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EEG Dataset for RSVP and P300 
Speller Brain-Computer Interfaces
Kyungho Won  1, Moonyoung Kwon2, Minkyu ahn3 & Sung Chan Jun  1 ✉

as attention to deep learning techniques has grown, many researchers have attempted to develop 
ready-to-go brain-computer interfaces (BCIs) that include automatic processing pipelines. However, 
to do so, a large and clear dataset is essential to increase the model’s reliability and performance. 
accordingly, our electroencephalogram (EEG) dataset for rapid serial visual representation (RSVP) and 
P300 speller may contribute to increasing such BCI research. We validated our dataset with respect 
to features and accuracy. For the RSVP, the participants (N = 50) achieved about 92% mean target 
detection accuracy. At the feature level, we observed notable ERPs (at 315 ms in the RSVP; at 262 ms 
in the P300 speller) during target events compared to non-target events. Regarding P300 speller 
performance, the participants (N = 55) achieved about 92% mean accuracy. In addition, P300 speller 
performance over trial repetitions up to 15 was explored. The presented dataset could potentially 
improve P300 speller applications. Further, it may be used to evaluate feature extraction and 
classification algorithm effectively, such as for cross-subjects/cross-datasets, and even for the cross-
paradigm BCI model.

Background & Summary
For many years, people have benefited from brain-computer interface (BCI) as a new non-muscular channel 
for communicating with the external world1. According to control signals, BCI can be divided into several 
types2; each type can provide a specific function, such as cursor control, virtual keyboard, and so on. Among 
the BCI applications, P300 speller is a popular BCI application Farwell and Donchin developed in 1988 that 
enters letters using brain activity3 called P300, which is one of the event-related potentials (ERPs) showing a 
positive deflection in EEG that appears approximately 300 ms in response to infrequent target stimuli4–6. As 
P300 has been reported to be highly stable7 and replicable8, the P300 speller yields stable performance and 
has helped people who require a communication tool that uses brain activity alone. In addition, classification 
accuracy has been improved by applying deep learning techniques to BCI, and many cross-subject models that 
use other participants’ training data have been proposed9–11. The BCI competition datasets have been used 
commonly to evaluate proposed model performance12,13; however, recently, datasets with a large number of 
participants have growing attention as benchmark datasets14,15. Such datasets are highly advantageous because 
of the amount of information available to train complex neural networks and transfer learning, and they are 
likely to have a broad performance distribution so that one could investigate whether a model works properly 
for a wide spectrum of participants. For example, Xu et al. examined cross-dataset variability and proposed a 
pre-alignment method across EEG dataset using eight BCI datasets containing various number of participants 
(average N = 27.13 ± 36.52, 4 to 109 participants)16. In this respect, we proposed another large EEG dataset 
that contains eyes-open/closed resting state, rapid serial visual presentation (RSVP), and visual P300-based 
BCI from 55 participants. Since our dataset contains rich information, such as eyes-open/closed resting states, 
questionnaire, and 3D electrode positions in addition to BCI data, it may be used to evaluate BCI performance 
with proposed classification methods and investigate the relation between default mode network and BCI per-
formance. Further, it may be useful in developing data alignment methods across different datasets. We note that 
our dataset has been used already in our work on a P300 speller performance predictor17 and zero-training P300 
speller18, but the dataset has not been published and has good potential implications for BCI research (see usage 
note section in the main text).
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Methods
Participants. We recruited a total of 55 participants (14 females, aged 22.91 ± 2.87) for a rapid serial visual 
presentation (RSVP) and P300 speller tasks. The Institutional Review Board of Gwangju Institute of Science and 
Technology (20171106-HR-31–01–02) approved the experiment, and all the participants were informed about 
the experiment and signed a written consent form beforehand. All participants performed the same experimental 
tasks, including eyes open/closed resting state, rapid serial visual presentation (RSVP), and a P300 speller task 
(Fig. 1). Each participant was seated in a comfortable chair approximately 1 m away from a 27-inch monitor 
screen in a room. The operator monitored the participant outside the room using a front webcam and delivered 
instructions by voice. The entire experimental procedure is summarized in Table 1.

