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Abstract

Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often
required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in
cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets
on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies
are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our
analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data.
We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between
data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we
present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what
extent heterogeneity between cell types and between pathologies determines the number of statistically significant
predictions available from a meta-analysis of experiments.
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Introduction

The most straightforward approach to finding downstream

dependent genes regulated by a candidate gene is to perform a

randomisation experiment and manipulate the expression levels of

that gene either by suppression or over induction. Genes which

respond exclusively to the change in induced expression of the

candidate gene can then be assumed to be regulated by that gene

through some, possibly quite indirect, causal pathway.

However, such experiments are usually costly and time

consuming to perform. In cancer cells natural randomisation

might provide a substitute for explicit manipulation experiments.

The variation in gene copy numbers observed in such cells

provides a natural randomisation experiment. In Goh et al. [1] we

experimentally validated a large proportion of regulatory pairs

inferred in silico from matched array comparative genomic

hybridisation (aCGH) and gene expression experiments, thus

proving the viability and value of such an approach. The study was

based on a few matched data sets only and focused on a few top

ranking genes for experimental validation.

In the current study we extend the number of data sets

considerably to thirty and assess whether combining data sets into

a very large meta-analysis can mitigate or overcome some of the

problems of inferring gene regulatory relationships from this type

of data. A meta-analysis could have the capacity to increase the

statistical power of predictions, but does depend on the degree of

consistency that exists between data sets.

For tumor cells, aCGH microarrays compare gene copy

numbers in the DNA extracted from the cells under investigation

to the gene copy numbers in normal control cells, in order to

detect gene deletions or gene amplifications (double or more

copies of a gene compared to normal). Typically, the DNA is

extracted from a tumour sample containing many cells, which may

exhibit different alterations in copy number. So for each gene the

measured change in copy number is an average for all the cells in

the sample and will, in general, be fractional rather than integer.

The gene expression experiments also utilise microarrays, but

measure the abundance of mRNA.

The main purpose of this type of dual experiment is to identify

potential driver genes for the cancer being studied. That is, the

aCGH data is searched for genes with a known regulatory role

whose copy number is altered in the samples. The matched

transcriptomics data is then examined to see if a gene’s altered

copy number is associated with a concurrent change in the gene’s

expression [2–17], thus adding weight to the argument that the

gene may be contributing to the type of cancer in question [18]. A

number of algorithms and bioinformatics tools have been

published to aid this type of study [17,19–23]. Matched data sets

have also been used for cancer subtype stratification [21,24–26].

Huang et al. [18] present a useful review of past work, as do Lahti
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et al. [27] who compare in detail the available software packages

for analysing matched data sets.

Analysis of matched data sets can however be extended to look

for the potential downstream relationships of any gene in the data

set which has a correlated change in aCGH and expression, not

just putative oncogenic driver genes; the emphasis of the

investigation going beyond cancer genetics to establishing causal

gene regulatory relationships [1,28]. By regulatory relationship we

mean either a direct relationship, of a transcription factor on its

target gene, or a very indirect one, through a pathway containing

many intermediate regulatory steps.

Regulatory relationships can be classified as either cis-acting,

where the regulator and target gene occur on the same

chromosome and in the same region of that chromosome, and

trans-acting where the two genes have a greater physical

separation. Most studies have been concerned with cis-acting

effects, examining how a change in copy number effects a gene’s

own expression and the expression of genes in the same

chromosomal locus. More recently trans-acting effects have been

investigated with the technique, with findings corroborated by

gene-set enrichment and pathway analysis [29–31]. A very limited

amount of experimental validation of predicted regulatory effects

have been carried out. Akavia et al. [32] looked for driver genes

and gene modules associated with these driver genes and carried

out gene knockdowns followed by gene-set enrichment to validate

their findings. Li et al. [28] used matched gene expression and

copy number data to predict gene regulatory relationships,

followed by knockdown experimental validation on a predicted

regulating gene. In our recent work [1], 20 predicted regulator-

target pairs, involving 5 predicted regulators, were tested

experimentally by knockdown experiments. The emphasis of the

study was not to identify potential oncogenes or cancer subtype

stratification, rather we were using the disrupted genomes as

natural knockdown, or gene copy number altering, experiments.

And unlike previous studies which have analysed matched data

sets in isolation, we incorporated ten matched experiments into a

meta-analysis.

In this paper we perform a meta-analysis on 30 publicly

available matched aCGH/expression data sets, comprising several

types of cancer and a total of 2521 samples. Many genes that have

altered copy number in one cancer type are found to have altered

copy number in other cancer types [33], so combining data sets

from multiple cancer types should help reinforce any information

within the data on regulator-target relationships. In this study we

concentrate on trans-acting relationships, since elucidating cis-
acting relationships from matched data sets is complicated by

confounding from co-amplification of regions of the genome.

The study has two aims. Firstly we document the most

commonly occurring genes that have an altered copy number

accompanied by a correlated change in gene expression;

investigating the consistency of these correlations across cancer

types and data sets. We select these genes as the most promising

genes to take forward to the second part of the study where we

examine the potential of using the experiments to identify trans-
acting regulatory relationships. We chose to adopt a meta-analysis

approach that highlights those gene relationships which are found

in the maximum number of data sets.

Materials and Methods

Data
There are now a number of publicly available matched aCGH/

transcriptomics experiments. Experiments were not included if

they involved only a few samples, or if there was insufficient

information provided to match aCGH and transcriptomics probes,

or if the data covered only part of the genome. Twenty eight were

selected for the meta-analysis described in this paper. The number

of samples in the experiments ranged from 8 to 356. The mean

number of samples was 84 and the total number of samples

included in the meta-analysis was 2521. If an experiment used two

different expression platforms then the samples for each expression

platform were treated as a separate data set. This was done in

order to avoid the possibility of spurious correlations which may be

caused by systematic distortions or shifts between the two sets of

expression data. This situation pertained to two of the experi-

ments, so these two experiments contributed four data sets to the

study, resulting in a total of 30 data sets. In the following we will

refer to the 28 actual studies as experiments and the 30 sets of data

derived from these experiments as data sets. Table 1 gives details

of the 30 data sets, their size, origins and pathologies. Each of the

data sets was pre-processed as follows. The aCGH data was

location and scale normalized using the median and mad, as was

the expression data. The aCGH and expression probes were

mapped by the gene names of probes to give the maximum

number of probes with corresponding aCGH and expression

profiles. If necessary probe gene names were converted from

synonyms to standard gene names using the database of the

HUGO Gene Nomenclature Committee (HGNC) [34]. If there

was more than one probe for any gene name then the median

value of the probes was taken to represent that gene name. Note

that the aCGH data was not thresholded so that, in general,

fractional rather than integer aCGH values were used in the

analysis. Fractional variations in copy number occur because of

the heterogeneity of the cancer samples being studied. By using

matched aCGH and expression profiles we eliminated the effects

of a sample’s heterogeneity considering that both sets of data were

affected equally.

