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Abstract

The ability to generate new knowledge depends on integration of separate information. For 

example, in one episode an individual may learn that apple seeds are called pips. In a separate 

episode, the individual may then learn that pips contain cyanide. Integration of the related facts in 

memory may then support derivation of the new knowledge that apple seeds contain cyanide. Past 

studies show that adults form relational memories that represent the commonalities among discrete 

events, and that such integrated representation supports the ability to infer new knowledge. 

Although these integrated representations are thought to result from linking separate memories 

to the same neuronal ensemble, the neural mechanisms that underlie formation of such linkages 

are not well understood. Here we examined whether self-derivation of new, integrated knowledge 

was supported by oscillatory coherence, a means of linking discrete neuronal ensembles. Cortical 

alpha coherence was greater when adults encoded new facts that could be integrated with 

existing knowledge, relative to encoding unrelated facts, particularly in participants who showed 

better performance on the subsequent test of knowledge generation via fact integration. In 

high performers, posterior alpha amplitude was also modulated by delta phase, a form of cross-

frequency coupling previously implicated in coordinating information stored widely throughout 

the cortex. Examination of the timing and topography of these respective signatures suggested that 

these oscillatory dynamics work in concert to encode and represent new knowledge with respect to 

prior knowledge that is reactivated, thus revealing fundamental mechanisms through which related 

memories are linked into integrated knowledge structures.
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1. Introduction

The question of how interconnected knowledge structures are formed is fundamental to 

our understanding of human behavior (Bauer and Varga, 2017; Preston and Eichenbaum, 

2013; Schlichting and Preston, 2015). In particular, accumulation of knowledge about 

the world depends on storage and organization of individual facts learned across separate 

episodes. Integration of incoming information with prior memories also supports the ability 

to extend beyond experience to generate new knowledge (Bauer and Jackson, 2015; Varga 

and Bauer, 2017a, 2017b). Prominent theories suggest that memory integration results when 

new experience is encoded by the same neuronal ensembles that represent prior, related 

memories, increasing the likelihood that separate yet related information may be combined 

in new ways (Morton et al., 2017; Ritvo et al., 2019). In line with this view, research has 

shown that neural activity to related events becomes more similar following learning (Cai 

et al., 2016; Molitor et al., 2021; Schlichting et al., 2015). Moreover, such neural similarity

—which is thought to reflect integration, or linking, of previously learned information —

supports the ability to infer connections among related events (Collin et al., 2015). However, 

there is relatively little evidence informing the precise neural computations that enable 

linking of separate yet related memories to the same neuronal ensemble during learning.

There is a growing consensus that neuronal oscillations play a key role in linking neurons 

into assemblies (Buzsáki, 2006; Buzsáki and Draguhn, 2004). Neuronal oscillations reflect 

rhythmic fluctuations whereby a neural ensemble’s propensity for synaptic transmission 

rises and falls in accord with excitability peaks and inhibitory troughs. Therefore, when 

oscillatory waves among neurons rise and fall in a temporally synchronous fashion, 

spike-timing dependent plasticity between them is facilitated, thus providing a means 

of strengthening the connection between discrete neuronal ensembles (Bastiaansen et al., 

2011; da Silva, 2013; Fries, 2005). Although previous work shows that neuronal ensembles 

representing prior memories are spontaneously reactivated during encoding of new, related 

events (Schlichting et al., 2014; Varga and Bauer, 2017a; Zeithamova et al., 2012), less 

is known about how these discrete traces of information are linked in memory. In light 

of the known role of neuronal oscillations in strengthening synaptic connections among 

discrete neurons, here we examined whether oscillatory patterns at the time of learning 

were associated with successful knowledge generation through memory integration. Notably, 

semantic knowledge is represented throughout the entire cortex (Barsalou, 2008; Huth et al., 

2012; Martin, 2007), such that reactivation of prior memories is evidenced through widely 

distributed neocortical patterns (Polyn et al., 2005; Schlichting et al., 2014; Zeithamova et 

al., 2012). Examination of the neural computations that enable linking of related memories 

to the same ensemble thus requires recording of oscillations across the entire cortex 

simultaneously, which can be achieved through scalp-based electrophysiology (EEG).
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One view is that memory integration may rely on modulation of specific oscillations 

presumed to correspond generally to cortical inhibition (Ritvo et al., 2019). Extending this 

view to memory integration, reductions in the amplitudes of these oscillations may reflect 

cortical disinhibition and thus reactivation of prior memories during learning of related 

episodes. Indeed, recent work has directly linked levels of neocortical disinhibition to co-

activation of related memories during new learning (Koolschijn et al., 2019). One oscillation 

that was initially thought to mediate the level of cortical inhibition is the alpha (9–12 Hz) 

rhythm (Berger, 1929; Klimesch, 1996, 2006; Ray and Cole, 1985), an idea that originated 

from the early observation that alpha amplitude increased when individuals closed their 

eyes or disengaged from cognitive tasks (Berger, 1929). More recently, levels of cortical 

alpha amplitude, as measured by EEG alpha power, have been found to correlate with 

several cognitive processes, including memory encoding and retrieval (Hanslmayr et al., 

2012). Moreover, the emerging consensus that neuronal oscillations reflect periodic network 

states of both inhibition and excitation would argue against associating any oscillatory 

frequency with only inhibition. That is, although changes in alpha power may coarsely 

correlate with changes in cortical excitability, and possibly retrieval of related memories 

during new learning, examination of mean alpha amplitudes disregards periodicity and phase 

information, information that would be essential to understanding the role of oscillations in 

forming integrated neuronal ensembles (Klimesch et al., 2010; Palva and Palva, 2007, 2011).