Data acquisition. EEG data were collected at a 512 Hz sampling rate using 32 Ag/AgCl active electrodes 
according to the international 10–20 system (see Fig. 2 for electrode names and the corresponding channel indi-
ces). The EEG device used in this experiment was the Biosemi ActiveTwo system. EEG acquisition and stimu-
lation tasks (resting state, RSVP, P300 speller tasks) were conducted with BCI2000 software19. Before the first 
resting state was recorded, we collected EEG channel locations (electrode 3D coordinates) using a 3D coordinate 
digitizer (Polhemus Fastrack) for each participant. The measured channel locations were determined as the aver-
age of two measurements of the digitizer to avoid handshaking.

Resting state. During the resting state, the participants were instructed to minimize their body movement, 
stay relaxed for 2 minutes, and keep their eyes open and eyes closed, respectively. For the eyes-open state, the par-
ticipants were instructed to stare at a fixation cross on the screen; for the eyes-closed state, the participants were 
instructed to close their eyes until the end of the recording session. The operator spoke to the participants at the 
end of the recording session. The resting state was collected three times— before and after the RSVP task (before 
the first P300 speller calibration run), and after the last run of the P300 speller.

Rapid serial visual presentation (RSVP). A rapid serial visual presentation (RSVP) task is one in which 
a participant detects a single target letter or image in a rapidly refreshing letter or image stream at the same loca-
tion20,21. The RSVP task is known to elicit ERPs when a participant focuses selectively on a target and ignores 
non-targets20. Figure 3a represents the RSVP task procedure from start to end. Specifically, as illustrated in 
Fig. 1b, participants were instructed to press the keyboard to recall the target character within 5 seconds after each 
character stream consisting of one target character (green-colored) and 20 non-target characters (white-colored) 
was displayed with a 10 Hz refresh rate. The participants performed 40 RSVP trials, such that there were 40 target 
events and 800 non-target events for each participant. The detection accuracy of target letters (the number of 
target characters identified correctly among 40 RSVP trials) was defined as T1%. During the task, the participants 
received no feedback on whether they identified the target characters correctly.

P300 speller. During the P300 speller task, the participants were instructed to spell the target text through 
Farwell and Donchin’s 6 × 6 matrix-based speller3 that consists of alphabet letters (A–Z), digits (1–9), and space 
(“_”), as shown in Fig. 1c. In general, the P300 speller does not print letters using a single trial; instead, it uses an 
ERP called P300 elicited by the target sequence (single row and column) among blinking sequences. Thus, the 
speller matrix consists of 12 sequences, 6-row and 6-column sequences (hereinafter we refer to a single row or 
column sequence as a stim sequence). At the beginning of a letter block, the stim sequence blinks white and dark 
gray in random order. For each blink, the trained classifier determines whether the blinked stim sequence is tar-
get or non-target, then stores the classifier output (target or non-target; corresponding sequence column or row 

Fig. 1 Experimental paradigm. (a) Resting state during eyes-open/closed, (b) rapid serial visual presentation 
(RSVP), and (c) P300 speller. The experimental procedure is described in Table 1.
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index). To enhance the signal-to-noise ratio (SNR), the operators could set the number of the stim sequences’ rep-
etitions. At the end of the letter block, the speller application determines the final target row and column with the 
highest scores among the 6 row and column sequences. Finally, a single letter is printed and begins the next block. 
Figure 3b represents the P300 speller task procedure for a single word block, and step by step explanation follows.

