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Abstract

Purpose

To quantify vessel tortuosity and fractal dimension of the superficial capillary plexus (SCP)

of the macula in different stages of diabetic retinopathy (DR), and following panretinal photo-

coagulation (PRP) using optical coherence tomography angiography (OCTA).

Methods

75 eyes of 75 subjects were divided into five groups; healthy controls, diabetes with no

clinical DR, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy

(PDR) and patients who received PRP for PDR (PDR+PRP).For vessel tortuosity, SCP

slabs from 3x3 mm macular OCTA scans were processed using imageJ (NIH, USA), where

large perifoveal vessels were traced and their length was measured with tortuosity calcu-

lated as the ratio between the actual length and the straight Euclidean length. For fractal

dimension, SCP slabs were processed and imported to Fractalyse (ThéMA, France), where

box-counting analyses produced fractal dimension values.

Results

We found a significant difference in vessel tortuosity and fractal dimension between the five

groups (one-way ANOVA, p < 0.001both). NPDR and PDR had significantly more tortuous

vessels and lower fractal dimension compared to healthy controls (Tukey HSD: p = 0.02,

0.015,0.015 and <0.001, respectively). Fractal dimension was also significantly lower in

NPDR and PDR compared to eyes with no clinical DR (p <0.001 both), and in PDR com-

pared to NPDR (p = 0.014). Following PRP, vessel tortuosity was significantly lower

and fractal dimension was higher in PDR+PRP compared to PDR (p = 0.001 and 0.031,

respectively).
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Conclusions

We used macular OCTA scans to demonstrate significantly higher perifoveal large vessel

tortuosity, and lower fractal dimension in NPDR and PDR compared to healthy controls.

Vessel tortuosity shows more dramatic normalization than fractal dimension and could be

explored as a sensitive marker for successful PRP.

Introduction

Retinal vessel tortuosity and retinal vascular fractal dimension are global measures of retinal

vascular geometry that have been studied intensely.[1–3] Increased vessel tortuosity is thought

to reflect an increase in the hydrostatic pressure as a response to autoregulatory arteriolar dila-

tation caused by tissue hypoxia.[4] This can be explained by Laplace’s law which suggests that

in response to high hydrostatic pressure, there would be an increase in vessel diameter. Fur-

ther, according to Young’s modulus, an increase in vessel length, i.e. tortuosity, eventually

occurs when the pressure increase is large enough to overcome vessel wall stiffness.[5, 6]

The impact of diabetes on retinal vessel tortuosity has been studied extensively in literature.

[1, 7–9] Higher HbA1c has been associated with increased arteriolar tortuosity in type 1 dia-

betic patients with non-proliferative diabetic retinopathy.[1] Furthermore, greater arteriolar

tortuosity has been associated with a higher incidence of diabetic retinopathy (DR), as well as

grade 1 nephropathy.[9–12] Large retinal vessels were more tortuous in diabetic eyes com-

pared to healthy controls.[7, 13] One study went as far as to suggest that increased vessel tortu-

osity and elongation may predict the development of diabetic macular edema (DME).[5]

Fractal dimension, on the other hand, describes the degree of "complexity" of the branching

retinal vascular network.[3, 14] Since DR is a microangiopathy known to cause capillary loss,

it is logical that the branching architecture and level of complexity of the retinal vasculature

should be altered.[15] Fractal dimension has been found to be lower, i.e.: less complex, in DR

than in healthy controls.[16, 17]

These previous studies have largely focused on large vessels at the optic disc using either

color fundus photography or fluorescein angiography.[11, 18, 19] Therefore, these results may

not accurately reflect the perifoveal vasculature in DR with their impact on the integrity of the

fovea and central vision. More recent studies have used optical coherence tomography angiog-

raphy (OCTA) to study the geometry of the macular microvascular network in DR.[20–22]

Lee et al[22] reported an increasing trend in vessel tortuosity in both the superficial and deep

capillary plexuses (SCP and DCP) with increasing severity of DR. On the other hand, fractal

dimension was found to be significantly lower in the SCP and DCP of eyes with non-prolifer-

ative diabetic retinopathy than healthy controls.[20, 23] These studies did not clearly focus on

the impact of the different stages of DR on vascular geometry, as well as the effect, if any, of

