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Abstract
Computer audition (i.e., intelligent audio) has made great strides in recent years; however, it is still far from achieving holistic

hearing abilities, which more appropriately mimic human-like understanding. Within an audio scene, a human listener is

quickly able to interpret layers of sound at a single time-point, with each layer varying in characteristics such as location,

state, and trait. Currently, integrated machine listening approaches, on the other hand, will mainly recognise only single events.

In this context, this contribution aims to provide key insights and approaches, which can be applied in computer audition to

achieve the goal of a more holistic intelligent understanding system, as well as identifying challenges in reaching this goal. We

firstly summarise the state-of-the-art in traditional signal-processing-based audio pre-processing and feature representation, as

well as automated learning such as by deep neural networks. This concerns, in particular, audio interpretation, decomposition,

understanding, as well as ontologisation. We then present an agent-based approach for integrating these concepts as a holistic

audio understanding system. Based on this, concluding, avenues are given towards reaching the ambitious goal of ‘holistic
human-parity’ machine listening abilities.
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Introduction
Typical real-world audio consists of complex combinations
of overlapping events from a variety of sources, creating
both clashing and harmonious relationships. Despite this
complexity, humans can, with relative ease, decipher across
audio (in a holistic manner) through understanding, decom-
posing, interpreting, and ontologisation of an abundance of
potentially conveyed messages and their related semantic
meanings. Historically, developments in the field of compu-
tational audio understanding (computer audition) were ini-
tially driven by speech analysis, in particular, the field of
automatic speech recognition (ASR). From its inception at
Bell labs in the 1950s with the ‘Audrey’ system, capable of
recognising spoken digits (Davis et al., 1952), through the
considerable advancements during the 1980s associated
with the use of hidden Markov models (Hansen & Hasan,
2015), and to the recent deep learning revolution (Hinton
et al., 2012), ASR technologies have now matured to the
point where they are embedded in everyday technologies,
for example, SIRI™, CORTANA

™, and ALEXA
™. A similar

transforming effect has recently occurred through deep learn-
ing, in terms of the immense increase in recognition accuracy
and robustness in music analysis (e. g., Coutinho et al., 2014;
Rajanna et al., 2015; Sigtia et al., 2016), and for the recogni-
tion of acoustic scenes and the detection of specific audio
events (Mesaros et al., 2018).

Considering the advances in computer audition through-
out the last decade (Virtanen et al., 2018), the time is now
to unite these domains of audio understanding, in other
words, combined disciplines of intelligent audio (e.g.,
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interpretation, decomposition, and ontologisation) by creat-
ing a fully fledged (i.e., complete) and holistic (i.e., multi-
domain) audio approach, thereby pushing this somewhat
overlooked and currently underdeveloped mode of research
to the forefront of intelligent machine understanding. To
date, computer audition approaches have been typically
mono-domain focused, with only consideration for the previ-
ously aforementioned domains of speech, music, and in
general in an isolated singular manner. The view proposed
here would unify these domains to truly understand and inter-
pret audio and for the first time allow for a fine-grained level
that not only recognises static traits but also the dynamic
states of a given sound.

In relation to this concept of the state of an audio signal,
initial contributions from Weninger et al. (2013), observed
the acoustic similarities of more than a single audio
domain, and findings showed that to a high degree there
are similarities across domains, particularly between speech
and music in connection with the emotional dimension of
arousal. Despite this early work, there has been for some
time a gap in the literature for truly holistic audio approaches,
although audio decomposition approaches including univer-
sal sound separation (USS) from Kavalerov et al. (2019)
have focused on speech and what the authors describe as uni-
versal sounds, being 2, and 3 plus additional sound to speech.
From this USS approach, there is promising momentum that
may be applicable to the decomposition of extremely
complex audio soundscapes, towards a better understanding
of those decomposed sound sources. With this in mind,
in-the-wild data sources are typically unlabelled, and a holis-
tic approach to audio is entirely needed for interpreting such
data. One approach that has been applied to such data (source
from YouTube) is the self-training network from Elizalde
et al. (2017), which has promising results for a 10-class
multi-domain problem. However, the authors highlight limi-
tations relating to the inherent detector bias that their network
developed due to the initial training data, which should be
addressed when adding the many more classes of audio
that are heard within a given soundscape.

The ground-breaking nature of such a holistic approach is
the simultaneous understanding of the entire audible scene.
Imagine, as an example, an audio scene set in a garage
with two people, who are working on repairing a car while
listening to music. A holistic audio analysis approach will
isolate the conversation, the music, and engine noises and
then assign relevant state and trait tags to each. For instance,
the music genre and individual instrumentation could be
recognised, the age and gender of each person and their rela-
tionship to one another determined, the car’s age, model and
condition identified, and finally the repair duration logged.
Such information can be obtained non-invasively, and with
much lower computational costs than alternative visual
modes of analysis. To this end, this information can poten-
tially be integrated into an abundance of applications,
which can then personalise aspects of security, entertainment,

and household maintenance, and ultimately result in both
commercial and societal benefits.