In this experiment, BCI2000 software19 was used for P300 speller application and EEG data acquisition dur-
ing the task. As depicted in Fig. 1c, the P300 speller consists of the target text region, text results (classified 
letters) region, and speller matrix region. Each stim sequence was flashed for 125 ms and turned off for 62.5 ms 
until the next sequence was flashed. In this experiment, each stim sequence was blinked 15 times to print a single 
character. Therefore, each target character blinked a total of 30 times and non-target characters blinked a total 
of 150 times. Participants stared at the speller matrix, attended to the target letter blinks (target stim sequence), 
and ignored other blinks (non-target stim sequences). During the two calibration runs, the participants were 
instructed to print two words (“BRAIN” and “POWER”), but visual feedback was not provided. After the cali-
bration runs, classifier weights were trained using stepwise linear discriminant analysis (SWLDA) with BCI2000 
software22,23. To train the classifier, EEG 800 ms from the stimulus onset were extracted and down sampled to 
20 Hz. The best 60 features among the features were chosen to detect the P300. In the test runs, the participants 
were instructed to print four words (“SUBJECT”, “NEURONS”, “IMAGINE”, and “QUALITY”). Visual feedback 
was provided on the top of the P300 speller, as depicted in Fig. 1c.

Number Task Duration (min)

1 Sign a consent form and complete a questionnaire 5

2 Equip EEG and test record 20

3 Digitize 3D electrode position 20

4 Resting state (eyes-open) 2

5 Resting state (eyes-closed) 2

6 Rapid serial visual presentation 6

7 Resting state (eyes-open) 2

8 Resting state (eyes-closed) 2

9 P300 speller - calibration phase RUN 1 4

10 P300 speller - calibration phase RUN 2 4

11 Complete a questionnaire 2

12 P300 speller - test phase RUN 1 6

13 Complete a questionnaire 2

14 P300 speller - test phase RUN 2 6

15 Complete a questionnaire 2

16 P300 speller - test phase RUN 3 6

17 Complete a questionnaire 2

18 P300 speller - test phase RUN 4 6

19 Complete a questionnaire 2

20 Resting state (eyes-open) 2

21 Resting state (eyes-closed) 2

22 Disengage and clean EEG 20

SUM 125

Table 1. Detailed procedure in the experimental paradigm.

Fig. 2 Electrode channel configuration. Electrode labels (left) and their corresponding numbers (right).
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We note that this dataset includes 17 unique letters (from four test words) among 36 letters (from 6 × 6 
speller matrix). In P300 speller, the trained classifier determines only whether the upcoming sequence is target 
or non-target regardless of target letter location. In other words, in Fig. 1c, letter “A” (1st row, 1st column) and 
letter “_” (6th row, 6th column) has the same binary classification problem. Therefore, P300 speller dataset does 
not need to spell all the letters and other research studies instructed to spell some part of letters from their own 
sentences15. On the other hand, there is another BCI speller type controlled by steady-state visual evoked poten-
tial (SSVEP)24, which is an EEG component elicited by a visual stimulus that is modulated at a fixed frequency. 
Because each letter is coded with distinct frequency in SSVEP speller25,26, letter location for the SSVEP speller 
may be a factor associated with accuracy and thus all letters in the speller should be tested because each letter has 
a unique frequency and phase stimulus.

Questionnaire. In addition to acquiring EEG data, the participants’ physical/mental states were collected 
using the questionnaire shown in Table 2. We note that the questionnaire was written in Korean first and then 
translated into English. The participants completed the questionnaire before the experiment (number 1 to 21), 
after the P300 calibration phase (number 22 to 34) after each P300 test run (number 35 to 47, 48 to 60, 61 to 73, 
and 74 to 84, respectively), and at the end of the experiment (number 85 to 88). All answers collected (numerical 
values or characters) to the questions were stored in a single file (*.xlsx), and unanswered questions were marked 
as the numeric value of 0.