Based on the widely-held view that synchronized oscillations among ensembles of neurons 

can facilitate synaptic transmission and plasticity (Bastiaansen et al., 2011; Buzsáki and 

Draguhn, 2004; da Silva, 2013; Fries, 2005), there is strong justification for hypothesizing 

that cortical alpha synchrony might be important for integrating ensembles representing 

separate memories. Moreover, cortical alpha synchrony, which can be measured by channel-

to-channel alpha coherence (Manns et al., 2018), has been shown to coordinate interactions 

between adjacent and non-adjacent cortical areas (Sadaghiani and Kleinschmidt, 2016), 

thus underscoring the critical role of oscillatory synchrony in mediating large-scale cortical 

integration (Palva and Palva, 2011). Accordingly, we hypothesized that cortical alpha 

synchrony might also be an important neural underpinning of memory integration, providing 

a sensitive index of the linking of distributed cell assemblies that represent new and 

remembered information during learning.

Delta (1.5–3.5 Hz) oscillations have also been implicated in cortical integration (Palva 

and Palva, 2011). Furthermore, recent studies in humans have indicated that the amplitude 

of faster alpha oscillations wax and wane across the phases of the slower delta wave 

(Helfrich et al., 2017; Wöstmann et al., 2016), a type of cross-frequency coupling (CFC) 

that has been shown to support more complex forms of perception, learning, and cognition 

(Canolty & Knight, 2010; Friese et al., 2013; Tort et al., 2009). Of relevance to the present 

work, phase-amplitude CFC has been proposed as a basis for regulating synaptic plasticity 

across distributed cortical areas. That is, by time-locking faster, spike-based computations 

carried out in local cortical regions to the phase of a slower oscillation, such hierarchical 

oscillatory interactions are well suited to coordinate simultaneous activation of information 

stored across multiple cortical areas. Because memory integration depends on encoding 

new information with respect to prior, semantic knowledge that is represented across 
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distributed cortical regions (Barsalou, 2008; Huth et al., 2012; Martin, 2007), delta-alpha 

cross-frequency interactions may thus further support this form of integrative learning.

The present study investigated the role of both cortical alpha coherence and delta-alpha 

CFC in memory integration. To this end, scalp-based EEG was measured as participants 

read related fact pairs (e.g., Apple seeds are called pips; Cyanide is found in pips) that 

could be integrated to self-derive novel integration facts (Apple seeds contain cyanide). A 

large range of performance was observed on a subsequent test of knowledge generation 

through integration (Fig. 1), raising the key question of whether cortical alpha coherence 

and delta-alpha CFC explained such individual differences. Analyses of scalp-based EEG 

focused on the learning phase, particularly on the final word in each fact sentence, as those 

words offered links between the related pairs. Guided by previous approaches, we examined 

both within-subject indices of memory integration (i.e., related versus initial events from 

a pair) (Varga and Bauer, 2017a; Zeithamova et al., 2012), as well as between-subject 

differences in memory integration (i.e., high versus low performers) (Shohamy and Wagner, 

2008; Zeithamova and Preston, 2010). Participants who performed well on the knowledge 

generation test showed greater cortical alpha coherence and delta-alpha CFC compared to 

participants who performed poorly. Moreover, alpha coherence was specifically increased 

in high performers when reading the second fact sentence in each pair, suggesting that 

alpha coherence played a specialized role in processing content that could be integrated with 

prior, reactivated knowledge. The findings are discussed with respect to their implications 

for understanding the oscillatory dynamics that underlie binding of separate yet related 

memories, and by extension, productive generation of new semantic knowledge.

2. Materials and methods

2.1. Participants

Participants were 80 adults aged 18 to 24 years (M = 19.81 years; SD = 1.22 years; 47 

identified as female and 33 identified as male) recruited through introductory psychology 

courses at a private university. Participants completed two sessions spaced 6–8 days apart 

(M delay = 6.91 days). The current report focuses on electrophysiological and behavioral 

measurements collected during the first visit. An additional 28 participants were tested but 

excluded from analysis due to excessive noise in the electrophysiological recordings (N 
= 22; 11 for motion, 4 for muscle artifact, 4 for unacceptable impedance levels, and 3 

for bridging of conductive gel between channels), a history of neurological impairment (N 
= 3), experimenter error (N = 2), and diagnosis of a learning disability which may have 

affected task performance (N = 1). The final sample consisted of native English speakers 

who identified as 24% Asian, 11% Black, 59% Caucasian, and 4% mixed racial descent. 

Ten percent of the sample were of Hispanic descent. Two participants did not disclose 

information regarding their race or ethnicity. All participants provided written informed 

consent and received course credit for their participation. All procedures were approved by 

the Institutional Review Board at Emory University.

The current sample was collected as part of a prior investigation that tested hypotheses 

distinct from those examined here. Behavioral memory integration performance in the 

current sample (Varga and Bauer, 2017b; Varga et al., 2019a) and correlations with event-
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related potentials (ERPs) in a subset of the current participants (Varga and Bauer, 2017a) 

have been reported elsewhere. However, the present research features novel analyses of the 

systems-level oscillatory dynamics underlying individual differences in memory integration 

during learning.

2.2. Stimuli

The stimuli were 30 pairs of individual facts (i.e., stem facts) that could be combined to 

derive 30 novel integration facts (Bliss numbers S001–S030; see Bauer 2020). The facts 

were 4–10 words in length and spanned a range of educationally relevant domains including 

science, history, linguistics, and art. Prior research has shown that the facts are novel to 

adults, such that exposure to both stem facts from a pair was necessary to derive the 

target integration facts (Varga and Bauer, 2017b; Experiment 1). Notably, for one fact pair, 

successful derivation of the novel integration fact was equivalent with or without exposure to 

both individual stem facts (Varga and Bauer, 2017b; Experiment 1). Data corresponding to 

this stem fact pair was thus excluded from all reported analyses, resulting in a final stimulus 

set of 29 pairs of facts. Stimuli were presented using E-Prime 2.0 software (Psychology 

Software Tools, Pittsburgh, PA).

2.2.1. Procedure—During the learning phase, EEG was recorded while participants 

learned 60 individual stem facts (30 pairs). To minimize saccadic eye movements during 

EEG acquisition, facts were presented one word at a time for 400 ms each (Fig. 1). Separate 

yet related facts from a to-be-integrated pair were separated by two to four intervening facts. 