PRP. Another limitation of these studies was the inclusion of the small perifoveal capillaries in

image analysis software modules. Although changes in vessel tortuosity have been documented

in capillaries in DR,[13] these smaller capillaries are extremely susceptible to various con-

founding factors, such as image quality, capillary dropout secondary to non-perfusion and the

presence of DME.[24–26]

In this study, we used 3x3 mm OCTA macular scans of the SCP to study large first and sec-

ond order macular vessel tortuosity and overall fractal dimension. We compared the findings

in five disease severity groups: healthy controls, DM with no clinical DR, non-proliferative

diabetic retinopathy (NPDR), treatment naïve proliferative diabetic retinopathy (PDR) and

Retinal vascular geometry in DR and after PRP using OCTA
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quiescent PDR eyes following panretinal photocoagulation for high-risk PDR (PDR+PRP). To

address the limitations in previous studies, we applied strict patient inclusion criteria and

focused on the perifoveal arterioles and venules in the SCP to avoid the potential confounding

effects of the smaller capillaries on vessel tortuosity. We hypothesized that vessel tortuosity

would have a positive correlation, while fractal dimension would have a negative correlation

with increasing severity of DR. We also hypothesized that PRP may reverse these parameters

to reflect the improvement in the vascular integrity and perfusion of the posterior pole.[27]

Patients and methods

This was a retrospective analysis of healthy participants and patients with diabetes recruited in

the Department of Ophthalmology at Northwestern University in Chicago, Illinois between

June 2015 and January 2019. The study was approved by the institutional review board of

Northwestern University, followed the tenets of the Declaration of Helsinki, and was per-

formed in accordance with Health Insurance Portability and Accountability Act regulations.

Written informed consent was obtained from all participants.

Study sample

Inclusion criteria were healthy eyes, eyes from patients with diabetes mellitus (DM) without

DR, eyes with NPDR, or eyes with PDR based on clinical assessment by a retina specialist (A.

A.F).For healthy controls, we excluded subjects if they had a history of DM, systemic hyperten-

sion (HTN) or cardiovascular disease (CVD) or were known current or past smokers. For the

DM with no clinical DR group, we excluded patients with history of HTN or CVD or were

known current or past smokers. For NPDR and PDR patients, we included treatment-naïve

eyes with a fundus photograph obtained within one month of the OCTA scan. The fundus

photograph was used to diagnose and include moderate and severe NPDR, as well as high-risk

PDR based on the ETDRS classification.[28] We only included moderate and severe NPDR,

but not mild and very mild NPDR, to effectively reflect the microvascular changes in NPDR,

and avoid possible bias or overreach in diagnosing cases with no clinically visible DR as very

mild NPDR. Moderate NPDR was diagnosed as having at least one of the following fundus

findings: severe retinal hemorrhages (more than ETDRS standard photograph 2A: about 20

medium–large per quadrant) in 1–3 quadrants, mild IRMA, significant venous beading in no

more than 1 quadrant or cotton wool spots. Severe NPDR was diagnosed using the 4-2-1 rule

by having at least one of the following: severe hemorrhages in all 4 quadrants, significant

venous beading in 2 or more quadrants or moderate IRMA in 1 or more quadrants. High-risk

PDR was diagnosed by having at least one of the following: new vessels on the disc (NVD)

greater than ETDRS standard photograph 10A (about a third of the disc area), any NVD with

vitreous hemorrhage or new vessels elsewhere (NVE) greater than half the disc area with vitre-

ous hemorrhage. For PDR+PRP patients, we only included those who have been stable (no

recent development of neovascularization) for at least 1 year and have not received any other

form of ocular treatment. The rationale behind the 1-year interval was to ensure the stability

and tight control of the proliferative element of DR, and determine whether the vascular

changes seen after PRP were long-lasting. For all patients, only eyes that had OCTA images

without significant movement or shadow artifacts, a quality index (Q) of 6 or more and a sig-

nal strength index (SSI) score above 50 were considered eligible.

Exclusion criteria were eyes with other retinal or choroidal diseases that may confound our

results, eyes with center-involving DME and eyes that have received intravitreal anti-VEGF

agents, intravitreal triamcinolone acetonide, dexamethasone intravitreal implant, focal laser or

pars plana vitrectomy. We also excluded eyes with astigmatism (more than 3 diopters), high
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refractive error (more than 6 diopters), or cataract graded above nuclear opalescence grade

three or nuclear color grade three, to avoid optical artifacts that potentially may compromise

OCTA image quality. Electronic medical records were reviewed to extract demographic and

clinical information.