An example for both commercial and societal benefits
would be to implement this holistic understanding of audio
into, for example, hearing aids or ear buds. In the past,
there have already been some contributions regarding
hearing aids, which focused on classifying different listening
environments, such as clean speech, speech in (traffic) noise,
speech in babble, and music (Büchler et al., 2005; Nordqvist
& Leijon, 2004). Deep learning was also recently used for
this kind of task. Vivek et al. (2020) proposed a convolu-
tional neural network (CNN)-based approach that can be uti-
lised in hearing aids, and is able to differentiate between the
five classes music, noise, speech with noise, silence, and
clean speech. However, these approaches all aim for a better
listening and therefore user experience. But what if more
than only predefined environmental sounds would be ana-
lysed, what about the whole audio environment in a holistic
manner? The possibilities which would come along with that
are virtually endless. For instance, imagine a warning function
in everyday traffic situations. Let us say a person using a
hearing aid is in a big city with a lot of traffic and there is a
car approaching. The hearing aid device could send an appro-
priate signal to the person. The same applies to ear buds when
people are just listening to music or not paying attention to
their environment in general. This might be especially useful
nowadays, where the number of accidents caused by
unaware pedestrians looking at their smartphones has
increased (Yoshiki et al., 2017; Lu & Lo, 2017).

In the following contribution, we aim to outline the need
for a more ubiquitous audio-based methodology and define
the core components required to achieve the described
level of holistic audio understanding. We move quickly
through the state-of-the-art in the audio analysis as related
to the needed aspects of such a view on the next generation
of audio intelligence: audio diarisation, (audio) source
separation, audio understanding, and (audio) ontologisation.

Terminology
As our contribution is divided into a series of core concepts
from the field of intelligent audio analysis, in the following
we will briefly define each of these, to ensure that the
reader has a precise understanding of our use of them.

• Audio interpretation essentially refers to the process of
obtaining annotations for the audio data. This can be in
a variety of methods, including categorical or dimensional
labelling.

• Audio decomposition is the ‘break-down’ of an audio
signal into its individual layers, explicitly this is the
process of source separation. For example, separating
overlapping speakers and removing background music.

• Audio understanding is the phase within an intelligent
audio infrastructure in which higher-level meaning is
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obtained. In some cases, this may be a subjective meaning
for the audio sample, which exceeds the objective truth of
the sound, which was obtained during the audio interpre-
tation stage.

• Audio ontologisation is the development of a knowledge
base tailored specifically to audio and can be used to
inform aspects of interpretation, decomposition, and
understanding. For example, the sound is a bird >
singing > in a woodland, in other words, source >
action > environment.

Although these concepts are developed and able to function
individually, we would consider that they function in a cycli-
cal manner, with interpretation needed prior to decomposi-
tion, and these are needed for better understanding, and
better understanding improving the depth of ontologisation,
which we then improve interpretation.

State-of-the-Art in Audio Analysis

Audio Interpretation
One effort towards interpretation of audio is acquiring anno-
tations. Typically, annotation is costly, time-consuming, and
tedious work. In this regard, gamified intelligent crowdsourc-
ing platforms such as iHEARu-PLAY (Hantke et al., 2016b)
have been developed, to both reduce the cost associated with
annotation and the mental boredom of the annotators. With
help from this platform, large-scale richly labelled data col-
lection can be performed, alleviating efficiently the scarcity
of richly annotated databases. Annotation quality is assessed
on small randomly selected subsets of the data by expert
annotators, and by performing statistics on annotation agree-
ments among different annotators. As a quality measure, the
weighted trustability evaluator (Hantke et al., 2016a) has
been introduced, which takes into consideration inter-rater
agreement (much like the evaluator weighted estimator;
Grimm & Kroschel, 2005), along with an individual’s
‘trustability’.

Semi-supervised active learning solutions have also been
developed in the audio domain to drastically reduce human
efforts by engaging models to perform annotation of the
samples for which it has high confidence, while asking for
human annotation if the level of confidence is low (Qian
et al., 2017). Similarly, transfer learning can be applied to
utilise the knowledge gained from already annotated data-
bases and apply it to the target unannotated ones (Pan &
Yang, 2009). Differences in the feature space and distribution
between annotated and unannotated datasets make transfer-
ring this knowledge highly non-trivial. Transfer learning
has been successfully used in applications including speech
recognition of different languages (Wang et al., 2015). A
range of deep neural topologies have been proposed as trans-
fer learners, and mostly they focus on feature transfer learn-
ing. This effort can be further reduced by re-exploitation of

existing data: in the domain of sound recognition, deep trans-
fer learning has not received adequate attention.