Figure S1 in File S1 gives thirty quantile-quantile plots, one for

each of the data sets, showing the Pearson correlations between a

gene’s aCGH profile and its expression profile for each gene in the

data set. The plots demonstrate the degree to which the aCGH/

expression correlations deviate from what would be expected from

the correlations of two random data sets of the same size.

Analysis
Overview. To perform the analysis we use the approach for

analysing matched array comparative genomic hybridisation and

transcriptomics experiments that we adopted in our previous study

[1]. This is a relatively simple method based on correlations which

provides a robust method for analysing relationships amongst large

amounts of data of unknown complexities. More sophisticated

network inference methods are generally much more susceptible to

noise and heterogeneity between data sets. The great strength of

our simple approach is that it avoids the confounding that can

occur when expression data alone is used in the analysis.

We define a ‘regulating gene’ as one whose up or down

expression change has a direct or indirect effect on the up or down

regulation of a ‘target gene’. Primary candidates for regulating

genes are genes having corresponding changes in their mRNA

expression levels following copy number alterations. The regula-

tory relationship between regulating gene and target gene can be a

direct relationship (of a transcription factor on its target gene) or a

very indirect one through intermediate regulatory steps, for

example the downstream transcriptional effects of genes at the

top of signal transduction chains.

To identify potential regulator-target relationships we used

three conditions: i) the correlation between the expression changes

of a potential regulating gene with its own aCGH profile (to be

A Meta-Analysis of Matched Copy Number and Transcriptomics Data Sets
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worth considering as a potential regulator we are interested in

those genes with a significant correlation under this condition); ii)

the correlation between the expression changes of a potential

target gene with its regulating gene’s aCGH profile (here we are

interested in those gene pairs with a significant correlation under

this condition); iii) the correlation between a regulating gene’s

expression changes and its potential target gene’s aCGH profile

(here we require the correlations not to be significant). We used the

outcome from statistical tests of these three correlations to rank the

probability of a regulatory relationship for all gene pairs. Figure 1

illustrates the steps involved in the analysis. Analysis was

performed using the R statistical environment [35]. The analysis

code in R can be found in Goh et al. [1].

The last step, iii), is required since copy number variation may

not only affect the coding sequence for one gene but possibly many

genes in the neighbourhood on a genome level. In this case it

would be impossible to say whether an aCGH/expression

correlation between two genes is due to a regulatory affect or

simply due to the two genes having similar aCGH profiles.

Criterion iii excludes the possibility that the target gene is within

such a neighbourhood. In this study however we were interested in

trans-acting relationships only so this final step is of less

importance. We defined trans-acting regulation to mean that the

regulator and target are on different chromosomes. We used this

definition for computational simplicity and speed, although other

definitions of trans-acting exist, Curtis et al. [31] for example

define this as a physical separation of more than 3-Megabases (in

the discussion we show that using an alternative definition of trans-
action would make only a small difference to the results).

Here we first describe the methods adopted for identifying

potential regulators and assessing the consistency of these

predictions. We then desecribe how we identify potential

regulator-target relationships for the regulators found in the first

step, and how we assess the consistency of these predictions

between data sets.

Identifying potential regulators. In order to identify

potential regulators, suitable for our three-step approach to

identifying regulatory pairs, we focus on genes with a high

Table 1. Details of the 30 data sets used in the meta-analysis.

Code GEO Publication N P Pathology

parr GSE20486 Parris et al. 2010 [105] 97 18616 Breast Cancer (Diploid)

crow GSE15134 Crowder et al. 2009 [106] 31 16153 Breast Cancer (ER+)

sirc GSE17907 Sircoulomb et al. 2010 [107] 51 14689 Breast Cancer (ERBB2 amplified)

myll � Myllykangas et al. 2008 [108] 46 17050 Gastric Cancer

junn � Junnila et al. 2010 [109] 10 16844 Gastric Cancer

ch.w { Chitale et al. 2009 [110] 91 10285 Lung adenocarcinoma

ch.s { Chitale et al. 2009 [110] 94 10285 Lung adenocarcinoma

hoac GSE20154 Goh et al. 2011 [111] 54 14388 Oesophageal adenocarcinoma

zho GSE29023 Zhou et al. 2012 [112] 115 13697 Multiple Myeloma

shai GSE26089 Shain et al. 2012 [7] 68 14201 Pancreatic Cancer

vain GSE28403 Vainio et al. 2012 [16] 13 10107 Prostate Cancer

bott GSE29211 Bott et al. 2011 [113] 53 10321 Pleural Mesothelioma

bekh GSE23720 Bekhouche et al. 2011 [8] 173 13682 Breast Cancer (Inflammatory)

chap GSE26863 Chapman et al. 2011 [114] 245 13667 Multiple Myeloma

ooi GSE22785 Ooi et al. 2012 [10] 14 10091 Neuroblastoma

brag GSE12668 Braggio et al. 2009 [115] 11 10310 Waldenströms Macroglobulinemia

jons GSE22133 Jönsson et al. 2010 [11] 356 4183 Breast Cancer

mura GSE24707 Muranen et al. 2011 [12] 47 4472 Breast Cancer

lin1 GSE19915 Lindgren et al. 2010 [13] 72 4965 Urothelial Carcinoma

beck GSE17555 Beck et al. 2010 [14] 18 12174 Leiomyosarcoma

toed GSE18166 Toedt et al. 2011 [116] 74 4289 Astrocytic Gliomas

ell GSE35191 Ellis et al. 2012 [117] 124 13569 Breast Cancer

gra.1 GSE35988 Grasso et al. 2012 [118] 85 12849 Prostate Cancer

gra.2 GSE35988 Grasso et al. 2012 [118] 34 12813 Prostate Cancer

lenz GSE11318 Lenz et al. 2009 [17] 203 15212 Lymphoma

lin2 GSE32549 Lindgren et al. 2012 [15] 131 8450 Urothelial Carcinoma

micc GSE38230 Micci et al. 2013 [119] 12 16657 Vulva Squamous Cell Carcinoma

tayl GSE21032 Taylor et al. 2010 [6] 155 14572 Prostate Cancer

coco GSE25711 { Coco et al. 2012 [120] 36 4394 Neuroblastoma

med GSE14079 Medina et al. 2009 [121] 8 6376 Lung Cancer

GEO = Gene Expression Omnibus data set reference (http://www.ncbi.nlm.nih.gov/geo/), N = Number of samples, P = Number of matched probes, � http://www.
cangem.org/, { http://cbio.mskcc.org/Public/lung_array_data/, { Expression data in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/): E-TABM-38, E-MTAB-161.
doi:10.1371/journal.pone.0105522.t001
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correlation between their copy number and their gene expression.