This lag served to ensure temporal distance between related stem facts, thus necessitating 

retrieval of the prior, related fact upon encoding of a related fact. Related facts shared 

the same sentence-final word, which could cue participants to the overlapping relation. 

The EEG recording epoch encompassed the final word of each fact in addition to a 2000 

ms blank screen following the offset of the final 400-ms relational word. The onset of 

a subsequent decision screen marked the end of the 2400 ms recording epoch, in which 

participants were instructed to indicate via a button-press response whether the fact was 

novel or known prior to participation in the study. The distractor task was intended to 

ensure attention to the content of the individual facts but was not considered in further data 

analysis. At no time were participants informed about the possibility to integrate separate yet 

related stem facts. The learning phase lasted approximately 10 min.

Following a delay of 5–10 min in which participants completed questionnaires, participants 

were tested for self-derivation of the 30 possible integration facts. As depicted in Fig. 

1, the questions were presented in the form of incomplete sentences and participants 

were instructed to complete the final word of each fact. The target answer was always a 

common word, which served to reduce the impact of vocabulary differences on successful 

knowledge generation. Participants were given an unlimited amount of time to provide a 

response. Responses were scored online by the experimenter. Notably, some integration 

questions could elicit an open-ended response derived from the stem facts but that did 

not require integration of the previously learned stem facts. In these cases, participants 

were probed for an additional response (i.e., “Can you tell me another word that would 

also accurately complete this sentence?”). Once an answer was provided, the experimenter 
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initiated presentation of the next question. EEG was acquired during the test phase but is not 

considered here. The test phase lasted approximately 15 min.

2.3. EEG data acquisition and pre-processing

Electrophysiological data was measured via 32 Ag/AgCl active sensors positioned in a 

fabric cap according to the 10–20 system (ActiCAP GmbH; Brain Products, Gilching, 

Germany). Reference electrodes were directly placed on the left and right mastoid bones 

while a ground electrode was placed on the center of the forehead. Conductive gel was 

applied to electrode contacts until impedances were lowered below 35 k Ω and typically 

below 15 k Ω. The EEG was sampled at 500 Hz using Pycorder software (Brain Products, 

Gilching, Germany) while participants were seated 90 cm in front of an LCD monitor. No 

filters were applied to the raw data during acquisition.

Before conducting any analyses, the raw electrophysiological data were pre-processed using 

EEGLAB 13.2.3b (Delorme and Makeig, 2004) and ERPLAB 4.0.3.1 (www.erplab.org) 

operating in Matlab R2014a (MathWorks, Natick, MA). To attenuate low and high 

frequency noise prior to artifact correction, the data were first bandpass filtered with a 

non-causal Butterworth filter with a half-amplitude cutoff of 0.1–30 Hz and a roll-off 

of 24 decibels/octave. To mitigate the potential influence of oculomotor artifacts on the 

oscillatory results, eye-blinks and saccades were detected and removed from the continuous 

EEG data using the standard runica extended Infomax independent component analysis 

(ICA) algorithm. To maximize the linear decomposition performance, segments of EEG 

data that contained excessive noise were manually scrubbed prior to running ICA and 

filtering. During manual scrubbing, only segments of data outside of the target recording 

and baseline epochs were removed, thus ensuring that the subsequently ICA-ed data and 

final analyses included the same number of trials across participants. Following ICA 

decomposition, components that accounted for eye activity were manually rejected based 

on careful examination of the component scalp map and time course.

2.4. Quantification and statistical analysis

2.4.1. Overview—All electrophysiological analyses focused on initial fact learning, 

specifically on the 2.4-s recording epoch that started with presentation of the final word 

in each sentence (see Fig. 1). The recording epoch ended with the presentation of a visual 

prompt that cued participants to indicate whether they knew the fact prior to participating 

in the present study. The baseline was the 2.4-s period that immediately preceded the 

recording epoch. All electrophysiological data were analyzed in 0.8-s windows to minimize 

the complication of potential nonstationarity of the data in longer time windows (Mitra and 

Pesaran, 1999). For analyses of time periods longer than 0.8 s (i.e., the 2.4-s recording 

epoch), results were obtained by averaging across non-overlapping 0.8-s windows. The 0.8-s 

window size was chosen as a suitable duration into which to partition the 2.4-s recording 

epoch, enabling three equal time intervals while also allowing for multiple cycles of low 

frequency (namely, delta) oscillations in each window.

Analyses focused on a frequency range from 1 to 25 Hz for two reasons. First, to minimize 

misinterpretation of broadband artifacts, our analyses stipulated observation of oscillatory 
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peaks in power spectrograms, which in our data were only observed in the alpha (9–12 Hz) 

range, or peaks in the Granger Causality spectrograms, which in our data were observed in 

the delta (1.5–3.5 Hz) and alpha (9–12 Hz) ranges. Broadband changes in oscillatory activity 

can result from aperiodic activity in the EEG signal, yet stipulation of clear spectral peaks 

in a predefined frequency band mitigates the likelihood of this misinterpretation (Buzsáki et 

al., 2012). Second, and consistent with the spectrograms analyzed here, previous scalp-based 

studies have indicated that frequencies above 25 Hz are contaminated by prominent higher-

frequency muscle-related electrical artifacts (i.e., EMG) (Whitham et al., 2007) which may 

be misinterpreted as changes in oscillatory activity.

Unless otherwise noted, mean was reported and/or plotted as the measure of central 

tendency, and standard error of the mean was reported and/or plotted as the measure of 

precision. All analyses were conducted in Matlab 2020a (MathWorks, Natick MA) using 

publicly-available toolboxes and algorithms. These analyses are described in detail below 

and are followed by a section that describes the random permutation procedures used for 

evaluating statistical significance of electrophysiological data.