Audio Decomposition
Audio decomposition is a generalisation of speaker diarisa-
tion applied to general sound sources, for example vehicles,
musical instruments, animals, or background noise types
(Reynolds & Torres-Carrasquillo, 2005). This method is
closely related to the task of acoustic event detection
(AED) (Mesaros et al., 2018), where an audio recording is
annotated with the timestamps of trained audible events,
such as ‘car passing by’. The most recent advances in deep
learning approaches to AED include transfer learning
(Wang et al., 2017a), CNNs (Phan et al., 2017), convolu-
tional recurrent neural networks (Amiriparian et al., 2018),
and non-negative matrix factorisation (NMF) (Zhou &
Feng, 2017).

The state-of-the-art for decomposition is mostly marked
by speaker diarisation, as general audio diarisation is still
gaining momentum at this time. Speaker diarisation is
tagging an audio recording of several individuals with
speaker turn information, that is, to provide information relat-
ing to ‘who is speaking when’. The dominating trend of the
last few years in speaker diarisation research is to find suita-
ble speaker embeddings which give a reliable multi-
dimensional clustering of speech segments according to
speakers. In this regard, the i-vector and Gaussian mixture
model-based approaches (Anguera et al., 2012; Tranter &
Reynolds, 2006) are being overtaken by deep neural
network (DNN) feature representations (Bredin, 2017;
Wisniewksi et al., 2017; Rouvier et al., 2015). Note that
DNN-based speaker embeddings are sometimes called
d-vectors, as opposed to i-vectors (Wang et al., 2017b).
The advantage of DNNs for speaker diarisation is that they
are capable of simultaneously learning the embeddings,
that is the feature vectors describing speaker characteristics,
and the scoring function, which represents the similarity
between the embeddings of different segments
(Garcia-Romero et al., 2017). Nevertheless, when comparing
different scoring functions for i-vector embeddings, DNNs
have been shown to outperform conventional scoring func-
tions, such as cosine similarity and probabilistic linear dis-
criminant analysis (Le Lan et al., 2017).

Audio source separation is the decomposition of an arbi-
trary audio signal into several signals with only a single audio
source of interest present in each and could be a speaker, a
musical instrument, a sound produced by an animal or a
vehicle, or background noise, such as breaking sea waves.
In most conventional approaches, a mixture-spectrogram is
separated into several source spectrograms. In the past,
NMF (Nikunen et al., 2018) or non-negative tensor factorisa-
tion (Ozerov et al., 2011) have been used for single-channel
(monaural) source separation (Barker & Virtanen, 2013;
Virtanen, 2007; Virtanen et al., 2011), and independent
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component analysis or multichannel NMF (Nikunen et al.,
2018) used for multi-channel audio.

Well-studied aspects of source separation are speech
denoising and speech enhancement. Previous research on
speech denoising comprises NMF (Weninger et al., 2012),
deep NMF (Le Roux et al., 2015), recurrent neural network
(RNN)-based discriminate training (Weninger et al.,
2014b), long short-term memory-RNNs (Weninger et al.,
2015), memory-enhanced RNNs (Weninger et al., 2014a),
and deep recurrent autoencoders (Weninger et al., 2014c).
Latest approaches to speech source separation also employ
different DNN types, such as feed-forward neural networks
(FFNNs) (Naithani et al., 2016), RNNs (Huang et al.,
2015; Sun et al., 2017) or end-to-end learning using a
CNN- or RNN-autoencoder instead of the usual spectral fea-
tures (Venkataramani et al., 2017). Recently, generative
adversarial nets were found to be promising in modelling
speech (Subakan & Smaragdis, 2018) and singing sources
(Fan et al., 2018).

For the task of music source separation, it was found that
both FFNNs and RNNs are suitable, achieving superior
scores in the signal separation evaluation campaign music
task (Uhlich et al., 2017). Latest efforts in music source
separation employed U-nets, a CNN variant from the image
processing domain (Jansson et al., 2017). Moreover, a
weakly labelled data approach has also been proposed for
the task of singing voice separation (Wang et al., 2017c).
This approach utilised information about the presence or
absence of singing as given by the output of a diarisation
system. Notably, despite the huge amount of publications
in the field of source separation, cross-domain, and thus a
holistic, audio signal separation (i.e., separation of audio
sources with distinct variance in character) is still largely
unexplored.