OCT Angiographic imaging and image processing

Patients underwent imaging using RTVue-XR Avanti device (Optovue Inc, Fremont, Califor-

nia, USA), with split-spectrum amplitude-decorrelation angiography (SSADA) software.[29]

This instrument has an A-scan rate of 70,000 scans per second and uses a light source centered

at 840 nm and a bandwidth of 45nm. Two consecutive B-scans (M-B frames), each containing

304 A-scans, were captured at each sampling location and SSADA was used to extract OCTA

information. 3D Projection artifact removal (3D-PAR) technology by Optovue was used to

obtain 3x3 mm scans centered on the fovea.[30] En face OCT angiograms were segmented

automatically using the built-in software to define the SCP. The inner boundary of the en face
image segment was set at the internal limiting membrane (ILM), and the outer boundary was

set at 10 μm above the inner plexiform layer (IPL).

To eliminate the risk of bias, the images were randomized and the grader (A.E.F) was

masked to the randomization process. The measurements were done twice (by the same

grader) to ensure the validity and repeatability of the results, and repeatability was evaluated

by statistics, as explained below.

Vessel tortuosity calculation

SCP images were imported into ImageJ software (National Institutes of Health [NIH],

Bethesda, Maryland, USA).[31] We determined all large first and second order perifoveal

arterioles and venules, traced them and their length was measured using 2 different methods.

First, we traced the actual path of the vessel segment from its origin, either at the edge of the

OCTA scan or the branch-point origin, until its final branching point at the foveal avascular

zone. This was recorded as the "actual length" of the vessel. Then we measured the length of a

straight line starting from the same origin point, and extending directly to the end point. This

was recorded as the "Euclidean distance length". Vessel tortuosity was estimated as the ratio

between the sum of the actual length of all the vessels and the sum of their Euclidean distance

length (Fig 1).[32, 33] Retinal tortousity, quantified using the Euclidean distance, has been

used to study peripapillary and bulbar conjunctival vessel tortuosity in diabetic retinopathy[7,

34], correlation between retinal vascular tortuosity in diabetic retinopathy and renal disease

[11], sickle cell retinopathy[35], characterization of familial retinal arteriolar tortuosity [36],

and diagnosis and quantification of plus disease in retinopathy of prematurity.[37, 38]

Fractal dimension calculation

SCP images were imported and binarized using ImageJ.[31] Fractal dimensional box-counting

analyses were performed using Fractalyse (ThéMA, Besançon Cedex, France) resulting in a

fractal dimension value for each image.[39] In this analysis, a count is made of the number of

squares subtended by a pattern in an image; this count is repeated as the size of the squares of

the grid is reduced. This method is used to compare the degree of complexity among different

vascular patterns. The box-counting fractal dimension is given by the relationship:

Ds ¼
logNr

log r � 1

Retinal vascular geometry in DR and after PRP using OCTA

PLOS ONE | https://doi.org/10.1371/journal.pone.0226629 December 30, 2019 4 / 13

https://doi.org/10.1371/journal.pone.0226629


where Ds is the fractal dimension as measured by box counting and Nr is the number of boxes

subtended by boxes of ratio r.[40]

Statistical analysis

We used IBM SPSS statistics version 25 (IBM SPSS Statistics; IBM Corporation, Chicago, IL,

USA). Intra-class correlation coefficient (ICC) for the repeatability of the measurement by the

single grader (intra-grader repeatability) was 0.927 and 1.0 for vessel tortuosity and fractal

dimension, respectively. Shapiro-Wilk tests were used to determine if data was distributed

normally. The difference between sexes within each of the five groups was determined by the

chi-square test. One-way analysis of variance (ANOVA) was used to examine the global differ-

ence between the five groups in terms of age, duration of DM and HbA1c, as well as vessel tor-

tuosity and fractal dimension. Post-hoc Tukey Honest Significant Difference (HSD) analyses

were run between group pairs. A p value of<0.05 was considered statistically significant.