Various correlation measures could be applied. Partial correlation

might be suggested in order to mitigate confounding effects from

genes with similar copy number changes to the candidate gene

through, for example, vicinity in the genome. Nonparametric

measures of correlation, such as Spearman rank correlation, might

be more robust than Pearson correlation for highly nonlinear, non

Gaussian data. We performed a comparison of various correlation

measures based on cross-validation (see File S1) and found

Spearman correlation to be the most consistent, we therefore use

it throughout the rest of this paper.

In the first instance, 30 Spearman rank correlations (from the 30

data sets), and their p-values for being greater than zero, were

calculated for each gene (R function cor.test). These 30 p-values

were combined for each gene into a single p-value statistic using

Fisher’s method (R function survcomp::combine.test). In order not

to rely on any statistical assumptions we obtained a null

distribution of combined p-value statistics through permutation

of gene identifiers (see below). The resulting p-values for each gene

were finally corrected for multiple testing by the Benjamini-

Hochberg (B-H) method, to give a false discovery rate (fdr) for

each gene based on its aCGH/expression correlations in the 30

data sets. In the following the Benjamini-Hochberg adjusted p-

values are referred to as B-H adjusted p-values and are now fdr

values rather than p-values in the sense of a type I error.

We were also interested in how many, and which, of the 30 data

sets indicated an aCGH/expression correlation. This was assessed

for each of the genes using an arbitrary threshold of 0.05 on a

gene’s 30 correlation p-values after adjustment for multiple testing.

To generate the null distribution, 5:106 permutations of gene

identifiers were generated for each data set and the above

procedure, using Fisher’s method, for obtaining combined p-value

statistics repeated. In practice only a minority of genes are present

in all 30 data sets. In general a gene will be present in less than 30

data sets, hence we generated 30 null distributions for n combined

p-values, n from 1 to 30.

The consistency of potential regulator predictions were tested

both within each data set and between data sets. For between data

set consistency, for each data set we obtained a list of genes

ordered by their fdr for significant correlation. We also obtained a

subset of top-ranking genes with an fdr of less than 0.05. The

Kolmogorov-Smirnov test was used to test the top-ranking genes

derived from one data set for enrichment in the ordered gene list

derived from a second data set. p-values for enrichment were

calculated by permutations of gene identifiers.

For within data set consistency each dataset was studied

independently. A data set was randomly divided into two equal

sized data sets, and two lists of correlation p-values were calculated

from each of these, ordered by increasing p-value. The correlation

being between each gene’s aCGH profile and its expression

profile. In order to compare the two lists, one approach would be a

rank correlation method such as Kendall’s t. The lists to be

compared are however very long and in practice we are interested

in only the top most significant genes, but Kendall’s t places equal

Figure 1. Schematic diagram illustrating the key analysis steps.
doi:10.1371/journal.pone.0105522.g001
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weight on the rankings of genes anywhere in the list. We therefore

adopted a method which takes the top genes in one list (a gene-set)

and looks at their ranks in the second list, and vice-versa. In order

to treat all datasets equally in this comparison analysis we took the

top genes to be the top s genes in a list in all cases. The size of the

gene-set s was arbitrarily chosen to be 10. The Kolmogorov-

Smirnov test (R function ks.test) was used to test whether the gene-

set derived from the first half of the dataset was enriched in the

ordered list from the second half of the dataset. For each dataset

this procedure was repeated ten times, that is, on ten random

divisions of the dataset. The result was a mean and range of cross-

validation enrichment scores for each dataset. p-values for

enrichment were calculated by permutations of gene identifiers.

Regulator-target relationships. After we found potential

regulators fulfilling condition i) of our three criteria we looked for

potential target genes of these regulators applying criterion ii)

expression changes of a potential target gene must correlate highly

with its regulating gene’s aCGH profile and criterion iii) the

correlation between a regulating gene’s expression changes and its

potential target gene’s aCGH profile must be low.

The correlation tests were similar to those in the previous

section to find potential regulators but with three additions. Firstly,

we tested separately the two alternative hypotheses: that the

correlation of a regulator-target pair is greater than zero and that

the correlation is less than zero, and we generated separate null

distributions for the two conditions. Secondly, for each potential

regulator only those data sets were included in the analysis for

which that regulator had a significant self aCGH/expression

correlation. Thirdly, since we were only interested in trans-acting

relationships the null distributions were derived using potentially

trans-acting gene pairs. A null distribution based on trans-acting

pairs is required since the frequency of significant correlations is

lower than for cis-acting pairs.

As for potential regulators the consistency of the predictions

between data sets was assessed using gene-set enrichment analysis.

For a given potential regulator, for each of the 30 data sets a list of

potential trans-acted targets was generated ordered by significance

of correlation with the regulator. For each data set we also

obtained a subset of top-ranking genes with an fdr of less than

0.05. To compare any two data sets for consistency the set of top-

ranking genes from one data set was tested for enrichment in the

complete ordered gene list of the second data set, and vice-versa,

and the two p-values averaged.

Just because a gene appears in a regulator’s list of predicted

targets, does not mean that regulator is the most probable

regulator for that target. Therefore, for each of the top potential

regulators, all predicted trans-acted targets were removed if the

data indicated an alternative, more probable, regulator. This

procedure was found to be important, reducing the number of

predicted targets in most cases.

Results

Potential regulators
Table 2 lists the top 30 potential regulators excluding known

transcription factors, while Table 3 lists the top 30 potential

regulators known to be transcription factors (according to the list

of human transcription factors from the Transfac database

[36,37]). The genes in the table are ordered by the number of

data sets which indicate a significant correlation (B-H adjusted p-

value ,0.05), so as to highlight the potential regulators which are

significant in the largest number of different pathologies. Sheet S1

in File S2 gives the full list of potential regulators. The list includes

only those genes which have significant aCGH/expression

correlation in at least one of the data sets.