Audio Understanding
We consider audio understanding to be the task of acquiring a
higher level semantic understanding of auditory scenes,
sound events, speech, and music. For this task, the aim of
understanding the audio goes beyond the simple identifica-
tion of speech, music, objects, or events and their respective
attributes. The goal, instead, should be to understand the rela-
tions between the elements of a sound scene. This under-
standing includes their relation to each other as well as
their contextual meaning to a listener. For example, two indi-
viduals speaking loudly, followed by a door slam and then a
person crying, could be understood as a heated discussion
causing emotional implications. Or imagine a future possibil-
ity in which a person wearing a listening aid, ear buds, or just
using their phone walking down the street and suddenly start-
ing to breath and cough very heavily, followed by a muffled
impact sound after a few seconds. This could be understood
as a sudden deterioration in the person’s health state leading
to a collapse. If we consider a multimodal setting, right at this

moment an ambulance could be called, even before any
pedestrians were able to get to the collapsed person. Or,
instead of directly notifying an ambulance, the personal
assistant (e.g., SIRI) could ask the person if everything is
alright and wait for a response before alerting anyone. Or it
would not even need to ask at all, if it recognised the voice
of its ‘master’ shortly after the muffled sound.

Unlike the field of computer vision, where considerable
research has been carried out on higher-levels of semantic
understanding of visual tasks (e.g., visual question answer-
ing: Agrawal et al., 2017; Yang et al., 2016; image caption-
ing: Xu et al., 2015; Lu et al., 2017), only a few works have
been realised in the audio domain. One example is the recent
work described in (Drossos et al., 2017), followed by their
current approach in Tran et al. (2020), in which an
encoder–decoder neural network is used to process a
sequence of Mel-band energies and to compute a sequence
of words that describe a given audio segment.

The already proved success of encoder-decoder
sequence-to-sequence architectures for structured prediction
tasks such as more general audio combined with the small
number of existing works applying such models to audio
understanding tasks (to the best of our knowledge) creates
a window of opportunity for conducting successful research
in applying encoder–decoder for the above-mentioned tasks.

Audio Ontologisation
A core component of a holistic audio analysis, for both inter-
pretation and understanding of audio scenes, is multi-domain
audio ontologisation. A formally documented knowledge
base, which provides a precise description of the concepts
encompassed within a domain, with additional attributes of
each concept describing possible features. Within the
machine learning community, ontologisation has been
widely studied and applied in the text analysis domain
(Buitelaar et al., 2005), human activity recognition (Hoelzl
et al., 2014), and for ‘hierarchical’ image-understanding
domains (Durand et al., 2007; Deng et al., 2009; Borth
et al., 2013). In the audio domain, however, due to the com-
plexities of the everyday life soundscapes, most efforts have
been focused on specific domains (Raimond et al., 2007; Han
et al., 2010; Allik et al., 2016; Nakatani & Okuno, 1998).

To date, there have been scarce attempts to create com-
plete cross-audio domain ontologisations of everyday life
soundscapes. The AudioSet (Gemmeke et al., 2017) by
Google has been perhaps the most interesting audio ontologi-
sation attempt to date. It offers an ontologisation of audio
events and their relationships within a sub-field, that is,
classes include music, animals, and human sounds, and the
corresponding dependent children are rock, dog, and whis-
tling. AudioSet, however, does not include descriptors of
the audio (e.g., the object action or emotion). This aspect
aside, it does provide a platform for further and deeper onto-
logisation by the computer audition community. Until the
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release of AudioSet, the majority of works in ontologisation
of audio scenes had come from studies focusing on the onto-
logisation of explicit audio domains, for example for music
genre classification (Raimond et al., 2007), music emotion
perception (Han et al., 2010), and audio features (Allik
et al., 2016). Excluding AudioSet, attempts at multi-domain
audio ontologisation have mainly focused on the segregation
of speech and music (Nakatani & Okuno, 1998), or sound
objects retrieval (Hatala et al., 2004).

To build a basis for ontologising a domain, previous
research has commonly functioned in a manual nature, devel-
oping a methodology for collaborative ontology develop-
ment via data mining-based visual user interfaces, such as
Orange WorkFlows (OWLs) (Hilario et al., 2009). These
methods create a simple ‘seed’ of basic concepts for the
ontology structure (Noy et al., 2006), with further adaptations
requiring huge amounts of collaborative labour, using mech-
anisms for carrying out discussion (e.g., polling and moder-
ators) (Farquhar et al., 1997), something which in the long
run can be time-consuming and costly. In an attempt to auto-
mate the construction of an ontology (known as ontology
learning (Gotmare, 2016)), there have been efforts in the
field of natural language processing, for intelligent web
crawling (Maedche & Staab, 2001; Ehrig & Maedche,
2003; Ganesh et al., 2004). The web offers a mass of
diverse but fragmented data sources, and targets for this
can include Wikipedia, YouTube, and WordNet (Gemmeke
et al., 2017). Such approaches use relevance computation
(Zheng et al., 2008), to prioritise URLs of high relevance
to the data which needs to be labelled, and extract metadata
from social media, for example comments, tags, or titles.
This textual data is then clustered into groups which may
provide meaning to the associated data. To create these
potential clustered groupings, unsupervised learning
methods for data classification have been applied in the
past (Vicient et al., 2013), as well as semi-supervised and
active learning methods, in which categories are assigned
based on the most informative instances (Gotmare, 2016).

