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Abstract

Parkinson’s disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein a-Synuclein
(aS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits
are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be
recapitulated in model organisms such as Drosophila melanogaster when aS is pan-neurally expressed. Interestingly, both
these deficits are more severe when aS mutants with reduced aggregation properties are expressed in flies. This indicates
that that aS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in
Drosophila which utilizes the targeted expression of aS mutants in a subset of dopadecarboxylase expressing serotonergic
and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar aS mutants not only recapitulates
PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered
locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms
in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death.
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Introduction

Parkinson’s disease (PD) correlates with the formation of

insoluble fibrillar aggregates in the central nervous system that

contain a-Synuclein (aS) [1,2]. Importantly, misfolding of aS and

aggregation of the protein can be aggravated by point mutations in

the aS gene. Mutations that alter the aS fibrillation characteristics,

such as the A53T mutation [3] were found to cause an autosomal

dominant form of PD [3–5]. In addition to A53T, a number of aS

mutants with impaired ß-structure have been generated and

shown to aggregate much later than wild type aS [6]. Pan-

neuronal expression of these mutant aS proteins, which aggregate

less efficiently than wild type aS, causes PD-like motor symptoms

more efficiently than wild type aS when expressed in neurons of

model organisms such as Drosophila melanogaster (reviewed in [7])

and Caenorhabditis elegans [6]. The most effective pre-fibrillar aS

mutant tested so far consists of three alanine replacements by

prolines (at positions A30P, A56P and A76P; ‘‘TP-aS’’). TP-aS is

strongly impaired in amyloid fibril formation and fails to aggregate

[6]. This observation suggests that soluble pre-fibrillar aS

oligomers are in fact responsible for causing motor symptoms

observed in PD and other neurodegenerative diseases, in

agreement with earlier proposals [8,9].

Interestingly, motor-impairment in PD patients is known to be

often preceded by non-motor symptoms such as sleep problems.

Therefore, we asked whether pre-fibrillar aS mutations can also

induce PD-like non-motor symptoms in Drosophila. We expressed

aS mutant protein in a subset of neurons, that includes the

serotonergic and dopaminergic (DA) neurons of Drosophila and flies

were examined for alterations in their sleep behavior and circadian

activity. Here we report that the expression of pre-fibrillar aS

mutant proteins does indeed cause non-motor symptoms in flies;

these include an altered sleep-like rest behavior [10], an extended

circadian rhythm, as well as an abnormal locomotion. Important-

ly, these symptoms were all observed prior to cell death, strongly

suggesting that it is the early impairment of the DA system, by the

pre-fibrillar aS proteins, that is responsible for the observed non-

motor symptoms. Our results present a powerful genetic model for

PD, allowing the dissection of the underlying mechanisms by

which non-aggregating aS impairs the DA system and causes non-

motor symptoms.

Results

Recent results have shown that pan-neuronal expression of pre-

fibrillar oligomers of mutant aS causes PD-like motor symptoms in

Drosophila [6]. Importantly, these mutant aS proteins show reduced

fibrillization propensity, but form increased amounts of soluble

oligomers in comparison to aggregating wild type aS [6]. One of

the aS mutants, A53T-aS, is linked to familial PD [3]. It forms

pre-fibrillar aS oligomers that aggregate later than wild type aS

[6]. A second mutant, the triple alanine to proline mutation TP-aS

forms pre-fibrillar oligomers but fails to aggregate. Upon pan-

neuronal expression, the strength of the motor symptoms and cell

toxicity correlate with the aggregation properties of the protein

(wild type aS,A53T-aS,TP-aS; details in [6]).

In order to explore whether expression of the TP-aS and A53T-

aS mutant proteins causes PD-like non-motor symptoms in flies,
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we employed the bipartite UAS/Gal4 expression system [11]

using the Ddc-Gal4 [12] and TH-Gal4 [13] drivers. They allow

UAS-dependent aS mutant transgene expression in both seroto-

nergic and dopaminergic (DA) neurons [12] and in DA neurons

[13], respectively. Positional effects can complicate analysis of

transgenes, particular when transgenes have inserted randomly

into different positions and are subject to varying positional effects.

Therefore, to precisely insert the different transgenes into the same

pre-determined chromosomal locations, we used the wC31-based

site-specific recombination system [14]. As controls for the possible

effects aS mutant, we expressed wild type aS (WT-aS) and

bacterial lacZ under otherwise identical conditions.