2.4.2. Power and coherence—Whereas the role of oscillations in associative memory 

has typically been limited to examination of the magnitude of activity within individual 

channels, such as assessed through measures of oscillatory power (e.g., Jiang et al., 2020; 

Staresina et al., 2016), here we build on and extend upon this work by additionally 

examining the degree of synchrony between channels, as assessed through oscillatory 

coherence. Because oscillatory coherence measures the degree to which cortical regions 

synchronize with distal cortical regions, this measure enables a direct test of whether 

enhanced cortical integration between discrete neuronal ensembles is associated with 

enhanced knowledge integration.

Analyses of oscillatory power from individual channels and coherence between channels 

were conducted with Chronux version 2.12 (chronux.org), a publicly-available library of 

functions that implemented a multitaper fast Fourier transform (FFT) method (Bokil et al., 

2010). Coherence was calculated as the absolute magnitude of coherency, which is cross 

spectrum normalized by the square root of the product of the two auto-spectra (i.e., power 

for each channel). A frequency bandwidth of ± 1.875 Hz was used, which enabled the 

use of 2 orthogonal tapers (windowing functions) for a time window of 0.8 s. In order to 

permit valid statistical comparisons between conditions, coherence estimates were Fisher 

Z transformed, power estimates were log 10 transformed (and multiplied by 10 to convert 

from bels to decibels), and both were corrected for bias as described previously (Bokil et al., 

2007).

To quantify a network-level representation of synchrony, coherence was calculated for each 

pair of channels for each third of the 2.4-s recording epoch and baseline period. The 

baseline-subtracted coherence was then used as one measure of channel-channel pairwise 

oscillatory synchrony. These changes in pairwise coherence (“path weight”) were then 

summed for each electrode (“channel weight”) to evaluate whether that electrode became 

more or less synchronized with other electrodes across the cortex during thirds of the 
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recording epoch relative to baseline (channel weight has sometimes been called node 

strength as a more general term; Rubinov and Sporns, 2010).

2.4.3. Granger causality—Because delta peaks were not obvious in power spectra 

(see results), but delta oscillations have been previously implicated in large-scale cortical 

integration (Helfrich et al., 2017), we used Granger causality (GC) to verify that 

delta oscillations were present in the EEG signal. Granger causality quantifies channel-

wise oscillatory patterns across different timepoints, thus discounting the influence of 

simultaneous signals, such as those generated by artifacts or volume conduction. More 

specifically, Granger Causality provides a directional estimate of the extent to which current 

oscillations in one channel predict future oscillations in a second channel (X current →Y 

future), above and beyond the predictiveness of the current oscillations in the second channel 

(Y current →Y future). If channel-wise GC methods reveal peaks in the spectrogram, such 

patterns provide another means of validating the presence of true oscillations in a given 

frequency band.

Granger causality was calculated using the publicly-available (users.sussex.ac.uk/∼lionelb/

MVGC) Multivariate Granger Causality (MVGC) library of functions (Barnett and Seth, 

2014). For the present study, data for each 0.8 s third of the recording epoch (and for thirds 

of the baseline) were analyzed for each subject in a channel-channel pairwise (bivariate) 

manner to maintain consistency with the coherence analysis approach. An autoregressive 

linear model was fit (using the “LWR ”algorithm) to the EEG data from each pair of 

channels from multiple prior time points to predict the data at the current time point. 

The present analysis first downsampled the EEG data to a sampling rate of 50 Hz and 

used 30 time points in the model, parameters selected based on the effort to validate delta 

frequency activity. An autocovariance sequence was calculated from the coefficients of this 

two-channel model, and spectral Granger causality was calculated from the autocovariance 

sequence (Barnett and Seth, 2014).

2.4.4. Phase-amplitude cross-frequency modulation—Finally, to investigate the 

potential role of hierarchical, cross-frequency interactions in this form of integrative 

learning, we conducted cross-frequency coupling analyses. Guided by clear delta and 

alpha peaks in the Granger Causality spectrograms (see Fig. S3) as well as by previous 

work (Helfrich et al., 2017), we calculated the extent to which the phase of delta 

oscillations modulated the amplitude of alpha oscillations similar to that detailed by Tort 

et al. (2010). First, the normalized alpha amplitude was calculated as a function of delta 

phase. Specifically, for each channel, the electrophysiological data for each participant 

were re-filtered (using a zero-phase digital band-pass filter; “filtfilt”function in Matlab) 

separately into delta (1.5–3.5 Hz) and alpha (9–12 Hz) bands. Delta phase was estimated 

for each sample by calculating the phase angle of the Hilbert-transformed delta band. Alpha 

amplitude was estimated for each sample by calculating the complex magnitude of the 

Hilbert-transformed alpha band. For each channel and trial, alpha amplitudes were binned 

by 20°bins of delta phase and were then averaged within each phase bin separately for 

each 0.8-s third of the recording epoch and of the baseline. A channel-wise Modulation 

Index (MI) was obtained by calculating the dissimilarity between this distribution of 
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normalized alpha amplitudes across delta phase bins to a control comparison distribution 

using Kullback–Leibler distance as the metric of dissimilarity. Tort et al. (2010) used a 

uniform (flat) distribution as the comparison distribution. Here, to address the possibility 

of spurious estimates resulting from volume conduction of low frequency oscillations or 

electrical artifacts, we used a different comparison distribution of alpha amplitude across 

delta phase bins. Specifically, for the comparison distribution, instead of using the delta 

signal for each channel, we used a delta signal obtained by taking the grand mean of 

all channels’ delta-filtered EEG. We then used the distribution of an individual channel’s 

normalized alpha amplitudes across delta phase bins of that grand mean signal as the 

comparison distribution. Thus, a higher MI corresponded to more modulation of alpha 

amplitude by delta phase above and beyond that which would be expected to result from 

volume conduction of low-frequency oscillations or electrical artifacts. As these MI values 

already represented a difference score (a metric of distribution dissimilarity), no further 

baseline subtraction was used.