Figure 2 shows a histogram of the number of potential

regulators detected in different numbers of data sets. For all

potential regulators, that is those genes which have a combined B-

H adjusted p-value ,0.05, the number of individual data sets in

which the gene’s aCGH/expression correlation has a B-H

adjusted p-value ,0.05 is counted. The graph shows a histogram

of these counts. The maximum number of data sets in which genes

show significant aCGH/expression correlation is 17, and rather

few genes are found with this maximum count. The majority of

potential regulators have significant correlation in a relatively

small subset of the 30 data sets.

Examining the results for PCM1, the gene at the top of Table 2.

PCM1 has significant aCGH/expression correlation in 17 of the

30 data sets. Of the 13 data sets in which it did not show significant

aCGH/expression correlation at a B-H adjusted p-value threshold

of 0.05, the gene was not annotated in 2 data sets, it was close to

significant in one data set (B-H adjusted p-value = 0.051) and had

a B-H adjusted p-value ,0.15 in 3 data sets. We examined the

remaining 7 data sets to see whether the lack of significant aCGH/

expression correlation was because PCM1 did not show copy

number variation in these data sets, or because it did show copy

number variation but this was not correlated with its expression.

To assess copy number variation in a data set we measured the

variance of all the genes in the data set and took the mode of the

distribution of the variance as an arbitrary threshold for copy

number variation. Using this criterion, for PCM1, 4 of the 7 data

sets which had no significant aCGH/expression correlation did

show copy number variation and 3 showed no copy number

variation.

We repeated this analysis for all the genes in the study, first

grouping the genes by the number of data sets in which they

displayed significant aCGH/expression correlation (so from 1 data

set to the maximum of 17 data sets), and then calculating five

different averages for each of these 17 groups. Figure 3 shows the

averages for the groups. The five average values displayed by the

graph are:

N The average number of data sets where genes are not

annotated.

N The average number of data sets where genes do not have

significant aCGH/expression correlation and do not show

copy number variation (with copy number variation defined by

the arbitrary threshold discussed above).

N The average number of data sets where genes do not have

significant aCGH/expression correlation but do show copy

number variation.

N The average number of data sets where genes have significant

aCGH/expression correlation and no copy number variation.

N The average number of data sets where genes have significant

aCGH/expression correlation and copy number variation.

The graph shows that on average genes have no significant

aCGH/expression correlation in around a third of the data sets

despite having copy number variation in those data sets (red bars

in Figure 3). The number of data sets where a gene shows no

significant aCGH/expression correlation and no copy number

variation is much less and fairly constant at around 4 or 5 data sets

(pink bars in Figure 3). A lack of copy number variation in a data

set can occur for two reasons. Firstly the gene could have no

amplifications or deletions in any of the samples in the data set.

Secondly it could be consistently amplified, or deleted, in all the

samples in the data set.

A Meta-Analysis of Matched Copy Number and Transcriptomics Data Sets
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For each data set we calculated the percentage of genes that

have significant aCGH/expression correlation (B-H adjusted p-

value ,0.05) and also have copy number variation. The median

value for the 30 data sets is 13% with a maximum of 63%. The

values calculated in this manner are in line with those reported in

the literature, namely transcriptional changes for 10–63% of genes

in amplified regions and 14–62% in regions of loss, across multiple

cancer types [18].

We examined the pathologies in which potential regulators

show significant aCGH/expression correlation. Table S1 in File

S1 lists the top 30 potential regulators (not transcription factors)

and summarises in which pathologies the genes have significant

aCGH/expression correlation. For Breast cancer 6 genes had

significant aCGH/expression correlation at a level of 0.05 in all 7

breast cancer data sets (BCL9, AZIN1, TAF2, YTHDF1, TTC13,

FBXL20). At a significance level of 0.2 this rises to 103 genes.

Table S2 in File S1 is a similar table, but for the top 30 genes

which are transcription factors. Sheet S2 in File S2 gives the

complete list. The list includes only those genes which have

significant aCGH/expression correlation in at least one of the data

sets. Of the top 30 potential regulators in Table 2, nine occur on

chromosome 8 and six on chromosome 13.

Consistency of predictions. Figure 4 shows a boxplot of the

within data set cross-validation enrichment scores for each of the

30 data sets. Those data sets containing large numbers of samples

have high enrichment scores. In total 21 of the 30 data sets show

significant within data set consistency. The data sets with few

samples have rather low enrichment scores. These low values

suggest that the smaller data sets may have limited predictive

value. The consistency of predictions between data sets was tested

using only the 21 data sets which showed significant within data set

consistency. Of the resulting 210 B-H adjusted p-values, 189 were

less than 0.05.

Figure 5 shows how the 21 data sets cluster using one minus the

enrichment scores between data sets as a distance measure and

using Ward’s clustering method. The different breast cancer data

sets cluster together (apart from two of the breast cancer data sets),

as do the two different myeloma data sets and the prostate data

Table 2. Top 30 potential regulators - not transcription factors, based on the Spearman correlation of a gene’s aCGH with its
expression, from a meta-analysis of the 30 data sets.

Gene Chr Locus p-value N Annotation

PCM1 8 22-p 5.9e-05 17 Pericentriolar Material 1

ELP3 8 21.1p 5.9e-05 17 Elongator Acetyltransferase Complex Subunit 3

MED4 13 14.12q 5.9e-05 17 Mediator complex subunit 4

MCPH1 8 23.1p 5.9e-05 16 Microcephalin 1

COPS3 17 11.2p 0.0087 16 COP9 constitutive photomorphogenic homolog subunit 3

PREP 6 22q 5.9e-05 15 Prolyl endopeptidase

DDX10 11 22-q 5.9e-05 15 DEAD (Asp-Glu-Ala-Asp) box polypeptide 10

BCL9 1 21q 5.9e-05 15 B-cell CLL/lymphoma 9

CDC16 13 34q 5.9e-05 15 Cell division cycle 16

HDAC2 6 21q 5.9e-05 15 Histone deacetylase 2

AZIN1 8 21.3q 5.9e-05 15 Antizyme inhibitor 1

SS18L1 20 13.3q 5.9e-05 14 Synovial sarcoma translocation gene on chromosome 18-like 1

TGDS 13 32.1q 5.9e-05 14 TDP-glucose 4,6-dehydratase

YTHDF1 20 13.33q 5.9e-05 14 YTH domain family, member 1

COG2 1 42.2q 5.9e-05 14 Component of oligomeric golgi complex 2

PPP2R2A 8 21.2p 5.9e-05 14 Protein phosphatase 2, regulatory subunit B, alpha

PTDSS1 8 22q 5.9e-05 14 Phosphatidylserine synthase 1

AKAP11 13 14.11q 5.9e-05 14 A kinase (PRKA) anchor protein 11

IKBKB 8 11.2p 5.9e-05 14 Inhib. of kappa light polyp. gene enhancer in B-cells, kinase beta