Expression of aS mutants affects the sleep-like rest
behavior of flies

The Ddc-Gal4-dependent expression of aS or mutant aS

proteins in flies and resulting PD-like motor symptoms have been

described (see [6,15]). However, non-motor symptoms, such as the

abnormal sleep behavior seen in PD patients [16,17], have not

been addressed in a simple animal PD model organism. Therefore,

we asked whether the sleep-like rest of flies [10], to which we refer

to as ‘‘sleep’’, is affected in flies expressing wild type aS, A53T-aS

or TP-aS.

Sleep in flies includes canonical features of mammalian sleep

[10,18–20]. We tested whether the number of sleep episodes

(‘‘bout number’’), the length of sleep episodes (‘‘bout length’’) and

the total length of sleep (‘‘total sleep’’) [21,22] is affected in flies

expressing mutant forms of aS. Flies were raised and kept under a

12 hrs light/12 hrs day cycle (L:D = 12 hrs:12 hrs) (Fig. 1A–F).

Control flies expressing lacZ or wild type aS and flies expressing

A53T-aS or TP-aS were examined three days after hatching

(‘‘young flies’’).

When compared to lacZ expression, the expression of wild type

aS led to a higher number of sleep episodes during the light phase

(‘‘bout number’’; Fig. 1A), but the average length of each sleep

episode (‘‘bout length’’) was not significantly affected (P$0.05;

Fig. 1C). During the dark phases, wild type a-S expression led to a

reduction of bout number (Fig. 1B) but an increase in bout length

(Fig. 1D) when compared to control flies (lacZ expression).

Expression of A53T-aS and TP-aS led to a mild and strong

increase in both bout number and bout length, respectively, when

compared to lacZ expression during the light and dark phases

(Figure 1A–D). Taken together, the results show that while

expression of wild type aS interrupts the sleep of flies during the

day more frequently than occurs in lacZ expressing control flies. In

contrast, the expression of the two a-S mutants had an opposite

effect (TP-aS.A53T-aS), i.e. the number of sleep episodes was

reduced during the day (Fig. 1A), but the average length of the

sleep episodes was extended (Fig. 1C). During the night, both wild

type aS and the aS mutants reduced the number of sleep episodes

experienced by the flies (Fig. 1B), and the length of the sleep

episodes (Fig. 1D) was extended (aS.A53T.TP-aS). While the

expression of wild type aS and A53T-aS had no significant effect

on the total sleep of the flies, the expression of the TP-aS mutant

led to a significant reduction in the time the flies spent asleep

during a 24 h period (P,0.001; Figure 1E, F). However, the level

of activity in awake flies expressing wild type or mutant aS was not

significantly affected (P$0.05) (Fig. 1G; ‘‘activity index’’; see

Materials and Methods).

The results indicate that the sleep behavior of flies is altered in a

protein specific manner in response to aS, A53T and TP-aS

expression. In human PD patients, difficulty in sleep maintenance

(sleep fragmentation) is the earliest and most frequent sleep

disorder in such patients reported [16,17]. Other common sleep-

associated complains include excessive daytime sleepiness. How-

ever, a systematic exploration of sleep problems in human patients

has never been undertaken, and the etiology of the problems

remains unknown. Furthermore, it is also unclear whether some of

the sleep problems of PD patients are actually related to the

disease process itself or rather to side-effects from therapeutic

strategies employed [16,17]. Thus, it is not surprising that the

expression of aS and the aS mutants results in a variable pattern of

sleep abnormalities when compared to lacZ control gene

expression. However, it is important to note that the effects in

each experimental series can be crudely ordered according to the

biophysical properties of the proteins, i.e. their propensity to form

pre-fibrillar aS oligomers (A53T,TP-aS) instead of aggregates

(aS) (see Fig. 1A, C, D).

In summary, these findings establish that aS expression affects

the sleep behavior of young flies prior to the stage when motor

symptoms and neurotoxicity of the mutants can be detected [6,15]

(and our own observations). Thus, abnormal sleep in young flies is

likely to be caused by dysfunctional neurons system, resulting from

aS as well as aS mutant protein expression, and not only by their

degeneration which is observed concomitant with motor syn-

dromes in the older flies [6,15].

Expression of the aS mutants affects circadian locomotor
activity

The dopaminergic neuronal system of Drosophila is predicted to

play a role in circadian entrainment and in translating the

circadian molecular oscillations in clock cells into locomotor

activity of the organism [23,24]. We next asked whether the

circadian locomotor activity is affected by Ddc-Gal4 mediated pre-

fibrillar aS expression and whether the flies can anticipate the

dark-light (D:L) transition after a D:L cycle entrainment

(12 hrs:12 hrs; Fig. 2A) as reported for wild type flies [25]. This

anticipation behavior of the flies is reflected in a slow increase in

locomotor activity prior to the D:L transitions (arrows in Fig. 2B–

G).