Until this point, the deep ontologisation of a particular
domain has been time-consuming, requiring a mass of
human labour (even the state-of-the-art AudioSet ontology
required a huge amount of manual human effort;
Gemmeke et al., 2017). A holistic audio-domain approach
will not only improve on the state-of-the-art through the
inherent need for additional and more expansive audio
event terminology (e.g., body acoustics, animal calls, or
automotive functions), but also through more fine-grained
event attributes at both the state (e.g., mood) and the trait
(e.g., age) level. A starting point can be given by exploiting
deep learning-based approaches for web crawling
(Amiriparian et al., 2017), and clustering sourced data, as
well as intelligent crowdsourcing approaches to reduce the
need for manual labour, in which active learning is
applied to prioritise the most informative instances
(Hantke et al., 2017).

Towards the Holistic Audio Understanding
From the above, we conclude that audio is largely being
treated as a single-domain phenomenon, but the ingredients
needed for a full-fledged ‘holistic’ and likewise, a more
‘human-like’ (i.e., perceiving and interpreting complex
behaviours and activity in audio at speed) audio understand-
ing are primarily available. In other words, one mainly needs
to put the pieces of the puzzle together, and then feed a learn-
ing system with sufficient audio data. To overcome data spar-
seness, many approaches described in the literature use
auditory and visual information in tandem to improve the
understanding of video content. In Aytar et al. (2016), a
neural network is trained on a corpus of unlabelled videos
to match the representation extracted from the audio part
with that extracted from the visual information by pretrained
networks for object and scene classification. Facilitating such
research avenues, there exist a number of video corpora that
can be used for a multimodal video understanding such as
Rohrbach et al. (2015) and Torabi et al. (2015).

Figure 1 visualises a potential concept towards such
holistic audio intelligence. It uses an example of an audio
scene, as described in the introduction. The number and
type of sources present in an audio signal are not known
beforehand. Hence, decomposition could be modelled as
an iterative process in interaction with an interpretation
component, which is providing information about the
signal and indicating a request for further separation, as
illustrated in Figure 1. In the proposed holistic audio-
domain iterative decomposition solution, the first step
would be to decompose speech, music, and sound and
send separate signals to the interpretation component. The
interpreter would be able to identify the types and then
call the source separation again to decompose the signal
events further. The source separation is aided by weak
labels from the diarisation in this context, to know the tem-
poral occurrences of the fractionally overlapping events.
Finally, after the types of the audio have been classified
by the interpretation component, these are analysed
deeper w. r. t. states, finding that potentially parts are
missing from a semantically higher perspective. This
deeper analysis allows for an iterative process. Figure 2
additionally exemplifies audio ontologies that could suit
the need for a complete and ‘holistic’ audio understanding.
Note that the concept of state and trait assignment as known
from speech analysis is consequently extended to general
audio sources such as sound or music – after all, sound
always has a source that has certain traits and is in certain
states.

An Agent-Based Methodology for Holistic
Audio Understanding
To extend on the previously mentioned concept for holistic
audio understanding, in this section we described four
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highly cooperative intelligent agents, which can be integrated
together and developed autonomously to infer a deep com-
prehensive understanding of sounds.

The interpretation agent seeks and collects novel data by
constantly exploring web sources and real-life environments
(e.g., via mobile apps). The decomposition agent would
perform fully fledged combined diarisation and source separa-
tion and associate them with a full set of basic descriptive attri-
butes (such as loud, resonant, intermittent, continuous, noisy,
etc.). An understanding agentwill use intermediate-level attri-
butes to recognise an unlimited number of complex sound
states and traits. The ontology agent is then responsible for

building high-level understanding of sounds (e.g., an old big
car is driving on an asphalt road in a rainy weather). An over-
view of these interactions and cooperation is depicted in
Figure 2.

Interpretation Agent
While online multimedia archives contain an untold wealth
of data, its practical application for training machine learning
systems is restricted by three obstacles: (i) finding relevant
recordings; (ii) segmenting into meaningful, coherent parts;
and (iii) reliably labelling segments for usefulness in

Figure 1. Example for an iterative approach to decompose audio interpreting on different semantic levels of ‘understanding’ to lead to an

optimal ‘holistic’ audio understanding. Imagine a garage with two people working on a car and listening to music as the (audio) scene.