MBTPS1 16 24q 5.9e-05 14 Membrane-bound transcription factor peptidase, site 1

UCHL3 13 21.33q 5.9e-05 14 Ubiquitin carboxyl-terminal esterase L3 (ubiquitin thiolesterase)

AARS 16 22q 5.9e-05 14 Alanyl-tRNA synthetase

ATXN10 22 13q 5.9e-05 14 Ataxin 10

RAF1 3 25p 5.9e-05 14 V-Raf-1 murine leukemia viral oncogene homolog 1

PPP3CC 8 21.3p 5.9e-05 14 Protein phosphatase 3, catalytic subunit, gamma isozyme

TBCE 1 42.3q 5.9e-05 14 Tubulin folding cofactor E

RIPK2 8 21q 0.0087 14 Receptor-interacting serine-threonine kinase 2

INTS6 13 14.3q 0.0087 14 Integrator complex subunit 6

UBAP2 9 11.2p 0.0087 14 Ubiquitin associated protein 2

GNA12 7 22.3p 0.0087 14 Guanine nucleotide binding protein (G protein) alpha 12

Chr = Chromosome, Locus = Gene locus, p-value = B-H adjusted p-value, N = number of data sets with significant correlation (B-H adjusted p-value ,0.05).
doi:10.1371/journal.pone.0105522.t002
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sets. Figure S4 in File S1 shows a similar plot but instead of

ranking genes by their aCGH/expression correlation the genes

were ranked by their aCGH variance. Comparing Figure 5 with

Figure S4 shows that aCGH/expression correlation clusters the

various pathologies better than just aCGH variance.

Biological context. On chromosome 8, PCM1 Pericentriolar

Material 1 encodes a protein which is a component of centriolar

satellites, electron dense granules found around centrosomes. The

protein is essential for the correct localization of several

centrosomal proteins, and for anchoring microtubules to the

centrosome. Aberrations involving this gene have been found in

papillary thyroid carcinomas, atypical chronic myeloid leukemia

and T-cell lymphoma [38]. A fusion of PCM1 and JAK2 is a

recurrent abnormality in chronic and acute leukemia [39]. PCM1

has significant aCGH/expression correlation in the breast,

myeloma, lymphoma, prostate, urothelial, lung, pancreatic and

neuroblastoma data sets but not in oesophageal, mesothelioma or

gastric (and not annotated in glioma). ELP3, also on chromosome

8 and at close locus to PCM1, is the catalytic subunit of the histone

acetyltransferase elongator complex, which contributes to tran-

script elongation and also regulates the maturation of projection

neurons [38]. ELP3 has been identified as a signature for

hepatocellular carcinoma progression [40] and has been linked

to poor prognosis in endometrioid adenocarcinoma [41].

MCPH1, Microcephalin I, encodes a DNA damage response

protein and is a potential tumour suppressor [42,43]. Low levels of

MCPH1 were found in chronic myeloid leukemia cells [44],

correlates with survival in ovarian cancer [45] and is a prognostic

indicator in breast cancer [46–48]. AZIN1, anitzyme inhibitor 1,

regulates cellular polyamine homeostasis. Increased expression

was found in prostate cancer cells [49] and RNA editing

predisposes to hepatocellular carcinoma [50].

MED4 Mediator Of RNA Polymerase II Transcription,

Subunit 4 Homolog (S. Cerevisiae) encodes a component of the

Mediator complex, which interacts with DNA-binding gene-

specific transcription factors to modulate transcription by RNA

polymerase II [38]. MED4 has been associated with carcinogen-

esis and chemoradioresistance in cervical cancer [51]. Close to

Table 3. Top 30 potential regulators - transcription factors, based on the Spearman correlation of a gene’s aCGH with its
expression, from a meta-analysis of the 30 data sets.

Gene Chr Locus p-value N Annotation

GTF2F2 13 14q 5.9e-05 16 General transcription factor IIF, polypeptide 2

TAF2 8 24q 5.9e-05 14 TATA box binding protein (TBP)-associated factor

SETDB1 1 21q 5.9e-05 14 SET domain, bifurcated 1

ELF1 13 13q 0.0087 14 E74-like factor 1 (ets domain transcription factor)

YWHAZ 8 22.3q 5.7e-05 13 Tyrosine/tryptophan activation protein, zeta polypeptide

PARP1 1 41-q 0.0087 13 Poly (ADP-ribose) polymerase 1

ACTL6A 3 26.33q 0.0087 13 Actin-like 6A

PSMB1 6 27q 0.0087 13 Proteasome subunit, beta type, 1

SMARCA2 9 24.3p 0.0087 13 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2

NCOR1 17 11.2p 0.0087 13 Nuclear receptor corepressor 1

MAP3K7 6 15q 0.0087 13 Mitogen-activated protein kinase kinase kinase 7

HSBP1 16 23.3q 5.7e-05 12 Heat shock factor binding protein 1

SMARCE1 17 21.2q 5.9e-05 12 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1

POGZ 1 21.1q 5.9e-05 12 Pogo transposable element with ZNF domain

RCOR3 1 32.3q 5.9e-05 12 REST corepressor 3

TRIM33 1 13.1p 5.9e-05 12 Tripartite motif containing 33

ARID4B 1 42.1-q 5.9e-05 12 AT rich interactive domain 4B (RBP1-like)

MNAT1 14 23q 5.9e-05 12 Menage a trois homolog 1, cyclin H assembly factor (X. laevis)

NFATC3 16 22q 5.9e-05 12 Nucl. factor of activated T-cells, cytoplasmic, calcineurin-dep. 3

TBP 6 27q 5.9e-05 12 TATA box binding protein

AATF 17 12q 5.9e-05 12 Apoptosis antagonizing transcription factor

SMAD2 18 21q 5.9e-05 12 SMAD family member 2

AP2B1 17 11.2-q 0.0087 12 Adaptor-related protein complex 2, beta 1 subunit

SNAPC3 9 22.3p 0.0087 12 Small nuclear RNA activating complex, polypeptide 3

SNW1 14 22.1-q 0.0087 12 SNW domain containing 1

SMARCC1 3 21.31p 0.0087 12 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 1

HSF2 6 22q 0.0087 12 Heat shock transcription factor 2

PSIP1 9 22.2p 0.0087 12 PC4 and SFRS1 interacting protein 1

RB1 13 14.2q 0.0087 12 Retinoblastoma 1

CREBBP 16 13.3p 0.0087 12 CREB binding protein

Chr = Chromosome, Locus = Gene locus, p-value = B-H adjusted p-value, N = number of data sets with significant correlation (B-H adjusted p-value,0.05).
doi:10.1371/journal.pone.0105522.t003
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MED4 on chromosome 13, GTF2F2 is a general transcription

initiation factor that binds to RNA polymerase II and helps to

recruit it to the initiation complex. CDC16 encodes a component

of the APC complex, which is a cyclin degradation system that

governs exit from mitosis [38] and has been with an altered risk of

breast cancer [52].