Ddc-Gal4-driven expression of lacZ in young and old flies had no

detectable effect on the circadian locomotor activity profiles of the

flies (Fig. 2B–C). Ddc-Gal4-driven expression of wild type aS

(Fig. 2D,E), and in particular TP-aS expression (Fig. 2F,G), altered

the locomotor activity profiles. The anticipation behavior was

maintained in lacZ expressing young (1–3 days after eclosion) and

old (30 days after eclosion) control flies (Fig. 2B, C) as well as in

young and old flies expressing wild type aS (Fig. 2D, E). It was also

observed with young flies expressing the TP-aS mutant protein,

but old flies lost this behavioral characteristic in response to TP-aS

expression.

Furthermore, there is normally a maximum activity peak

before the L:D transition followed by a sharp decrease (asterisk in

Fig. 2 B–G), indicating that ‘‘sudden dark’’ represents a signal for

flies to abruptly stop their locomotion. In young flies, aS

expression causes a phasing out of the locomotion activities

(asterisk in Fig. 2 D) which is even more pronounced in flies

expressing TP-aS (circle in Fig. 2F). This effect is further

enhanced in old flies that express the mutant protein (asterisk in

Fig. 2 G), a phenomenon that is not observed with wild type aS

expressing flies. One possible explanation for this unexpected

recovery in aS expressing but not in TP-aS expressing flies is that

soluble, pre-fibrillar aS impairs neuron function, whereas aS

aggregates which form in aS, but not in TP-aS expressing cells

[6], have no such effect. In fact, 30 days after fly eclosion, the

majority of aS expressing neurons contain such aggregates, but

no massive cell death can be detected [15]. In contrast, the high

toxicity of the TP-aS mutant causes massive amounts of cell
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Figure 1. Sleep behavior of flies expressing lacZ, wild type aS and aS mutants from Ddc-Gal4-driven UAS transgenes. Expression of
pre-fibrillar aS mutants (A53T-aS, TP-aS; see text) in young flies (3 days after hatching) affect the average number of sleep episodes (‘‘bout number’’;
A, B), the average length of sleep episodes (‘‘bout length’’; C, D), and the total length of sleep (‘‘total sleep’’; E, F) more severely than aS expression
both during the light (‘‘day’’; A, C) and dark (‘‘night’’; B, D) periods. The activity level during the wake periods (‘‘activity index’’; G) were not
significantly affected. Bars represent mean values of at least three independent experiments 6 the standard error of the mean from 32 animals that
were individually recorded in each experiment. Differences among means were determined by one-way ANOVA followed by the Newman-Keuls
Multiple Comparison post hoc test using wild type aS (Wt-aS) as control for the mutants; no asterisk: P$0.05; one asterisk: P,0.01; two asterisks:
P,0.001. lacZ and Wt-aS refer to lacZ and wild type aS control expression; A53T-aS and TP-aS to the aS mutants; for details see text.
doi:10.1371/journal.pone.0024701.g001
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death [6]. This interpretation would imply that the presence of

aS oligomers impairs neuronal function even in young flies, with

severe age-related phenotypes perhaps reflecting the high levels of

accompanying cell death. In contrast, alive cells containing

wildtype aS aggregates retain a higher level of functionality for

longer periods due to lower neurotoxicity of aS.

In order to assess a possible effect of TP-aS expression on the

circadian rhythms of the flies, we monitored the circadian

locomotor activities under constant dark conditions (DD) with

young and old flies, respectively. Flies were raised and kept for

three days in a L:D cycle of 12 hrs light and12 hrs dark. Flies were

then transferred to continuous dark conditions (young flies) or kept

Figure 2. Locomotor activity and anticipation of the dark-light transition of flies expressing lacZ, wild type aS and the oligomer-
forming TP-aS mutant. (A) Dark-light (D:L = 12 hrs:12 hrs) transition bar. (B–G) Locomotor activity profile of young flies (3 days after hatching; B,
D, F) and old flies (30 days after hatching; C, E, G); expressing lacZ (blue line; B, C), WT-aS (green line; D, E) and TP-aS (red line; F, G). Black arrows
point to the beginning of locomotor activity prior to the onset of light (anticipatory behavior of the flies). Note that old flies expressing TP-aS fail to
anticipate the onset of the light period (red arrow in F). Red asterisks show the phasing out of the maximum locomotor activities after the light-dark
switch. For details see text.
doi:10.1371/journal.pone.0024701.g002
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an additional 27 days in the L:D before being transferred to

continuous dark (old flies). Actograms for both sets of flies were

obtained over a a period of ten days (Fig. 3A–D). Fig. 3A and B

show that the normal circadian activity of young flies is not altered

in response to either aS or TP-aS expression, i.e. they maintain

their normal periodicity (T = 23.8 hrs) over a period of 10 days.