Preprocessing and feature extraction. In preprocessing, we applied the minimum processing conven-
tionally necessary, in that additional preprocessing remains at the user’s discretion. This experiment involves 
real-time P300 speller runs; in practice, complex signal processing is applied rarely because the online procedure 
requires considerable time, and a decision is likely to be made regardless of whether the current epoch is good or 
bad. Thus, most investigators apply their preferred preprocessing pipeline in the offline analysis, such as rejecting 
bad epochs. In our case, during preprocessing, we first re-referenced the EEG data with common average refer-
ence (CAR) that uses all electrode channels as a reference because the EEG device (Biosemi ActiveTwo system) 
used for data acquisition does not provide hardware-level referencing. Here, we validated the EEG data collected 
during the RSVP and P300 speller tasks. For the resting state, no data validation was considered since resting state 
EEG records default brain activity from the participants when they did nothing. Therefore, users can decide how 
to analyze this EEG upon their analysis purpose.

RSVP. RSVP includes the participant’s keyboard response (defined as T1%) and ERPs for 40 trials. To calculate 
ERPs, EEG data were band-pass filtered with the bandwidth of [1 10] Hz as one of the conventional bandwidths 
for the P300 detection27 to remove noise and preserve P300 information. Further, high pass filtering (≥1 Hz) was 
applied to increase signal-to-noise ratio (SNR) by removing noise caused by non-brain activities, such as motion 
artifacts, and low pass filtering (≤10 Hz) was applied to remove artefacts induced by 10 Hz refresh rate. However, we 
note that low pass filtering with higher cut-off frequency yielded no difference. Then, the filtered data were extracted 
with [−200 1000] ms relative to the stimulus onset, and baseline correction was performed with [−200 0] ms before 
onset. Specifically, 6 adjacent non-target epochs (after or before target) were removed for each stream as the target and 
non-target epochs may overlap because of the rapid refresh rate. As a result, it yielded extracted epochs of every par-
ticipant with dimensions of [32 × 615 × 40] for targets and [32 × 615 × 560] for non-targets, where ‘32’ represents elec-
trode channels, ‘615’ represents samples (512 Hz × 1200 ms), and ‘40’ and ‘560’ represent the number of targets and 
non-targets in the RSVP, respectively. Before the trials were averaged to display ERPs, certain epochs with an ampli-
tude greater than ±100 μV except for the frontal electrodes close to the eyes (FP1, FP2, AF1, and AF3) were removed.

P300 speller. ERPs during P300 speller sessions were examined just as those in RSVP. Next, we evaluated 
the P300 speller performance with respect to classification accuracy as the number of stim sequence repetitions 
varied. The P300 speller data included 2 calibration runs (2 of 5-letter words) and 4 test runs (4 of 7-letter words). 
For validation purposes, to extract features, we used EEG from the test runs only because of its simplicity, as 
there was no visual feedback during the calibration runs. Because the P300 speller and RSVP elicit the same EEG 
characteristics, we calculated ERPs of the P300 speller in the same manner as for RSVP. However, epoch removal 
was not considered for the P300 speller data. We believe that additional processing in an online setting (BCI test 
runs) may not be necessary and may be done when needed at the user’s discretion. As a result, it yielded extracted 
epochs with a dimension of [32 × 615 × 840] for targets and [32 × 615 × 4200] for non-targets for every partici-
pant, where ‘32’ represents electrode channels, ‘615’ represents samples (512 Hz × 1200 ms), and ‘840’ and ‘4200’ 
represent the number of targets and non-targets in the P300 speller, respectively.

In addition to P300 speller features, performance was assessed according to offline letter detection accuracy. As 
stated in the experimental design section, the P300 speller outputs a letter by collecting several stim sequences and 
classifying them as targets or non-targets. Eventually, the row and column indices in a 6 × 6 matrix that yield the 
highest scores (i.e., those classified as a target most frequently in given row/column stims, respectively) were used to 
print a target letter. In addition to online P300 speller performance, we calculated offline performance over various 
repetitions (1 to 15). First, a classification model was trained using the EEG collected during calibration runs. Training 
data were bandpass-filtered at [0.5 10] Hz, as the same as the RSVP EEG preprocessing – high pass filtering to increase 
signal-to-noise ratio (SNR) by removing noise caused by non-brain activities, such as motion artifacts and low pass 
filtering to remove SSVEP effects that may be induced by the constant blinking speller matrix. Compared to the 
RSVP task, P300 speller task was more stable in EEG because the RSVP task did require keyboard press to answer, 
whereas P300 speller did not require any body movement. As a result, in P300 speller, noise (inspected visually) was 
observed to be minimized with 0.5 Hz cut-off frequency for high pass filtering, in place of 1 Hz. We note that low pass 
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Number Question