COPS3 encodes a protein with kinase activity that phosphor-

ylates regulators involved in signal transduction and has found to

be a potential oncogene in osteosarcoma [53], multiple myeloma

[54] and lung cancer [55]. PREP, encodes a cytosolic prolyl

endopeptidase and has been associated with neoplasms in an

number of tissues [56–58]. HDAC2 encodes a protein that forms

transcriptional repressor complexes playing an important role in

transcriptional regulation [38], and in cancer [59]. DDX10 is a

putative RNA helicases that may be involved with ribosome

assembly. It has been suggested as an oncogene in breast cancer

[60] and plays a role in acute myeloid leukemia as a fusion gene

with NUP98 [61]. BCL9 is involved in signal transduction through

the Wnt pathway and is known to promote tumour progression

[62].

Looking at the top transcription factors, TAF2 RNA Polymer-

ase II, TATA Box Binding Protein (TBP)-Associated Factor has

significant aCGH/expression correlation in 14 of the data sets.

YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxy-

genase Activation Protein, Zeta Polypeptide belongs to the 14-3-3

family of proteins which mediate signal transduction [38] and has

been suggested as having pivotal role in tumour cell proliferation

[63,64].

ELF1, E74-Like Factor 1 encodes an E26 transformation-

specific related transcription factor, and has been shown to help

predict the malignant behaviour of non-small cell lung cancer

[65], has been associated with gastric cancer [66,67] and with

endometrial cancer [68] and may modulate breast cancer

progression [69]. NCOR1 Nuclear Receptor Corepressor 1

Figure 2. Histogram showing the number of genes which are potential regulators in different numbers of data sets. For each gene the
number of individual data sets in which the Spearman correlation between a gene’s aCGH and expression has an B-H adjusted p-value ,0.05 is
counted. The graph shows a histogram of these counts. Only those genes which have a combined B-H adjusted p-value ,0.05 are included in the
histogram.
doi:10.1371/journal.pone.0105522.g002
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mediates transcriptional repression by certain nuclear receptors,

and has a known role in cancer [70], being associated with breast

cancer [71], esophageal cancer [72] and prostate cancer [73].

PSMB1, Proteasome Subunit Beta and MAP3K7, Mitogen-

Activated Protein Kinase Kinase Kinase 7, both have significant

aCGH/expression correlation in 13 data sets. SETDB1, SET

Domain, Bifurcated 1 regulates histone methylation, gene

silencing, and transcriptional repression. It contributes to human

lung tumorigenesis [74] and is recurrently amplified in melanoma

[75]. PARP1, Poly (ADP-Ribose) Polymerase 1 modifies nuclear

proteins by poly(ADP-ribosyl)ation. It is overexpressed in a

number of cancers, and has been associated with overall prognosis

in cancer [76]. ACTL6A Actin-Like 6A is significantly correlated

in 13 data sets. On chromosome 9 SMARCA2, SWI/SNF

Related, Matrix Associated, Actin Dependent Regulator Of

Chromatin, Subfamily A, Member 2 is part of the complex that

is critical for differentiation and proliferation so has been

associated with malignant transformation [77].

Inferring trans-acting gene regulatory relationships
Lists of potential trans-acted targets were generated for all the

potential regulators presented in Table 2 (that is, the top 30

potential regulators which are not known to be transcription

factors), as described in the ‘Methods’ section. Lists were also

generated for the top 72 potential regulators which are known to

be transcription factors (the top 30 of the 72 features in Table 3).

For each potential regulator two lists were generated, one for

positive regulatory relationships and one for negative regulatory

relationships. The gene lists can be found in File S3 (positive, for

top 30 that are not transcription factors), File S4 (negative, for top

30 that are not transcription factors), File S5 (positive, for top 72

which are known transcription factors) and File S6 (negative, for

Figure 3. Breakdown of potential regulators in terms of number of data sets with & without aCGH/expression correlation and with
& without copy number variation. Genes have been grouped according to the number of data sets in which they displayed significant aCGH/
expression correlation (so from 1 data set to the maximum of 17 data sets). These groups are displayed along the horizontal axis. For each group the
following five averages were calculated and displayed in the graph: 1. The average number of data sets where genes are not annotated (white bars).
2. The average number of data sets where genes do not have significant aCGH/expression correlation and do not show copy number variation (pink
bars). 3. The average number of data sets where genes do not have significant aCGH/expression correlation but do show copy number variation (red
bars). 4. The average number of data sets where genes have significant aCGH/expression correlation and no copy number variation (light blue bars).
5. The average number of data sets where genes have significant aCGH/expression correlation and copy number variation (dark blue bars). Were
presence of copy number variation defined by the arbitrary threshold discussed in the text.
doi:10.1371/journal.pone.0105522.g003
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top 72 which are known transcription factors). Potential regulators

are only included in the files if they have at least one significant

predicted target (B-H adjusted p-value ,0.1).

Figure 6 summarises the results, showing the number of

significant positive and negative trans-acting relationships for

each of the potential regulators (the figure only includes the top 30

potential regulators which are known to be transcription factors,

for the remaining 42 see Figure S5 parts a & b in File S1). Many of

the potential regulators have no significant predicted trans-acted

targets. It can be seen from the graphs that the potential regulators

which are transcription factors have in general more predicted

relationships than the potential regulators which are not known to

be transcription factors. In addition negative regulation shows

more predicted targets than positive regulation.

Figure 7 shows for one regulator (HSBP1) how many data sets

are contributing to its predicted targets. The histogram plots the

number of predicted targets (B-H adjusted p-value ,0.1) for the

regulator which are significant in different numbers of data sets. In

general a regulator-target pair demonstrates a significant regula-

tor-target aCGH/expression correlation in rather few data sets.