2.4.5. Calculation of statistical significance—A cluster-based random permutation 

approach was used to evaluate the statistical significance of all electrophysiological 

contrasts. The approach was based on prior reports (Maris et al., 2007b; Maris and 

Oostenveld, 2007a) and controlled for the family-wise error rate either across frequency bins 

or across channels, depending on the analysis. That is, the advantage of the cluster-based 

procedure is that it does not calculate statistical significance for each individual frequency 

(or channel, depending on the analysis) and thus does not inflate the overall alpha rate by 

performing multiple comparisons. Details for each analysis are provided below.

For power spectrogram differences between the fact recording epoch and baseline period, 

the original fact recording epoch and baseline power spectra for all participants was 

reshuffled 1000 times such that, in each shuffle, a participant’s fact recording epoch data 

was randomly labeled as coming from the fact recording epoch or baseline. The mean and 

standard deviation across participants of the fact-baseline difference was then calculated 

for the original data and for each random shuffle. For each electrode channel, an initial 

threshold of 0 ± 1 standard deviations (across participants) of the original difference was 

used to identify suprathreshold frequency clusters (frequency ranges) in both the original 

data and in each randomly shuffled data set. Specifically, for each random shuffle, the largest 

frequency cluster was identified (largest summed absolute value of the within-cluster power 

difference), establishing a distribution of the largest random cluster sums. For the original 

data, only clusters whose sum exceeded the 99th percentile value of this random distribution 

were identified as statistically significant (i.e., two-tailed p < 0.01). A relatively conservative 

p value of 0.01 was used because this approach for evaluating power differences accounted 

for multiple comparisons across frequency bins but not across channels.

A similar cluster-based random permutation approach was used to evaluate the statistical 

significance of channel weights of coherence differences between thirds of the fact recording 

epoch and baseline period, an approach used previously to evaluate patterns of EEG 

oscillations (Manns et al., 2018). For channel weights, clusters were operationalized as 

neighboring channels rather than neighboring frequency bins. Specifically, each participant’s 

data were randomly reshuffled 1000 times between fact recording epoch and baseline. For 
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the original data and for each random shuffle, the mean difference (across participants) in 

channel weights between cue and fixation periods was calculated. Neighboring channels 

for which the channel weight exceeded ± 0.5 standard deviations (across participants) of 

the difference were assigned to a cluster. The absolute value of the within-cluster sum 

was calculated for every cluster, and the maximum cluster value was obtained for every 

random permutation. For the observed data, only clusters the sum of which exceeded the 

95th percentile value of these random cluster values were identified as being statistically 

significant (i.e., two-tailed p < 0.05). An initial cluster threshold of 0.5 standard deviations 

was used (rather than 1.0 used for frequency clusters for power) because these clusters 

were based on the spatial layout of the electrode contacts over the scalp. A p value of 0.05 

(or 0.05/3) was used (rather than 0.01) because the channel weight cluster approach used 

only one frequency range (9–12 Hz) and did not involve making comparisons separately for 

each channel, as the power analysis did. Effect sizes for significant channel clusters were 

calculated as Cohen’s d by dividing the mean difference by the standard deviation of the 

difference for within-subjects contrasts or by dividing the difference of group means by the 

pooled standard deviation for between-group contrasts. The same channel-cluster random 

permutation approach used for evaluating contrasts involving alpha coherence channel 

weights was also used for contrasts involving the delta-alpha phase-amplitude modulation 

indices for each channel.

3. Results

Alpha oscillations were prominent in EEG recordings as participants learned the pairs of 

facts, each pair conceptually connected by a matching final word but temporally separated 

by intervening facts (Fig. 1). Fig. 2 shows power spectrograms for each of the 30 recording 

channels and focuses on the 2.4-s recoding epoch that started with the presentation of the 

final word in each sentence. The plots show alpha power (dB) peaks at approximately 10.5 

Hz for both the fact recording epoch and the immediately preceding 2.4-s baseline period, 

which were more prominent for posterior relative to anterior channels. The plots also show 

for each channel differences in power between the fact and baseline periods. Power in the 

alpha frequency range (9–12 Hz) showed statistically significant (p < .01) reductions during 

the fact recording epoch for thirteen mostly posterior channels (Oz, O1/2, Pz, P3/4, P7/8, 

CP1/2, CP5/6, and C3). Thus, the data suggest that these alpha power shifts correspond to 

event-related changes in neuronal oscillations during fact learning. Statistically significant 

effects in power were not observed in the delta frequency range (1.5–3.5 Hz). Thus, our 

oscillatory analyses focused first on alpha coherence before revisiting delta oscillations with 

additional analytic techniques that could further verify the presence of delta oscillations in 

the EEG signal (see Granger Causality below).

Based on the observed changes in alpha power from individual channels, the data were 

next analyzed for possible task-related increases in alpha synchrony between recording 

channels. As an estimate of cortical synchrony, we calculated event-related (Fact-Baseline) 

alpha coherence between two channels, which we referred to as a path weight. Fig. 3A 

illustrates the approach for the 2.4-s recording epoch separated into 0.8-s time windows, 

which permitted examination of dynamical changes in coherence over the course of fact 

processing. Specifically, we summed the 29 path weights connected to each channel to 
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calculate a channel weight, which was used as an estimate of the extent to which each 

channel showed a change in alpha coherence during the fact recording epoch relative to 

baseline. The results indicated that alpha coherence increased markedly between many 

channels overlaying frontal, temporal, and parietal regions during the last 0.8-s of the 

recording epoch (Fig. 3B).

We next examined whether alpha coherence increased during processing of a related fact 

(Fact 2) relative to processing an unrelated fact (Fact 1), providing a within-subject index 

of changes in cortical integration during opportunities for fact integration. Accordingly, 

Fig. 4 shows plots of alpha coherence channel weights separately for Fact 1 and Fact 2 

during learning. If alpha coherence tracks integration of current and reactivated knowledge 

during related events, we further reasoned that enhanced coherence should be more evident 

in participants who performed in the top half (40 high performers) relative to the bottom 

half (40 low performers) on the subsequent test for knowledge integration (Fig. 1). Indeed, 

the interaction between fact condition (Fact 2 minus Fact 1) and integration performance 

(high performers minus low performers) was statistically significant, indicating that high 

performers showed disproportionately increased alpha coherence for Fact 2 (Fig. 4). 