Old flies expressing aS also maintain a normal periodicity

(T = 23.7 hrs), whereas old flies expressing TP-aS shift their

periodicity (T = 26.7 hrs) similar to flies which lack key compo-

nents of the circadian clock control such as period [26]. These

findings establish that TP-aS expression in neurons interferes with

the circadian rhythm of aging flies.

DA neuron inactivation causes a TP-aS-like locomotor
activity phenotype

The DA system plays an as yet undefined role in regulating the

circadian locomotor activity of flies [23,24]. We sought to test

whether the circadian defects observed after TP-aS expression

relate to the DA system, and if so, whether they are due to

neuronal dysfunctions or neural degeneration. To accomplish this,

we reduced the activity in DA neurons either by expressing a

mutant Shaker potassium channel (EKO/Kir 2.1) or a bacterial

sodium channel (NaChBac) from UAS-cDNA transgenes driven

by the DA-specific TH-Gal4 driver [12]. Both ion channels

attenuate synaptic transmission from DA neurons by interfering

with their membrane excitability, but the DA neurons remain

viable instead of undergoing cell death [27,28] as has been

observed with DA neurons after expressing wild type aS protein or

aS mutants [6,15] (and our own observations). Figs. 3E, F show

that the expression of EKO/Kir 2.1 and NaChBac in DA neurons

caused a phase shift in circadian locomotor activity and gradually

extended the circadian periodicity, as also observed in response to

TP-aS expression (Fig. 3E, F). These observations suggest that the

circadian effects observed with EKO/Kir 2.1 and NaChBac

expressing flies are due to dysfunctional DA neurons rather than

the result of their elimination by cell death.

Discussion

Our results provide evidence that the expression of pre-fibrillar

aS oligomers causes non-motor symptoms in Drosophila. We made

use of an experimentally designed aS mutant protein, the TP-aS

protein, which fails to aggregate both in vitro and in vivo [6]. This

protein contains features similar to the A53T-aS mutant protein

that is linked to familial PD [3], but is more neurotoxic and causes

more severe PD-like motor symptoms when expressed in model

organisms [6]. TP-aS expression also produces more severe non-

motor symptoms in flies. It interferes with the sleep-like rest

behavior of flies (Fig. 1), their anticipation of the dark/light

transition (Fig. 2) and with the circadian periodicity (Fig. 3). These

symptoms precede the onset of motor symptoms in flies and can be

related to the impaired ß-structure of the TP-aS protein which

prevents protein aggregation (see also [6]).

Sleep abnormalities in PD patients [29,30] can be diagnosed

years before motor syndromes appear [20,31–33]. Expression of

mutant aS in DA neurons also causes sleep abnormalities in young

flies, both prior to the appearance motor deficits and before

eventual neuronal cell death [6,15]. This finding suggests that the

abnormal rest behavior of flies, a sleep-like state with character-

istics of mammalian sleep [10,18–20], is actually caused by the

dysfunction of neurons rather than their degeneration; although

degeneration does gradually increase in aging flies [6,15]. Further,

it provides support for the proposal that PD symptoms are already

initiated by pre-fibrillar oligomer formation of aS prior to its

eventual aggregation. The observation that flies expressing TP-aS

lose the capability to anticipate the onset of light (see Fig. 2G)

confirms also a link between abnormal sleep behavior and

memory deficits that have been described earlier [34]. It also

suggests that DA neurons in flies, like the DA neurons in

mammals, have a role in the modulation of the sleep-wake

transition [35,36].

In addition to sleep, TP-aS expression in DA neurons also

affects circadian periodicity and locomotor activity in an age-

dependent manner. Unfortunately, these non-motor effects are

only observed in aged flies (see Fig. 3) at a stage when neuron

degeneration is already apparent [6,15]. Thus, it remaines unclear

whether these effects are due to dysfunctional DA neurons, or their

actual cell death. However, we anticipate that these disorders

result initially from synapse dysfunction; attenuating synaptic

transmission, either by expression of EKO/Kir 2.1 or NaChBac

[27,28] produces symptoms similar to those observed after TP-aS

expression. Our results also support the recently proposed role of

the DA system in regulating circadian locomotor activity [23,24].