Figure 2. Overview of agents (decomposition, interpretation, ontologisation, understanding) and their given tasks and their interactions, as

well as additional dissemination outputs.
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machine learning. To cope with these challenges, novel auto-
mated tools such as CAS2T1 (Amiriparian et al., 2017), have
been introduced, based on a unique combination of small-
world modelling of complex networks (Strogatz, 2001),
unsupervised audio analysis, and crowdsourcing. Such an
approach facilitates rapid training of new tasks sourced
entirely via social multimedia. Concepts including curious
(i.e., interpreting) multi-agent systems are promising for
future research in this direction, and should be generalised
and extended.

In the context of holistic audio understanding, an interpre-
tation agent will be responsible for collecting new
data samples which have high value to the other agents.
The agent will do its respective tasks by crawling social
media platforms and retrieving audio clips through official
Application Programming Interfaces (APIs). As curiosity
can be interpreted in various ways, research into defining
an audio curiosity criterion is still needed, as such criterion
defines what kind of audio data is novel. For these,
approaches such as reconstruction-based novelty detection
(e.g., autoencoder-based) (Pimentel et al., 2014) may be
applied in the audio-domain, where more than one distinct
type of curiosity criteria will be investigated. For example,
a curiosity criterion can check if the novel sample can be con-
sidered for the development of ontology (by the ontology
agent).

Different variants of a curious collection algorithm can be
developed, using versatile techniques, to explore the frontiers
of automatic data collection in the age of big data. Once the
curiosity criterion is defined, a curious collection algorithm
can go into action. The role of a curious collection algorithm
is to enable fast identification of ‘related’ multimedia data
from online resources. A curious collection algorithm will
be a circular three-stage procedure, in which a model learns
methods to better collect data. At the first stage, the agent
will be exploring the different web pages of a social media
platform, following a path that is determined by a parame-
terised path-determining-model.

As the agent travels along its path in the social media plat-
forms, it can collect possible candidate audio samples for
the next stage of the algorithm. In the second stage, these
audio samples will be evaluated with respect to the curiosity
criterion, to determine whether each candidate sample
should be added to the database or discarded. At the third
stage, the parameters of the path-determining-model from
the first stage will be updated, to allow it to find audio
samples that better match the curiosity criteria in the next
round of actions.

Another variant of the curious interpretation agent is to
use deep reinforcement learning techniques (Mnih et al.,
2015) to collect the desired novel audio data from social
media. In this variant, a DNN (the path-determining-model)
will be conditioned on a current video’s metadata, and will
decide upon the next action to take: explore a related video,
apply a search operation using a new search term, etc.

The metadata can include a video’s name, tags, related
videos, etc. The audio samples from the videos which the
agent encounters along its path will be evaluated with
respect to a curiosity criterion. This evaluation can be
done by feeding the audio samples into an already trained
separate DNN, accepting samples on which this classifier
has predictions with low confidence, and discarding the
rest.

To speed up learning for the curious collection algo-
rithm, its circular three-stage procedure will be considered
for multiple interpretation agents in parallel. As was done
in Mnih et al. (2016), multiple agents can explore social
media platforms simultaneously, updating the parame-
terised path-determining-model asynchronously.

Decomposition Agent
The task of a decomposition agent is threefold: (i) intelligent
sound source separation of soundscapes with varied levels of
polyphony, (ii) ontologically driven diarisation of separated
concepts, and (iii) audio attribute specification for separated
sounds.

Traditional sound event detection is a rapidly developing
research field that deals with the complex problem of describ-
ing and understanding sounds in everyday soundscapes.
State-of-the-art sound event detection systems involve locat-
ing and recognising sounds with an audio-detection onset and
offset for system-known sound event instances (Mesaros
et al., 2016). The complexity of state-of-the-art sound event
detection systems varies with the simplest being detection
of a sequence of sounds separated in the time domain.
More complex systems are able to decode polyphonic
sound events with multiple overlapping sounds, as is
usually the case in our everyday environment (Mesaros
et al., 2016). Unlike state-of-the-art sound event detection
systems, the proposed decomposition agent models not
only system-known sound events but also system-unknown
sound concepts. Sound concepts without semantic and onto-
logic information will be introduced to the interpretation and
ontology agent. Sound concepts include not only linguistic
description of the sound event, but also can describe its
states and traits.