Examination of changes in patterns of coherence across 0.8-s thirds of the recording epoch 

provided further insight into the unfolding spatiotemporal dynamics, revealing increases 

over occipital, parietal, and temporal sites by around 1.2 s that then shifted to frontal sites 

by around 2.0 s. Parallel analyses of alpha power revealed no effect of fact condition or 

subsequent performance (Fig. S1), suggesting that changes in oscillatory coherence were not 

attributable to simple changes in oscillatory power, nor was oscillatory power a sensitive 

index of either within- or between-subject differences in memory integration. Furthermore, 

when we split participants by working memory performance, the pattern of coherence was 

rather different (Fig. S2). In particular, enhanced alpha coherence was no longer observed 

for Fact 2 in high performers, suggesting that the pattern of coherence in Fig. 4 is unlikely 

to reflect more general factors, such as differences in working memory capacity between 

participants and/or differences in cognitive load between Fact 1 and Fact 2.

Having demonstrated that enhanced alpha synchrony during related events was related 

to better integration performance, we next asked if interactions between delta and alpha 

oscillations might further relate to fact integration performance. Because delta oscillations 

were not apparent in the power spectra (Fig. 2), it was first necessary to verify the presence 

of delta in the EEG recordings. To that end, we further explored Granger Causality (GC) 

between pairs of channels as a function of oscillatory frequency, a metric that discounts 

simultaneous EEG changes and thus discounts the influence of potential electrical artifacts 

and volume conduction on detection of oscillatory activity. Fig. S3 shows, for each channel 

and frequency, mean GC for that channel and all other channels, separately for GC 

outwardly directed away from a channel and inwardly directed to a channel, reflecting 

the degree to which that channel predicts (“Out”) and is predicted by (“In”) other channels, 

respectively (see Materials and Methods). In addition to clear alpha peaks at approximately 

10.5 Hz, the plots showed clear delta peaks at approximately 2 Hz, indicating that delta 

oscillations were a prominent component of the EEG signal.
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Based on the verification of prominent delta in addition to alpha oscillations in the EEG 

recordings, we next asked if the amplitude of the faster alpha oscillations was modulated by 

the slower delta wave, a type of phase-amplitude CFC that has previously been implicated 

in context-dependent perception (Helfrich et al., 2017). Fig. 5 shows that the amplitude of 

alpha oscillations showed clear modulation by delta phase for most channels, a depth of 

modulation (as calculated by a Modulation Index; see section 2.4.4 [Phase-amplitude cross-

frequency modulation]) that was prominent in posterior channels during the fact recording 

epoch. Changes in delta-alpha phase-amplitude modulation were pronounced for only the 

high performers, and Fig. 6 also shows that the difference between high performers and 

low performers was statistically significant in the final fact recording window (0.05 rather 

than 0.05/3 when using a cluster-based random permutation approach). Like findings of 

alpha coherence, high performers’ delta-alpha phase-amplitude modulation did not differ 

significantly as a function of domain-general factors such as working memory capacity 

(Fig. S4). Analysis of delta-alpha CFC further split by Fact 1 and Fact 2 further revealed 

no significant effects when we used our pre-defined cluster threshold (i.e., only channels 

that exceeded 1 SD of the difference), but at a threshold that only admitted channels 

exhibiting larger effects (i.e., > 2 SD), there was evidence that enhanced posterior CFC 

in high performers was specific to Fact 2 (Fig. S5). Thus, the timing and topography of 

delta-alpha CFC complements evidence of enhanced posterior alpha coherence for Fact 2 

in high performers at around 1.2 s in the recording epoch, both of which were followed by 

enhanced frontal alpha coherence at around 2.0 s in the recording epoch.

4. Discussion

The present results from a fact integration task provided key insights about the role 

of cortical alpha synchrony and delta-alpha cross-frequency coupling (CFC) in enabling 

memory integration by linking separate yet related cortical ensembles. Participants’ behavior 

on a test of new knowledge generation through fact integration exhibited a wide range 

in performance (Fig. 1), raising a key question of whether cortical alpha coherence and 

delta-alpha CFC during initial learning of to-be-integrated facts could explain variability in 

generation of the novel integration facts. During fact learning, EEG recordings indicated 

that, relative to participants who showed lower fact integration performance, high performers 

showed an early (1.2 s) increase in central-posterior cortical alpha synchrony followed by 

a later (2.0 s) increase in frontal alpha synchrony (Fig. 4). Moreover, for high performers 

only, this pattern of alpha synchrony was significantly higher when they read the second 

fact versus the first fact in a related pair, connecting the alpha synchrony to the opportunity 

to integrate the second fact with memory of the first fact (Fig. 4). High performers, but 

not low performers, also showed modulation of posterior alpha amplitude by delta phase, 

a CFC pattern that temporally and spatially coincided with early (1.2 s) increases in alpha 

coherence (Fig. 6).

One possible interpretation is that, particularly for participants who subsequently performed 

well on the integration test, reading the first fact engaged semantic processing, and reading 

the second fact did the same and additionally triggered memory and semantic processing 

of the first. This interpretation presumes that semantic processing of both current and 

reactivated knowledge would benefit from the precise temporal coordination of cortex-wide 
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networks of neurons whose activity is thought to instantiate the knowledge, the type of 

temporal coordination enabled by oscillatory synchrony and cross-frequency coupling. By 

this view of higher performers’ oscillatory patterns, the early (1.2 s) increases in posterior 

alpha coherence, particularly for the second fact, scaled with the amount of activated 

information (two facts > one fact), whereas the early (1.2 s) increases in posterior delta-

alpha CFC corresponded more generally with semantic processing, as even processing of 

individual facts (fact 1 or fact 2) entails simultaneous coordination of multiple cortical 

traces. Moreover, the later (2.0 s) increases in anterior alpha coherence, particularly for the 

second facts, could be interpreted as increased frontal-mediated processes more specifically 

related to knowledge integration. We discuss below the implications of the results for our 

understanding of how new information is dynamically integrated with distributed cortical 

knowledge —a critical step in constructing a knowledge base.