Results

The study included 15 eyes of 15 patients in each of the five study groups: healthy control, DM

with no clinical DR, NPDR, PDR and PDR+PRP, for a total of 75 eyes of 75 patients. The over-

all demographics and disease-related characteristics are reported in Table 1. There was no

statistically significant difference between the five groups in age, sex and HbA1c. There was,

however, a statistically significant difference in duration of DM between the five groups (one-

way ANOVA, p< 0.001).

Vessel tortuosity

One-way ANOVA showed a significant difference in vessel tortuosity between the five groups

(p< 0.001; Fig 2). The NPDR and PDR groups had significantly more tortuous vessels com-

pared to the healthy control group (Tukey HSD: p = 0.02 and 0.015, respectively). Following

PRP, vessel tortuosity was significantly lower in the PDR+PRP group when compared to either

the NPDR or PDR groups (Tukey HSD p = 0.001). The remaining results were not significant

and are outlined in Table 2.

Fig 1. Calculation of vessel tortuosity. 3x3 mm OCTA scans segmented to show the SCP (inner boundary at the ILM and the outer

boundary 10 μm above the IPL). The actual and Euclidean lengths are measured for every individual branch and vessel tortuosity is

calculated as the ratio between the sum of the actual lengths of all branches and the sum of their Euclidean distances.

https://doi.org/10.1371/journal.pone.0226629.g001
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Fractal dimension

Fig 3 demonstrates the fractal dimension results for the five groups. One-way ANOVA showed

a significant difference in fractal dimension when comparing the five groups (p< 0.001). Frac-

tal dimension was significantly lower in the NPDR and PDR groups compared to the healthy

control group (Tukey HSD: p = 0.015 and<0.001, respectively) or to the DM with no DR

Table 1. Demographic and disease-related patient characteristics.

Healthy controls DM with no DR NPDR PDR PRP p-value
Patients (n) 15 15 15 15 15

Sex

Female, n (%)

6 (40) 8 (53.3) 8 (53.3) 4 (26.7) 5 (33.3) 0.475

Male, n(%) 9 (60) 7 (46.7) 7 (46.7) 11 (73.3) 10 (66.7)

Age; years

(mean ± SD)

53 ± 14 51 ± 9 50 ± 12 44 ± 10 53 ± 15 0.182

Disease duration; years

(mean ± SD)

N/A 8 ± 5 13 ± 6 16 ± 8 24 ± 11 < 0.001

HbA1c; %

(mean± SD)

N/A 8.22 ± 1.73 9.01 ± 2.14 9.42 ± 2.06 8.42 ± 1.71 0.308

DM with no DR: Diabetes mellitus with no diabetic retinopathy, NPDR: Non-proliferative diabetic retinopathy, PDR: Proliferative diabetic retinopathy, PRP: Panretinal

photocoagulation, HbA1c: Hemoglobin A1c, p-value based on one-way ANOVA comparison between groups.

https://doi.org/10.1371/journal.pone.0226629.t001

Fig 2. Box plot representation of the perifoveal vessel tortuosity results in the five study groups. No DR: No diabetic retinopathy, NPDR: Non-

proliferative diabetic retinopathy, PDR: Proliferative diabetic retinopathy, PRP: Panretinal photocoagulation, PDR+PRP: Proliferative diabetic

retinopathy receiving panretinal photocoagulation. (p<0.05,�significant vs Healthy controls, † significant vs PDR+PRP).

https://doi.org/10.1371/journal.pone.0226629.g002

Retinal vascular geometry in DR and after PRP using OCTA

PLOS ONE | https://doi.org/10.1371/journal.pone.0226629 December 30, 2019 6 / 13

https://doi.org/10.1371/journal.pone.0226629.t001
https://doi.org/10.1371/journal.pone.0226629.g002
https://doi.org/10.1371/journal.pone.0226629


group (Tukey HSD: p<0.001 for both). Fractal dimension was also significantly lower in the

PDR group compared to the NPDR group (Tukey HSD: p = 0.014). Fractal dimension in the

PDR+PRP group was significantly higher than the PDR group (Tukey HSD p = 0.031), and

significantly lower than the healthy controls (Tukey HSD p = 0.006). The remaining results

were not significant and are outlined in Table 2.