However, our results cannot exclude the possibility that the

neurotoxic activities of aS [6,15] and the aS mutants [6] may

actually underlie the increasingly severe phenotypes seen in aging

flies.

TP-aS expression in DA neurons interferes with the circadian

rhythm of aging flies, thus showing an intriguing similarity to

symptoms reported for patients suffering from severe PD (e.g.

[37]). In addition, TP-aS expression, and to a lesser extent

expression of the human A53T-aS mutation, affects the sleep

behavior of flies. These similarities suggest that aS-dependent non-

motor symptoms of PD are recapitulated in flies. Moreover, the

circadian clock and DA neuronal signaling mechanisms that

regulate arousal and sleep/wake cycles are conserved between

mammals and Drosophila [38]. Thus, Drosophila can be used as a

valid model for PD. Importantly, it will be possible to answer

questions that cannot be addressed in humans; the fact that

different aS mutants can be expressed from the same chromo-

somal site may help to examine the mechanisms and even

quantitative aspects of symptom-causing aS mutants in order to

not only elucidate the cause of PD-like motor symptoms but also

how they relate to the preceding non-motor symptoms.

Materials and Methods

Generation of aS mutations, transgenic flies and fly stock
keeping
aS, lacZ and aS mutant transgenes (A53T-aS, TP-aS) were

generated as described [6] using the Gal4-responsive pUAST

expression vector containing the attachment site B (attB) [14].

Transgene DNA was injected into fly embryos which were double

homozygous for both an attachment site P site (attP) and the germ-

line-specific wC31 integrase. Site-specific integration of transgenes

was verified by PCR using the set of primer pairs described [6].

For targeted transgene expression, we used the UAS/Gal4

system [11] with Ddc-Gal4 [12] and TH-Gal4 driver lines [13] as

previously described [39]. Flies were routinely kept at 25uC on

standard fly food [40] using a 12 hs dark/12 hs light (D:L) cycle

unless otherwise stated in the Results.

Sleep and circadian behavior assays
Flies were housed under a D:L (12 hrs:12 hrs) cycle at 25uC

with equal population densities. Locomotor activity was recorded

from single males using the Drosophila Activity Monitoring (DAM)

system (Trikinetics, Waltham, USA) as described [21,22]. Briefly,

the DAM contains 32 channels, each connected to a single small
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Figure 3. Age-dependent circadian defects in response to wild type aS, TP-aS, EKO/Kir2.1 and NaChBac expression in DA neurons.
(A, B) Double-plotted actograms of young flies (3 days after hatching) expressing wild type aS (WT-aS) (A) and TP-aS (B) under the control of the DA
neuron specific TH-Gal4 driver. T refers to circadian periodicity which is 23.8 hrs in both cases. (C, D) Double-plotted actograms of old flies (30 days
after hatching) expressing WT-aS and TP-aS. Note the different circadian periodicity in response to WT-aS (T = 23.7 hrs) and TP-aS expression
(T = 26.7 hrs). (E, F) Double-plotted actogram of old flies expressing EKO/Kir2.1 (E) or NaChBac (F) under the control of the DA neuron specific TH-Gal4
driver. Note the similar extension of the circadian periodicities (T = 27.6 hrs and T = 27.0 hrs, respectively) as observed after TP-aS expression. All
experiments (n = 32–58 flies) were carried out under constant dark conditions after the animals were kept in a dark-light cycle of 12:12 hrs. T was
calculated by the Chi-squared periodogram analysis (see Materials and Methods).
doi:10.1371/journal.pone.0024701.g003
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glass tube, in which the activity of individual flies can be

monitored, as they ‘‘break’’ an infrared beam that bisects the

tube by moving back and forth along the container. Movements

were recorded in 1 min bins. Sleep is defined as a bout of 5 or

more minutes of inactivity [18]. The average length of a sleeping

bout was calculated as the total amount of sleep (in min.) divided

by the number of sleep periods. Thectivity index refers to the total

number of recorded movements in the DAM system divided by

the total time (in min.) that flies were awake.

To assess circadian locomotor activity, single males were

individually recorded (32 per experiment) using the DAM system.

Three independent experiments were performed for each

genotype. Animals were kept in D:L conditions (12 hrs:12 hrs),

before they were shifted to a dark only environment. Data were

analyzed with Clock Lab algorithms to extract the circadian

behavior (Actimetrics, Wilmette, USA). Double-plotted actograms,

Chi-squared or Lomb-Scragle periodograms were plotted using

MATLAB 7.4 (R 2007a) software using the Clock Lab programs

(Actimetrics, Wilmette, USA).
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