4.1. Alpha coherence as a measure of functional integration of distributed cortical 
regions

Complex cognitive functions, including memory integration, are supported by functional 

networks rather than single brain regions. For example, prior fMRI studies have 

demonstrated that memory integration is supported by multiple cortical and subcortical 

regions (Zeithamova and Preston, 2010), and that enhanced connectivity between regions 

predicts successful performance (Zeithamova et al., 2012). Although such data offer 

important clues regarding the specific anatomical regions that functionally interact, 

techniques that offer millisecond-level sampling resolution are needed to begin to 

understand how information is transferred and linked between them. One view is that, 

when oscillations among neuronal ensembles synchronize, the congruence of excitatory 

peaks and inhibitory troughs increases the probability that information leaving one area 

will arrive when the other area is maximally excitable (Fries, 2005; Palva and Palva, 2011; 

Varela et al., 2001). Electrophysiological studies in rodents (Buzsáki and Draguhn, 2004; 

Place et al., 2016; Tort et al., 2009) and magnetoencephalography data in humans (Backus 

et al., 2016) support this idea, demonstrating that oscillatory synchrony promotes routing 

and integration of information across the brain during learning. Here, we leveraged this 

analytic approach to test whether differences in oscillatory synchrony relate to differences 

in knowledge integration, thus providing important insight into how separate yet related 

knowledge is spontaneously integrated during learning.

The first step in the analytic approach was to validate that the scalp-based alpha coherence 

metric was sensitive to changes in cortical integration in all participants by quantifying 

for each channel the change in alpha coherence with other channels during processing 

of new semantic facts (Fig. 3). Alpha oscillations have been shown to correlate with a 

number of specific cognitive processes (Klimesch, 2012; Palva and Palva, 2007, 2011). 

Yet there is a growing consensus that they constitute a broader neurophysiological basis 

for large-scale cortical integration, relating generally to temporal coordination between 

adjacent and non-adjacent cortical areas (Fries, 2005; Palva and Palva, 2011; Sadaghiani 

and Kleinschmidt, 2016; Varela et al., 2001). For example, evidence from nonhuman animal 

studies suggests that alpha oscillations reflect both cortical-cortical and cortical-thalamic 

interactions (Bollimunta et al., 2008, 2011; Saalmann et al., 2012). Prior fMRI research has 
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shown that left temporal cortices and prefrontal cortex (PFC) are recruited together during 

semantic processing (Badre et al., 2005; Thomspon-Schill et al., 1999). We thus expected 

to observe increased frontotemporal alpha coherence following the final word of each fact, 

which enabled participants to integrate the preceding words to generate a sentence-level 

representation. Indeed, across both participant groups (high and low performers) and fact 

conditions (Fact 1 and Fact 2), we observed strong alpha coherence above left temporal and 

frontal electrodes about 2 s following the sentence-final word (Fig. 3), verifying that changes 

in coupling of task-relevant functional networks–reflecting cortical integration–could be 

observed across all participants and conditions. The overall frontotemporal coherence 

pattern is consistent with participants forming an integrated representation of the individual 

sentences.

4.2. Alpha coherence indexed retrieval and integration of distributed cortical knowledge

A key question was whether reading the second fact in a pair of related facts would 

reflect oscillatory correlates of fact integration in the cortex, a hypothesized mechanism 

for dynamically linking ensembles of information distributed across cortical nodes. By 

contrasting alpha coherence between pairs of novel facts that shared the same final word 

(e.g., pips in Fact 1 vs. Fact 2; Fig. 1), the current results revealed the oscillatory dynamics 

uniquely associated with integrating novel yet related information (Fact 2 > Fact 1). 

Previous ERP data that included a subset of the current sample indicated that knowledge 

integration entails multiple temporally-staged processes, including explicit comprehension 

of the meaning of to-be-integrated facts based on prior knowledge that is simultaneously 

reactivated (at about 1.2 s) followed by representation of the integrated relation between 

the new and reactivated knowledge (at about 1.6 s and later) (Varga and Bauer, 2017a). In 

the present study, we replicate and extend these findings to provide evidence for the role of 

alpha synchrony in activating and linking the discretely learned cortical traces to the same 

neuronal ensemble to form an integrated trace.

High performers, but not low performers on the fact integration test, showed increased 

posterior alpha coherence that was maximal over central-parietal sites at about 1.2 s for 

related relative to unrelated facts. Anatomical evidence reveals that parietal cortex exhibits 

connections to distributed cortical systems (Dehaene et al., 2006) and guides retrieval of 

abstract representations (Morton et al., 2020), suggesting that reactivation of cohesive, 

detailed memory representations would result from increased synchrony between parietal 

cortex and other cortical areas (Favila et al., 2018; Kuhl et al., 2013). Moreover, recent 

temporal evidence demonstrates that oscillatory correlates of explicit memory retrieval are 

evident approximately 1 and 2 s following a cue (Staresina et al., 2016; Varga & Bauer, 

2017a). The timing and topography of this effect thus suggests that initially unfolding alpha 

coherence reflects reactivation of the prior, relevant semantic fact, and more specifically, 

synchronous recruitment of cortical traces stored across distributed semantic and sensory 

cortical regions (Barsalou, 2008; Huth et al., 2012; Martin, 2007; Polyn et al., 2005).

Once prior, relevant knowledge is cognitively available, alpha synchronization may then 

support integration of the newly and previously learned facts. Prevailing theoretical 

models presume that such memory integration depends on precisely timed coordination 
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of distributed cortical ensembles that represent related memories (Kumaran and McClelland, 

2012; Preston and Eichenbaum, 2013) and that prefrontal cortex modulates integration 

of the new and reactivated knowledge (Preston and Eichenbaum, 2013; Schlichting and 

Preston, 2015; Varga et al., 2021), through biasing new encoding toward behaviorally 

relevant memories (Mack et al., 2020; van Kesteren et al., 2014). However, relatively sparse 

empirical data has examined the precise mechanism through which PFC influences memory 

integration or the timing of its influence during new learning. Here, the results provide 

direct evidence that frontal alpha coherence supports knowledge integration during learning. 