Discussion

In this study we evaluated the correlation between the superficial perifoveal vascular geometry

and DR severity in untreated eyes and those that have received PRP. We found statistically

significant higher tortuosity and lower fractal dimension with increasing severity of DR (p<

0.001 for both). None of the parameters were different when comparing healthy eyes and those

with DM without DR. In the DM without DR group, the perifoveal fractal dimension was sig-

nificantly higher than the NPDR, while tortuosity was not different. In NPDR and PDR, tortu-

osity was significantly higher than healthy controls, and fractal dimension was significantly

lower. When comparing NPDR to PDR, fractal dimension was significantly lower in PDR,

while tortuosity was not significantly different. From these results we can deduce that fractal

dimension performs better at discriminating the stages of DR: no DR vs NPDR vs PDR, than

perifoveal tortuosity. Quiescent PDR eyes after PRP show significantly lower perifoveal vessel

tortuosity and higher fractal dimension than untreated PDR eyes, suggesting that both param-

eters are able to capture the improved macular hemodynamic status after PRP.

Various studies have made the connection between alterations in retinal vascular geometry

and early stages of DR.[41–46] Fractal dimension of the peripapillary and perifoveal vessels

Table 2. Post-hoc analysis of vessel tortuosity and fractal dimension results comparing the five groups.

Pair-wise comparison Tortuosity p value Fractal dimension p value
Healthy controls No DR 0.947 0.820

NPDR 0.02 0.015

PDR 0.015 < 0.001

PRP 0.909 0.006

DM with no DR Healthy controls 0.947 0.820

NPDR 0.126 < 0.001

PDR 0.102 < 0.001

PRP 0.502 < 0.001

NPDR Healthy controls 0.02 0.015

No DR 0.126 < 0.001

PDR 0.98 0.014

PRP 0.001 0.999

PDR Healthy controls 0.015 < 0.001

No DR 0.102 < 0.001

NPDR 0.98 0.014

PRP 0.001 0.031

PRP Healthy controls 0.909 0.006

No DR 0.502 < 0.001

NPDR 0.001 0.999

PDR 0.001 0.031

No DR: No diabetic retinopathy, NPDR: Non-proliferative diabetic retinopathy, PDR: Proliferative diabetic retinopathy, PRP: Panretinal photocoagulation, statistically

significant Tukey HSD:p< 0.05.

https://doi.org/10.1371/journal.pone.0226629.t002
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has been found to be significantly lower in NPDR compared to healthy control eyes or eyes

without clinical DR.[16, 17, 20, 23] Our results agree with these findings and confirm that the

onset of clinical DR has a global impact on retinal vascular fractal dimension. Studies of peri-

papillary vessel tortuosity reported significantly more tortuous arterioles in NPDR eyes com-

pared to healthy controls, which is also consistent with our findings in perifoveal vessels,

though we did not examine arterioles and venules separately. In contrast to our study,

researchers studying peripapillary vasculature found significantly more tortuous arterioles in

eyes without clinical DR compared to healthy eyes, and in eyes with NPDR compared to those

without clinical DR.[7, 9, 47] We did not find significantly more tortuous macular vessels in

these pair-wise comparisons, which is consistent with another study of macular OCTA.[22]

This discrepancy can be explained by understanding the effect of the increased hydrostatic

pressure associated with DR on different sized vessels. A model demonstrated by Kylstra et al

[6] proposes that a critical level of transmural pressure must be reached before tortuosity

becomes evident. It is thus plausible that the smaller perifoveal vessels are more resilient and

experience this critical pressure in more advanced NPDR and PDR stages compared to the

larger, first order, peripapillary vasculature.[48]

In PDR, our study shows significantly lower fractal dimension compared to either NPDR

or healthy control eyes. This is in agreement with Ashraf et al[49], who also reported statisti-

cally significant lower fractal dimension in eyes with PDR than those with NPDR in both the

SCP and DCP. This suggests that fractal dimension may be a consistently sensitive marker to

the higher levels of microvascular ischemia in PDR, and is able to reflect the global impact of

this ischemia on various retinal capillary plexuses. Comparing fractal dimension to perifoveal

Fig 3. Box plot representation of the fractal dimension results in the 5 study groups. No DR: No diabetic retinopathy, NPDR: Non-proliferative

diabetic retinopathy, PDR: Proliferative diabetic retinopathy, PRP: Panretinal photocoagulation, PDR+PRP: Proliferative diabetic retinopathy receiving

panretinal photocoagulation. (p<0.05,�significant vs Healthy controls,†significant vs no clinical DR,● = significant vs NPDR, ɸ significant vs PDR).