We investigated whether the type of meta-analysis we have

adopted, that is using significance level thresholds, was over-

emphasising the heterogeneity of the data. To do this we

examined, for each regulator, how a gene-set comprising the

significant targets predicted by the meta-analysis, was enriched in

the ranked lists of genes obtained when the 30 data sets were

analysed individually. Table 4, displays the results. The table

contains data for all the potential regulators shown in Figure 6 and

Figure S5 in File S1 which have at least one predicted target from

the meta-analysis at a significance level of 0.1 (marked by the blue

bars in the figures).

The first column in the table gives the number of data sets in

which the regulator shows significant self aCGH/expression

correlation. The values in the second and third columns are

expressed as percentages of this number of data sets. The second

column shows the percentage of these data sets which, when

analysed individually, predict at least one of the targets that are

predicted by the meta-analysis. The percentages range between

18% and 75%, with a mean of 43%, so for most regulators, more

than half the data sets which show significant self aCGH/

expression correlation predict none of the targets predicted by the

meta-analysis. The third column shows the percentage of data sets

in which the meta-analysis gene-set of predicted targets has

significant enrichment (B-H adjusted p-value ,0.05) in the

individual data sets’ ranked lists of genes.

Comparing columns 2 and 3 of Table 4, for some regulators,

only a minority of the data sets call any of the meta-analysis

predicted targets as significant (column 2), but as a gene-set the

meta-analysis predicted targets are significantly enriched in a far

higher proportion of the data sets (column 3). For example for

AZIN1 (negative regulation), Table 4 column 2 shows that 47% of

the data sets, for which AZIN1 shows significant self aCGH/

expression, predict none of the targets predicted by the meta-

analysis, but Table 4 column 3 shows that almost all these data sets

(93%) have significant enrichment of the meta-analysis list of

predicted targets.

GO, Pathway and Citation Corroboration. We investigat-

ed to what degree publicly available data on gene regulatory

relationships substantiated the predicted regulator-target pairs.

The results are summarised in Table 5.

Firstly, for each potential regulator studied that has significant

predicted targets (22 in total), we looked for publications which co-

cited both the regulator and any of its predicted targets. For this

Figure 4. Boxplot showing the within data set cross-validation consistency. For the 30 data sets (a) enrichment scores and (b) average B-H
adjusted p-values of enrichment scores. Each data set was randomly halved. Spearman correlation of genes’ aCGH and expression values was used to
rank genes in each half data set. The top 10 from the first half was used as a gene-set and scored for enrichment in the second half. This was repeated
for 10 random divisions of each data set.
doi:10.1371/journal.pone.0105522.g004
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we used the PubMed [78] information contained in Bioconductor

[79] package org.Hs.eg.db [80] (version 2.9.0). We found 9 of the

regulators had such co-citations. We also looked for any

publications that co-cited any two or more of a regulator’s

predicted targets. Most of the regulators did have co-cited

predicted targets, although in most cases only two or three of

the predicted targets were co-cited in any one paper. We then

looked at enriched Gene Ontology (GO) annotations in the lists of

predicted targets (plus their proposed regulator) using Consensus-

PathDB [81–83]. Most of the lists had significantly enriched

Biological Process GO annotations, and most at level 3 or 4. The

number of genes in a list that were included together in a GO

annotation ranged from 7% to 100%, with the mean being 35%.

Many of the lists were also associated with significantly enriched

pathways. In general a lower percentage of the genes in a

predicted target was recorded as being involved in the pathway

(3% to 40%, mean 11%), based on albeit incomplete current

knowledge of the pathways.

There is one paper [84] which co-cites MED4 and one of its 14

predicted targets, ILF2, where ILF2 is given as one possible

candidate for forming the molecular bridge between the Ada-

Two-A-containing (ATAC) histone acetyltransferase and Mediator

coactivator complexes. For DDX10 there is one paper [85] which

co-cites DDX10 and one of its 11 predicted targets, TNFSF14, in

a study of changes in hormone receptor target genes and

chromatin modifying enzymes after proteasome inhibition in

breast cancer cells. There is also one paper [86] which co-cites

RIPK2 and one of its 12 predicted targets, EGR1, in a list of genes

that are up- or down-regulated in response to the activation of at

least one NF-kB family member.

POGZ is cocited with one predicted target SP1 in a paper [87]

concerning the proteins that interact with SP1. In a second paper

[88] it is cocited with predicted targets CAD, MSH2 and MTA1,

all four being identified as SUMO-2 binding proteins. It is cocited

with JRK in [89] and [90], and cocited with BRIP1 in a study of

gene expression profiling to predict survival in lung squamous cell

carcinoma [91].

YWHAZ is cocited with FZD7 in a paper on attention-deficit/

hyperactivity disorder [92], with ATXN1 in a paper on the

interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 [93], and

with SOS2 in a paper on epidermal growth factor receptor

phosphorylation sites [94]. NFATC3 is cocited with IKBKB in a

paper on analysis of steady-state nuclear hormone receptor

coactivator complexes [95]. E2F5 is cocited with ITGA5 in a

paper about miRNA control of tumour cell invasion and

metastasis [96].

Figure 5. Clustering data sets according to enrichment scores. Spearman correlation of genes’ aCGH and expression values was used to rank
genes in each data set. The significant genes from one data set was used as a gene-set and scored for enrichment in the second half, and vice-versa.
The two enrichment scores were averaged and this value minus one used as a distance measure for clustering, using Ward’s method. The nine data
sets with low within data set consistency were excluded from the clustering (pr = prostate, lg = lung, oa = oesophageal, ly = lymphoma, bl = bladder,
br = breast, ne = neuroblastoma, pl = pleural, ps = myeloma, pn = pancreas, ga = gastric, bn = glioma).
doi:10.1371/journal.pone.0105522.g005
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ADAR has one predicted target, JUNB, and the two are cocited

in four papers. In a paper concerning c-Jun Amino-Terminal

Kinase-1 mediates glucose-responsive upregulation of ADAR2 in

Pancreatic Beta-Cells [97], in a paper on the suppression of the

interferon and NF-kB responses by severe fever with thrombocy-

topenia syndrome virus [98], in a paper on host cell transcription

in response to Varicella-Zoster virus infection of human T cells

and fibroblasts [99], and in a paper on bacterial pathogens

modulating an apoptosis differentiation program in human

neutrophils [100].

SMAD5 is cocited with ECT2 in an analysis of novel

transcription factor FLJ20420 [101].

Discussion

In this paper we have investigated the potential for using

multiple matched aCGH and expression data sets from cancer

samples for inferring gene regulatory relationships. We found

genes which show significant aCGH/expression correlation across

a large number of the 30 data sets in the study, and found

considerable within and between data set consistency for these

measurements. Clustering based on between data set consistency

appears to reflect the underlying pathologies of the data sets. The

study is using cancer data sets as natural knockdown/amplification

experiments, rather than investigating cancer genomics per se, but

inevitably the analysis is revealing potential driver genes and

illustrating both the commonality and the differences in the

various pathologies included in the study.