A. Individual information
1 Handedness (Right = R, Left = L)
2 Diseases (Yes = Y, No = N)
3 Age (number)
4 Gender (Male = M, Female = F)
5 Normal vision or corrected (lens, glasses) vision (Corrected = Y, normal = N)
6 Notes (BCI or biofeedback experience) - Yes = Y, No = N
B. Before experiment
7 1. Are you curious about today’s experiment?
8 2. Are you willing to try your strategy for effective experimental training?
9 3. Do you look forward to achieving a high score (P300 speller performance)?
10 4. Are you proud of yourself for achieving a high score?
11 5. Are you interested in the fact that people can communicate using brain waves?
12 6. How long did you sleep last night? (hours)
13 7. Did you drink coffee within 24 hours?
14 8. Did you drink liquor within 24 hours?
15 9. Did you smoke within 24 hours?

10. How do you feel?
16 10.1 Anxiety Anxious 1 2 3 4 5 Relaxed
17 10.2 Boredom Bored 1 2 3 4 5 Excited
18 10.3 Physical state Very bad and tired 1 2 3 4 5 Very good
19 10.4 Mental state Very bad and tired 1 2 3 4 5 Very good
20 10.5 Eye state Dry and stiff 1 2 3 4 5 Very good
21 11. How do you predict your overall BCI performance? (in %)
During P300 speller task (C-D)
C. After Calibration run (after P300 speller calibration run02)
22 1. Could you continue the next run? (Yes = Y, No = N)

2. How do you feel?
23 2.1 Anxiety Anxious 1 2 3 4 5 Relaxed
24 2.2 Boredom Bored 1 2 3 4 5 Excited
25 2.3 Concentration Very bad 1 2 3 4 5 Very good
26 2.4 Physical state Very bad and tired 1 2 3 4 5 Very good
27 2.5 Mental state Very bad and tired 1 2 3 4 5 Very good
28 2.6 Eye state Dry and stiff 1 2 3 4 5 Very good
29 3. Were you sleepy during the task? Not sleepy 1 2 3 4 5 Very sleepy
30 4. Was it too fast? Totally disagree 1 2 3 4 5 Totally agree
31 5. Was it too difficult? Totally disagree 1 2 3 4 5 Totally agree
32 6. Was it easy to concentrate on the task? Very difficult 1 2 3 4 5 Very easy
33 7. How do you predict your performance for the last run? (in %)
34 8. How do you predict your performance for the next run? (in %)
D. After P300 speller test run01 to run04 (4 repetitions)

run01
(35~47),
run02
(48~60),
run03
(61~73),
run04
(74~84)
run 04 – no
1 and 7

1. Could you continue the next run? (Yes = Y, No = N)
2. How do you feel?
2.1 Anxiety Anxious 1 2 3 4 5 Relaxed
2.2 Boredom Bored 1 2 3 4 5 Excited
2.3 Concentration Very bad 1 2 3 4 5 Very good
2.4 Physical state Very bad and tired 1 2 3 4 5 Very good
2.5 Mental state Very bad and tired 1 2 3 4 5 Very good
2.6 eye state Dry and stiff 1 2 3 4 5 Very good
3. Were you sleepy during the task? Not sleepy 1 2 3 4 5 Very sleepy
4. Was it too fast? Totally disagree 1 2 3 4 5 Totally agree
5. Was it too difficult? Totally disagree 1 2 3 4 5 Totally agree
6. Was it easy to concentrate on the task? Very difficult 1 2 3 4 5 Very easy
7. How do you predict your performance for the next run? (in %)