The first task for the audio decomposition agent is an intel-
ligent sound source separation. Instead of using
state-of-the-art context-dependent sound event detection
(Heittola et al., 2013), the ontology agent provides agent-
prior information on the possible concepts (if available
from semantic analysis of the descriptions). Corresponding
prior information could significantly increase the quality of
sound source separation for polyphonic soundscapes.
Methods such as Bayesian neural networks can also be con-
sidered for an optimal balance of modelling prior and poste-
rior information during the decomposition of real-life
polyphonic sound concepts.
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The second task for this agent is an advanced sound dia-
risation. Sound diarisation will be established as a new
research field that can be specified from its common case,
speaker diarisation, the process of separating an audio
signal input into homogeneous segments according to its
source identity (speaker identity in the case of speaker diari-
sation). The source identity of detected audio sources will be
interpreted by the ontology agent.

The third task of the agent is responsible for the descrip-
tion of individual audio attributes (such as ‘live’, ‘nature’
or ‘mechanical’, ‘monotonic’ or ‘variable’). The audio attri-
butes can then be defined and organised by the ontology
agent and provide prior knowledge for the learning agent
for zero-shot learning.

Understanding Agent
The task of this agent is to learn and understand sophisticated
and detailed categories of sound sources that act as the basic
units of complex soundscapes. This novel source-centric per-
spective on acoustic scenes moves the analysis to a new
dimension with a high capacity for describing real-life envi-
ronments. The categories of sound sources could be richly
related to the sound source traits and states. Usually, the tra-
ditional supervised machine learning algorithms for sound
categorisation require large quantities of annotated data to
be continuously collected for any novel soundscape under
scrutiny. Obtaining such rich annotations with sound
source traits and states is a challenging task due to the
effort and expense of careful annotations. Going to real-life
highly complex soundscapes, such as a street with many
sound sources, annotations are becoming harder to obtain
due to the number of possible traits and states. Describing
real environments is the future of intelligent system
operation.

In the absence of rich annotations, the understanding
agent can use zero-shot learning, where the combination of
existing categories and semantic, cross-concept mappings
between them allows for novel classifications without the
need for new typical examples. Despite its maturity in the
field of visual object recognition, zero-shot learning has not
yet been explored for the categorisation of complex
sounds. Integrating zero-shot learning enables the complex
handling of unlimited numbers of sounds that continuously
emerge from real environments. The understanding agent
will operate on segmented and separated sounds together
with their basic attributes provided by the audio decomposi-
tion agent with the goal to learn the most suitable sound traits
and states. For instance, a sound described as noisy, mechan-
ical, continuous, high-frequency, and resonant could refer to
the sound of a faulty engine (left) Figure 3. In addition to
zero-shot learning, deep transfer learning can be considered
by the understanding agent to transfer the knowledge
gained from labelled corpora to the domain of an unlabelled
corpus, for example, to carry the characteristics of indoor

soundscapes to outdoor ones and vice versa. This will
help to process large volumes of unlabelled datasets with
minimal human annotation efforts. Moreover, novel
DNN techniques such as deep encoder–decoder neural net-
works with attention mechanisms to perform direct
sequence-to-sequence mapping of sounds to their natural
language descriptions, possibly in an end-to-end manner,
will be investigated. Figure 3 (right) shows the block struc-
ture of this model.

The understanding agent can also utilise novel forms of
the team’s dynamic active crowdsourcing (Zhang et al.,
2015) to provide reliable feedback and control over the out-
comes. Crowdsourcing is based on the belief that the aggre-
gated results of work performed by numerous ‘non-experts’
approaches the quality of the same work performed by a
few experts, and at a fraction of the cost. Crowdsourcing
workers traditionally operate in an independent manner,
however, advancing crowdsourcing by exploring techniques
such as active crowdsourcing, which is inspired by the
concept of ‘human swarming’ (Rosenberg et al., 2016), is
worth considering. The integration of swarm intelligence
into crowdsourcing would enhance the cooperation and inter-
action between the crowd members.

Ontology Agent
The task of this agent is fourfold: (i) semantic analysis of user
queries or on the description of novel crawled samples, (ii)
detection of novel concepts from the previous task, (iii)
building and expansion of a universal ontology that describes
a soundscape, its state, and its relationship to other sounds-
capes, and (iv) providing prior information to the understand-
ing agent (for both training and classification).

Extending novel approaches to create an evolving
ontology (such as deep ontology learning; Petrucci et al.,
2016) on audio concepts (traits, states, and onomatopoeia)
with less human effort, by crawling certain websites (such
as Wikidata.org and dbpedia.org), interacting with the
interpretation agent (novelty detection and crawling
web), and the understanding agent (0-shot learning, trans-
fer learning, and crowdsourcing). Figure 4 presents an
example of ontology related to the driving scenario.
Although focusing on English language audio concepts
(and as standard semantic web ontology language: OWL)
may provide more known-data sources, an ontological
approach should be adapted for other languages. These
approaches are better understood through the consider-
ation of the following scenarios:

• Manual expansion: given that new sound databases are
being generated by different communities, the content,
the tags, and the labels will be used to expand the ontol-
ogy and create new deep classifiers.