Whilst combining the data sets in a meta-analysis gives a clear

and consistent signal of self aCGH/expression correlation for the

potential regulators, predicting trans-acted targets for these

potential regulators is more difficult. Even though the potential

regulators investigated show self aCGH/expression correlation in

up to 17 of the data sets, the maximum number of data sets which

show a significant correlation between a regulator-target aCGH/

expression is 6. Part of the problem is experimental noise in the

data and possibly also the recognised difficulty of incorrect

mappings [102], but the main reason for the problem is likely to be

biological. Whilst there is some commonality in regulator-target

aCGH/expression, there is also considerable heterogeneity, being

specific to tissue type, pathology and experiment. As well as tissue

Figure 6. Bar charts showing the number of predicted targets for each potential regulator. At a significance level of 0.05 (red) and 0.1
(blue) a. positive regulation, top 30 potential regulators which are not transcription factors (TF) b. negative regulation, top 30 potential regulators
which are not TF c. positive regulation, top 30 potential regulators which are TF d. negative regulation, top 30 potential regulators which are TF.
doi:10.1371/journal.pone.0105522.g006
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specificity, compensatory pathways and non-linear responses are

also likely to be making major contributions to the observed

heterogeneity. The outcome of heterogeneity is that the amount of

extra information gained from combining data sets is reduced.

The type of meta-analysis we have employed is however highly

stringent, that is significant relationships are detected only if they

are sufficiently significant in enough individual data sets. We

adopted this approach in order to investigate the base-line

possibilities of the data. Analysis of individual data sets, or a

carefully chosen subset of data sets based on pathology, produces

far more predictions. For example the meta-analysis does not

improve the significance of the experimentally confirmed regula-

tors from our previous study [1] (where the predictions were based

on either one experiment or on ten experiments). More detailed

analysis of the consistency of regulator-target predictions between

the 30 data sets does however suggest that there is more

information buried within the data than is apparent from the lists

created by taking a threshold of B-H adjusted p-values.

Some of the regulator-target predictions are substantiated by

published data, although such substantiation is inevitably pro-

scribed by the well-known limitations of current knowledge bases,

namely incomplete and inaccurate annotations, low resolution,

missing and cell specific information and the dynamic nature of

the systems being studied [103].

For computational simplicity we defined potentially trans-acting

genes as two genes which are located on different chromosomes.

Alternatively we could have used the third step of our algorithm,

the correlation of a target’s aCGH with its regulator’s expression

to define trans-action. High correlation suggests coamplification/

codeletion, hence close proximity on the genome. Examining the

p-values from this step in the algorithm indicates that using this

Figure 7. Histogram plotting the number of predicted targets which are significant. (B-H adjusted p-value ,0.1) in different numbers of
data sets for HSPB1.
doi:10.1371/journal.pone.0105522.g007
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definition would have included on average only an extra 2% of

genes in the study.

In general the potential regulators which are known to be

transcription factors have more predicted trans-acted targets than

those potential regulators that are not known to be transcription

factors. Some potential regulators that are known to be

transcription factors have no predicted trans-acted targets, whilst

a few have many, POGZ and HSBP1 being the main examples.

We observe more targets which have expression negatively

correlated with their potential regulator’s aCGH, than targets

which have expression positively correlated with their potential

regulator’s aCGH.

Interpretation of the output from matched aCGH/expression

studies when these are viewed as large scale gene amplification/

deletion experiments is complicated by a number of factors. Some

problems are common to conventional knockdown experiments

such as cell type variability of a regulatory effect and the

occurrence of compensatory regulation. Regulatory effects are

tissue specific [28] and specific to a cell’s physiological state, with

compensatory pathways and potentially a number of regulatory

mechanisms affecting expression. Significantly down regulated

genes can be found in amplified chromosomal regions [18]; one

study finding 14% of downregulated genes appearing within

regions of DNA gain and 9% of upregulated genes appeared in

regions of DNA loss [104]. The main difference between

conventional knockdown experiments and inference from

matched aCGH/expression studies is that the status of a large

number of genes are being changed at the same time. However in

our previous study we have shown, through experimental

validation, that careful analysis of such data sets can reveal valid

gene regulatory relationships [1]. Analysis of matched aCGH/

expression data can only reveal a small part of a complex network

of gene relationships [18], but we have shown that the predictions

from such an analysis can be accurate enough to advise

experimental investigation and for incorporating with other data

into probabilistic models of gene regulation [1].

The combined data sets are a valuable resource and the

regulator-target predictions presented here only include those

potential regulators which have significant aCGH/expression

correlation in the largest number of data sets. There are many

Table 4. For each regulator, comparing percentage of data sets which, when analysed individually, predict at least one of the
targets that are predicted by the meta-analysis, with percentage of data sets in which the gene-set of targets that are predicted by
the meta-analysis has significant enrichment in the individual data sets’ ranked lists of genes.

Gene data sets % Containing % Enriched

Positive (not TF)

UCHL3 14 21 14

Negative (not TF)

MED4 17 47 53

DDX10 15 47 33

BCL9 15 40 33

AZIN1 15 47 93

PTDSS1 14 29 50

AARS 14 43 57

TBCE 14 29 14

RIPK2 14 29 64

Positive (TF)

HSBP1 12 58 58

POGZ 12 58 100

SMAD5 10 70 70

Negative (TF)

SETDB1 14 36 36

YWHAZ 13 46 69

HSBP1 12 75 75

POGZ 12 67 91

NFATC3 12 50 50

RB1 12 33 58

E2F5 11 36 55

ADAR 11 18 18

SMAD5 10 60 70

NCOA6 10 20 20

ARNT 10 50 80

data sets = number of data sets in which the regulator shows significant correlation between its own aCGH and expression, % Containing = percentage of data sets
which, when analysed individually predict at least one of the targets that are predicted by the meta-analysis, % Enriched = percentage of data sets in which the gene-
set of targets that are predicted by the meta-analysis has significant enrichment in the individual data sets’ ranked lists of genes, TF = Transcription Factor.
doi:10.1371/journal.pone.0105522.t004
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other potential regulators which have significant aCGH/expres-

sion correlation in smaller subsets of the data sets, so in future

work we plan to provide a simple web application by which

researchers can interrogate for themselves the 30 data sets, and

subsets of the 30 data sets, for potential regulator and target genes

of interest.
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