E. After the experiment
1. How was today’s experiment?

85 1.1 Duration Too short 1 2 3 4 5 Too long
86 1.2 BCI application evaluation Very bad 1 2 3 4 5 Very good
87 1.3 Experimental environment Uncomfortable 1 2 3 4 5 Comfortable
88 1.4 Task difficulty Difficult 1 2 3 4 5 Easy

Table 2. Questionnaire.
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filtering with higher cut-off frequency yielded no difference. Afterwards, epochs [0 600] ms from the stimulus onset 
were extracted and baseline corrected from 200 ms prior to the onset. To increase the signal-to-noise ratio (SNR), 
epochs were down-sampled from 512 Hz to approximately 20 Hz by averaging 24-time points without overlap, which 
resulted thereby in 32 (channels) × 12 (down-sampled time points). Finally, the epochs extracted to train the model 
had a dimension of [1800 × 384] for each participant. Here, 1800 indicates the number of targets (300) and nontargets 
(1500), and 384 indicates the concatenated features of 32 channels ×12-time samples. Then, the epochs extracted 
were used to train the stepwise linear discriminant analysis (SWLDA) model. SWLDA includes the step of adding 
and removing features depending upon their contribution to the classified labels22,23, so it can reduce the feature space 
from the concatenated feature vector to the reduced feature vector. Among 384 features, the best 60 features were used 
to train classifier weights. After training the classification model, the EEG data collected during the test runs were used 
to evaluate the P300 speller performance. During the test runs, 4 words of 7 letters, i.e., a total of 28 letters to spell, 
were presented. The test data were processed in the same manner as the training data, so the epochs extracted for the 
test had a dimension of [5040 × 384]. Here, 5040 indicates the number of targets (840) and nontargets (4200), and 384 
indicates the concatenated features. Then, every letter was printed using every 180 epochs (30 targets, 150 nontargets), 
and letter detection accuracy was calculated as the number of letters printed correctly. In addition to using all of the 
epochs, the letter detection accuracy was estimated for a smaller number of repetitions (from 15 to 1), which yielded 
180, 168, …, 12 epochs per letter because the 6 × 6 matrix speller has 12 stim sequences (6 rows and 6 columns).

Data Records
The EEG data and questionnaire data are downloadable from the open access repository – figshare28. The 
MATLAB-compatible resource consists of 55 EEG-data files (a total of approximately 13.74 GB). Each file is 
named as participant codes (s01 to s55). The data have a type of MATLAB structural cell array and are formatted 
to (*.mat, -v7.3) extension that can be loaded using MATLAB and Python (mat73 module) for each participant. 
The detailed data structure is described as below:

Fig. 4 RSVP ERP. The grand-averaged ERP response at the midline (Fz, Cz, and Pz) during RSVP.

Fig. 3 Flowcharts for the RSVP and P300 speller tasks. (a) represents RSVP task flow, and (b) represents P300 
speller task flow.
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Fig. 5 RSVP ERP topography. The grand-averaged ERP scalp topography over time during RSVP.

Fig. 6 P300 speller ERP. The grand-averaged ERP response at the midline (Fz, Cz, and Pz) during P300 speller 
test sessions.

