990.

[4] T. Bose and M. Chen, “Overflow oscillations in state-space
digital filters,” IEEE transactions on circuits and systems, vol. 38,
no. 7, pp. 807–810, 1991.

[5] D. Liu and A. N. Michel, “Asymptotic stability of discrete-time
systems with saturation nonlinearities with applications to digi-
tal filters,” IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications, vol. 39, no. 10, pp. 798–807,
1992.

[6] H. Kar and V. Singh, “A new criterion for the overflow stability
of second-order state-space digital filters using saturation arith-
metic,” IEEE Transactions on Circuits and Systems I, vol. 45, no.
3, pp. 311–313, 1998.

[7] H. Kar and V. Singh, “Stability analysis of discrete-time systems
in a state-space realisation with partial state saturation nonlin-
earities,” IEE Proceedings: Control Theory and Applications, vol.
150, no. 3, pp. 205–208, 2003.

[8] T. Ooba, “Stability of linear discrete dynamics employing state
saturation arithmetic,” IEEE Transactions on Automatic Control,
vol. 48, no. 4, pp. 626–630, 2003.

[9] H. Kar and V. Singh, “Elimination of overflow oscillations in
fixed-point state-space digital filters with saturation arithmetic:
an LMI approach,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 51, no. 1, pp. 40–42, 2004.

[10] V. Singh, “Stability analysis of discrete-time systems in a state-
space realisation with state saturation nonlinearities: Linear
matrix inequality approach,” IEE Proceedings Control Theory
and Applications, vol. 152, no. 1, pp. 9–12, 2005.

[11] H. Kar and V. Singh, “Elimination of overflow oscillations in
digital filters employing saturation arithmetic,” Digital Signal
Processing, vol. 15, no. 6, pp. 536–544, 2005.

[12] H. Kar, “An LMI based criterion for the nonexistence of over-
flow oscillations in fixed-point state-space digital filters using
saturation arithmetic,”Digital Signal Processing, vol. 17, no. 3, pp.
685–689, 2007.

[13] V. Singh, “Modified form of Liu-Michel’s criterion for global
asymptotic stability of fixed-point state-space digital filters
using saturation arithmetic,” IEEE Transactions on Circuits and
Systems II, vol. 53, no. 12, pp. 1423–1425, 2006.

[14] H. Kar, “An improved version ofmodified Liu-Michel’s criterion
for global asymptotic stability of fixed-point state-space digital
filters using saturation arithmetic,”Digital Signal Processing, vol.
20, no. 4, pp. 977–981, 2010.

[15] V. Singh, “Novel criterion for stability of discrete-time systems
in a state-space realization utilizing saturation nonlinearities,”
AppliedMathematics andComputation, vol. 218, no. 8, pp. 4305–
4311, 2011.

[16] V. Singh, “New criterion for stability of discrete-time systems
joined with a saturation operator on the state-space,” AEU-
International Journal of Electronics and Communications, vol.
66, no. 6, pp. 509–511, 2012.

[17] V. Singh, “Stability of discrete-time systems joined with a
saturation operator on the state-space: yet another version of
Liu-Michel’s criterion,” AEÜ International Journal of Electronics
and Communications, vol. 66, no. 1, pp. 28–31, 2012.



6 International Scholarly Research Notices

[18] P. Kokil, V. K. R. Kandanvli, and H. Kar, “A note on the criterion
for the elimination of overflow oscillations in fixed-point digital
filters with saturation arithmetic and external disturbance,”
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