• Web-crawling: a web-crawler searches textual contents to
find new subcategories or concepts (e.g., ‘dog is an
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animal’) and requests the intelligent crawler of the inter-
pretation agent to collect audio samples related to that
concept (e.g., ‘dog’). The classifier related to the super
concept (e.g., ‘animal’) will be updated and tuned to
incorporate the new class label.

• Query based: a user asks a query (‘I need a classifier for
animals [dog, cat, bird]’). The user query analyser extracts
the categories to be looked for. In case one of these cate-
gories is not yet in the ontology, the previous approach
will be used to collect data and build classifiers.

• Crowdsourcing: for labelling unknown (novel) audio
which is collected by the understanding agent, the ontol-
ogy agent will help to narrow down possible labels

(through top-down classification) to be shown to the
crowd as suggestive labels. Moreover, crowdsourcing
can alternatively suggest new labels and therefore, ontol-
ogy can be expanded.

In relation to the entire holistic audio system, the ontology
is useful for the selection of appropriate recognition models
for audio, through top-down model selection, from the
soundscape down to a certain trait (e.g., soundscape–
mechanical–machine–vehicle–car) and state (e.g., high
speed). In addition, ontology between traits and audio attri-
butes (obtained from the decomposition agent) will
empower zero-shot learning in the understanding agent.

Figure 3. (Left) Example attribute vectors for zero-shot learning. (Right) Structure of an encoder–decoder neural network with an

attention mechanism.

Figure 4. Example of an ontology that consequently attributes audio sources states and traits – not only for speech as is the current usual

state-of-literature. In this depiction, we see that the audio source is decomposed into three sub-sources; speech, music, and sound, which

are then each further decomposed. For example, one of the ‘sound’ sources is noted as being mechanical, vehicle, car, and the car is further

labelled for its brand, as well as current action (e.g., speed).
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Ontology matching will be adapted and advanced (e.g., using
word-embeddings; Zhang et al., 2014) to find the most
similar concepts for transfer learning (in the understanding
agent). There are available techniques that use ontology to
enhance classification performance, such as applying deep
learning approaches, from Bayesian networks (Furfaro
et al., 2016) to autoencoders (Chicco et al., 2014).
Moreover, integrating an ontology agent allows for further
generation of use-cases. Use-cases explicitly define which
categories could be of interest to classify. For example for
‘outdoor security’ as a use-case, we can define ‘human
running’, ‘dog barking’, ‘angry speech’, and ‘breaking
glass’ as potential threats in a ‘street’ with thousands of pos-
sible sonic combinations. Therefore, only the classifiers are
applied which lead from ‘soundscape’ to these concepts.

Conclusion
Within this article, the core contributions are three-fold (1) a
detailed overview of the state-of-the-art in audio intelligence,
(2) a deeper focus on audio understanding when it comes to
general audio, consisting of a blend of speech and/or music
and/or sound, and (3) perspectives on the next step for
audio intelligence through the proposal of a fully fledged
agent-based audio understanding system. From this we
have surveyed each component, which we believe are
crucial to lead to a general audio understanding including
audio diarisation, source separation, understanding, and
ontologisation. We have found from our overview of the lit-
erature that many of the approaches outlined are in a mature
stage of research, and from this, we outlined a potential
approach on how to combine the pieces to lead to a more
advanced form of ‘holistic’ audio analysis with a rich ontol-
ogy unified across the audio domains. To this end, extending
our concept with detail for a fully fledged agent-based holis-
tic audio understanding intelligence. Once realised, such an
audio intelligence will find an abundance of potential appli-
cations from security to enhancing human–robot interaction,
and beyond.

Next to the possibility of safety functions regarding
hearing aids and ear buds, which were already introduced
earlier, there are of course even more future-oriented applica-
tion opportunities. Nowadays, almost everybody has their
own smartphone with them wherever they are. Suppose a
person’s smartphone picked up the ambient sounds from
their pockets, such that a personal speech assistant, such as
ALEXA or SIRI could tell them which bird is chirping or
which kind of dog is currently barking at them.
Additionally, the steady improvements in the field of auton-
omous driving are opening up even more capabilities for a
holistic audio understanding. When we reach the point at
which no human is needed anymore to drive a vehicle, it is
the computer with whom we are communicating and which
is communicating with us. Therefore, imagine a scenario in
which a vehicle (e.g., a car or bus) is able to distinguish

between all occurring sounds (different speakers, animals,
electrical devices, etc.). It could take care of everybody in
the room and even detect if a person’s health state changes.
For instance, if a person suddenly starts breathing very
heavily or bursts out into coughing or screams of pain, it
could call an ambulance or directly drive to the next hospital
while informing the hospital about its arrival and the state of
the upcoming patient.
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