EEG = 
a struct with fields:

• RSVP: data structure that contains details of RSVP task
•train: cell array in which element represents the data structure for each calibration run
• test: cell array in which element represents the data structure for each test run
•  rest: cell array in which element represents the data structure for resting sates (fields: open [ch × time], 

close [ch × time])
• senloc: data structure of electrode positions (fields: electrodes_pos [ch × (x, y, z)], labels [1 × ch])

EEG.RSVP =
a struct with fields:

• accuracy_t1: accuracy pressed correctly for RSVP targets
• nbTrials: the number of RSVP trials
• nbTrials_target: the number of target trials
• nbTrials_nontarget: the number of non-target trials
• data: EEG ([ch × time])
• srate: sampling rate
• markers_target: event markers
• chanlocs: channel location including labels
• keyboard_response: keyboard press response
• target: pre-defined RSVP targets

EEG.train/EEG.test = % For EEG.train and EEG.test; their runs are separated in the form of a cell array.
a struct with fields:

• nbTrials: the number of trials
• nbTrials_target: the number of target trials
• nbTrials_nontarget: the number of non-target trials
• data: EEG ([ch x time])
• srate: sampling rate
• markers_seq: event markers (letters to spell)
• markers_target: event markers (target and non-target)
• text_to_spell: predefined text to spell
• text_result: user result
• online_acc: letter detection accuracy (0 for train EEG)
• chanlocs: channl location including labels

https://doi.org/10.1038/s41597-022-01509-w
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In addition to this data structure format, we provided the dataset with EEG-brain imaging data structure 
(BIDS)29,30 on the same repository (a total of approximately 9.15GB)28 which has rich information for the dataset 
so that most BCI investigators could organize and share EEG data easily between laboratories.

technical Validation
RSVP features and performance. Five participants’ (s43 to s47) RSVP responses (T1%) were not recorded 
because the keyboard malfunctioned; however, their EEG data were recorded. With respect to RSVP T1%, the 
remaining 50 participants achieved 91.85 ± 5.6% (77.5–100%), while the RSVP EEG analysis was performed with 
data from all participants. Within a single participant’s epochs, up to 10% and 10.54% were removed from target 
and non-target events, respectively, after trials that had an absolute amplitude greater than 100μV were rejected. 
Individually, P300 amplitude (defined as the peak amplitude within an epoch) was 3.7782 ± 2.1450 μV and P300 

Fig. 7 P300 speller ERP topography. The grand-averaged ERP scalp topography over time during P300 speller 
test sessions.

Fig. 8 P300 speller letter detection accuracy. Distribution of P300 speller offline letter detection accuracy for 55 
participants.

Fig. 9 P300 speller letter detection accuracy according to the number of repetitions. Subject-averaged letter 
detection accuracy. Each boxplot indicates letter detection accuracy from 55 participants according to the 
number of repetitions. Orange circles denote the average letter detection accuracy and blue circles indicate 
outliers in box plots.
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latency (defined as peak latency) was 315.12 ± 84.93 ms. Figure 4 represents the grand-averaged ERP waveform 
during RSVP, and Fig. 5 represents ERP scalp topography plots over time during target and non-target events. As 
shown in Fig. 4, we observed that clear peaks appeared at 200–600 ms around the midline (Fz, Cz, and Pz) during 
target events, while the waveform during non-target events was not notable. With respect to scalp topography, 
ERPs appeared at the fronto-central to parietal areas during target events, while there were only relatively small 
changes in amplitudes during non-target events, which is consistent with reported work4,6.

P300 speller features and performance. The P300 speller EEG analysis was performed on all partici-
pants. Individually, the P300 peak amplitude was 0.9155 ± 0.3668 μV and the peak latency was 261.51 ± 43.02 ms. 
Compared to RSVP, the P300 speller ERPs had a lower amplitude and shorter latency. It is unsurprising that 
the trial average yielded weaker average amplitudes because the P300 speller has many more target epochs than 
those of RSVP. Figure 6 represents the grand-averaged ERP waveform during P300 speller test runs, while Fig. 7 
shows ERP scalp topography plots over time during target and non-target events. As illustrated in Fig. 6, we 
observed a clear positive peak at 200–400 ms around the midline (Fz, Cz, and Pz) during target events, while the 
waveform during non-target events was not evident. With respect to scalp topography, ERPs were evoked at the 
fronto-central to parietal areas during target events, while there were only small changes in amplitudes during 
non-target events, as observed in RSVP. Overall, we observed similar EEG characteristics during target events in 
both RSVP and P300 speller.