https://doi.org/10.1371/journal.pone.0226629.g003
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tortuosity, PDR patients showed significantly more tortuous vessels compared to healthy con-

trols but not compared to NPDR. Contrary to our results, Lee et al [22] noted a significant

decrease in tortuosity in PDR compared to NPDR patients. The reason for this discrepancy

can be construed from differences in approach since they measured global tortuosity, includ-

ing capillaries. As reported in their results, some of their patients showed large areas of capil-

lary dropout, which could have artifactually lowered their overall tortuosity. This is one of the

main limitations of their approach, which we overcame by specifically tracing the larger arteri-

oles and venules to avoid the confounding effects of these capillary dropouts. Also in contrast

to our results, Rasmussen et al [33] and Sasongko et al[7] did not document significantly more

tortuous peripapillary vessels in eyes with PDR compared to healthy controls. One possible

explanation for this discrepancy relates to study population differences. These prior studies

combined treated and untreated PDR patients, while we studied these groups separately.

PRP has been established as a highly effective tool for high-risk PDR.[50] The mechanism

has been debated, but animal studies have shown that PRP causes an increase in the partial

pressure of oxygen (PO2) in the retina,[51, 52] which may be the underlying basis for the over-

all reduction in total retinal blood flow in response to the improved oxygenation.[53, 54] This

overall decreased flow is more prominent in the retinal periphery and is counterbalanced by

improved macular perfusion, as recently documented on OCTA by our group.[27] Higher

tortuosity is thought to be a marker of tissue hypoxia and vascular endothelial growth factor

(VEGF) production.[55, 56] Torp et al [57] demonstrated a decrease in peripapillary vessel

tortuosity 6 months following successful PRP (defined as no further development of neovascu-

larization or decline in visual acuity compared to baseline). We propose that the significant

decrease in perifoveal tortuosity one year following successful PRP in the current study is in

line with improved macular perfusion on OCTA [27], which would explain the decline in ves-

sel tortuosity.

Similar to the trend detected in tortuosity, fractal dimension was significantly higher in the

PDR+PRP eyes compared to those with untreated PDR. However, unlike tortuosity which was

no longer significantly different from healthy controls after PRP, fractal dimension remained

significantly lower. This demonstrates a more dramatic normalization of vessel tortuosity in

PDR eyes treated with PRP, compared to fractal dimension and suggests that perifoveal vascu-

lar tortuosity can perhaps be explored as a sensitive marker for successful PRP in future longi-

tudinal studies (Figs 2 and 3).

Not only do these findings further our understanding of the microvascular implications of

DR, and confirm the global nature of these changes, but they also suggest that some of these

implications may be slightly reversible. As documented by our study, the ability of laser treat-

ment to alter and reverse the geometric architecture of the perifoveal vasculature suggests that

these parameters may be incorporated into other longitudinal studies, and extrapolated to var-

ious imaging tools, to determine the possibility of providing prognostic insight, or predicting

eyes with PDR that may require additional laser treatment, adjuvant therapy or closer follow

up.

The strengths of this study include the strict patient selection criteria and the study of a

population of PDR+PRP patients. Limitations include the retrospective nature and the rela-

tively small sample size. Moreover, OCTA operates based on a specific threshold, which

implies that smaller vessels with flow that is lower than that threshold may be missed. The

impact of this limitation is minimized by discarding poor quality images or those with exten-

sive motion artifact. Another limitation is the cross-sectional nature, which did not allow us to

examine the effect of PRP in the same population of PDR subjects.

In conclusion, we used 3x3 mm macular OCTA scans of the SCP to demonstrate that vessel

tortuosity is significantly higher, while fractal dimension is significantly lower in NPDR and
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PDR compared to healthy controls. Fractal dimension can be potentially used to screen and

follow patients with no clinical DR as it changes significantly with the onset of clinical DR.

PDR has a more significant impact on fractal dimension than vessel tortuosity, while PRP

results in more significant normalization of tortuosity than fractal dimension. Therefore, we

suggest that tortuosity could perhaps be explored as a sensitive marker for successful PRP.

Overall our results provide novel insights that could have potentially important clinical

applications.
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