All participants’ P300 speller performance was evaluated for 4 words (“SUBJECT”, “NEURONS”, 
“IMAGINE”, and “QUALITY”). Figure 8 represents their letter detection accuracy, which was 91.49 ± 13.12% 
(46.43–100%). We found that 49 of 55 participants achieved performance higher than 80%, while four partic-
ipants only achieved a performance lower than 60%. It is because 32 whole-head electrode channels and the 
number of epochs used in this experiment were sufficient to achieve the advantages of ensemble classification. 
Thus, we investigated the letter detection accuracy in the number of epochs per letter (the number of repe-
titions) from 1 to 15. As shown in Fig. 9, letter detection accuracies were estimated from 33.70 ± 16.65% to 
91.49 ± 13.12%, as the number of repetitions varied from 1 to 15. From this investigation, we may presume that 
if only 85% accuracy is necessary to operate the P300 speller, 9 rather than 15 repetitions are sufficient. Further, 
the improvement in letter detection accuracy was marginal after 12 repetitions, so additional repetitions appear 
to be unnecessary. As expected, a reduction in the number of repetitions increased P300 speller speed and 
decreases accuracy; thus, this investigation may provide a reasonable tradeoff between repetition and accuracy.

Usage Notes
In this note, we proposed our benchmark dataset for the P300 speller collected from 55 participants, including 
RSVP and resting state EEG, a questionnaire, and 3D electrode positions. To show the dataset’s reliability, mini-
mal preprocessing was performed to extract ERPs from RSVP and the P300 speller, after which the P300 speller 
performance was evaluated. The results showed clear ERPs and a reasonable distribution in P300 speller perfor-
mance. Thus, we believe that any investigation may be conducted without difficulty by applying any processing 
pipeline and classification algorithm. With respect to pre-processing, high order statistics, such as independent 
component analysis (ICA) to remove artifact components31, and automatic artifact removal32 may be applied 
accordingly. In our previous work17,18, we used the dataset to investigate the relation between the P300 speller 
performance and EEG characteristics during similar cognitive tasks (RSVP)17, and also used a large number of 
participants to propose a cross-subject classifier using a convolutional neural network (CNN)18.

Further, the dataset has the potential to build cross-subject10,33,34, cross-dataset16, and cross-paradigm35 clas-
sifiers, and it may be useful when investigating the relation between the default mode network and attention 
level or P300 speller performance36 to optimize the P300 speller’s speed and accuracy. In addition, well-designed 
questionnaires and 3D electrode positions are quite useful for more in-depth investigation of neurophysiological 
and psychological aspects. Recently, with the growing necessity to have open datasets and trustworthy algo-
rithms, the open-source framework, including the collection of open EEG datasets, has been proposed37, and 
relevant research studies have used the dataset to validate their algorithms16. With respect to building classifiers, 
with the development of deep learning and advanced signal processing, many zero-training BCI techniques 
have been proposed. A large EEG dataset can definitely contribute to comparing the proposed zero-training BCI 
techniques more reliably, compared to datasets that have a small number of participants because EEG has high 
inter-subject variability.

Ethical approval. The Institutional Review Board at Gwangju Institute of Science and Technology approved 
this experiment(20171106-HR-31–01–02).

Code availability
Project name: EEG dataset for RSVP and P300 Speller Brain-Computer Interfaces. Project home page: https://
github.com/KyunghoWon-GIST/EEG-dataset-for-RSVP-P300-speller. Operating system(s): Windows, MAC. 
Programming language: MATLAB, Python. Other requirements: MATLAB r2020a or higher, Python 3.6 or 
higher. License: MIT License. We note that the results of the article were produced using MATLAB. We provide 
MATLAB and Python scripts, and users can use Python to extract features and evaluate P300 speller performance 
as well, but the result may differ slightly from MATLAB.
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