In particular, enhanced frontal alpha coherence was observed during Fact 2 in participants 

who successfully generated the novel integration facts, a pattern that emerged at about 2 s, 

immediately following evidence of enhanced central-parietal alpha coherence. In addition 

to playing a specialized role in memory integration, PFC has been shown to maintain 

behaviorally relevant information over delays, even in the face of intervening information 

(Miller et al., 1996). Thus, whereas earlier posterior coherence may support simultaneous 

activation of newly and reactivated memories, frontal alpha coherence, in turn, may guide 

representation of the integrated relation between the new fact and reactivated knowledge, 

providing a means of linking new information to existing knowledge previously stored in 

neocortex.

4.3. Delta-alpha modulation improved temporal coordination of distributed cortical 
ensembles

In addition to enhanced alpha synchronization in high performers during processing of 

related facts, the results further showed that delta oscillations modulated alpha amplitude 

in a delta phase-dependent manner. That is, the magnitude of oscillations within the 

alpha band waxed and waned in accord with the ongoing delta phase, a pattern that was 

particularly pronounced at posterior sites early, at around 1.2 seconds. Theoretical models 

have proposed that such cross-frequency coupling constitutes a mechanism for coordinating 

faster, spike-based computations across large-scale brain networks (Canolty and Knight, 

2010). In the present research, posterior delta-alpha CFC emerged at the same time as 

enhanced posterior alpha coherence implicated in explicit meaning comprehension and 

memory activation, suggesting that these simultaneous patterns may play complementary 

roles in coordinating distributed cortical modules that represent semantic knowledge. That 

is, because individual semantic concepts are represented by nodes distributed across the 

cortex (Barsalou, 2008; Huth et al., 2012; Martin, 2007), explicit activation of the current 

and/or reactivated fact requires precisely timed coordination of such distributed information 

to support unified cognitive interpretations (Helfrich and Knight, 2016). By this view, 

increased posterior delta-alpha CFC may reflect a general mechanism for regulating such 

widespread information integration, through improving the temporal coordination of alpha 

oscillations that enable synchronous recruitment of distributed traces.

Mechanistically, by modulating the amplitude of the faster alpha rhythm in accordance 

with the slower delta phase, such coordinated oscillations may provide additional means, 

beyond alpha synchrony alone, through which to promote spike timing, and in turn, 

synaptic transmission and plasticity across widely distributed neocortical traces. That is, 

timing the bursts of the faster alpha rhythm relative to the phase of the slower delta 
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oscillation likely augmented precisely timed, simultaneous ensemble activation reflected by 

alpha synchronization. That modulation of alpha oscillations by delta phase coincided with 

evidence of enhanced alpha coherence in the same time window and spatial regions further 

supports this proposal. More specifically, activating and comprehending the meaning of the 

current and/or reactivated semantic fact, as reflected by enhanced posterior alpha coherence 

at 1.2 s, may have up-regulated the demand to simultaneously coordinate knowledge traces 

widely distributed throughout the cortex. Thus, if delta-alpha CFC provides a means of 

regulating such large-scale activation, strong, transient phase-amplitude coupling would be 

expected to emerge alongside such central-posterior alpha synchronization, as was the case 

in the present research.

Finally, the present results are consistent with prior views of cross-frequency coupling, 

which propose that slower, low-frequency activity can track internal cognitive processes and 

states associated with memory (Canolty and Knight, 2010). Thus, in addition to optimizing 

posterior alpha coherence that supports synaptic transmission necessary for activating the 

current and/or remembered fact, it is possible that such delta-alpha CFC also provided 

a mechanism for making the activated semantic contents cognitively accessible. In line 

with this proposal, we subsequently observed enhanced cortical alpha synchronization over 

frontal regions in high performers during processing of Fact 2, implying that this later alpha 

coherence signature may have corresponded to synaptic modification of previous knowledge 

to link the new fact following earlier meaning abstraction. Notably, when the CFC cluster 

threshold was adjusted to admit only channels that exhibited larger delta-alpha modulation 

(Fig. S5), we showed that this pattern was specific to the second, to-be-integrated facts 

in high performers, suggesting that this form of temporal coordination and cognitive 

accessibility may be particularly pronounced when prior knowledge is reactivated. Future 

research is needed to address the precise source of this cross-frequency engagement.

5. Conclusions

In summary, long-standing theories of cognition have argued that the complexity of one’s 

semantic knowledge base depends not only on the amount of individual facts accrued 

over time, but also on the degree to which that information is coherently linked and 

organized in memory (Chi and Koeske, 1983). The present results provide new evidence 

for how such integration may be achieved. We propose that early central-posterior alpha 

coherence and delta-alpha CFC play a key role in coordinating activation of distributed 

cortical knowledge traces, thereby enabling formation of and access to unified cognitive 

interpretations of current and reactivated knowledge. We further suggest that later frontal 

alpha coherence plays a specialized role in linking the current and reactivated knowledge to 

the same cortical ensemble, through biasing encoding of the currently available information 

toward the integrated relation to contextually relevant information that was made cognitively 

available through memory reactivation. The present results thus build on prevailing 

cognitive theories, revealing the coordinated neural dynamics through which long-lasting, 

interconnected knowledge structures are formed and deployed to guide complex cognitive 

behaviors. Understanding the neural underpinnings of variability in integrated knowledge 

representation also has important educational implications. In particular, striking variability 

in knowledge extension through integration predicts concurrent and longitudinal academic 
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success in the same individuals tested here (Varga et al., 2019a, 2019b). By revealing 

neurophysiological markers that distinguish individuals who do or do not readily engage 

in integrative learning, the present work thus constitutes a cornerstone for advancing 

interventions designed to improve these functionally significant neuronal dynamics, and 

by extension, cognitive and academic behaviors that rely on flexible knowledge integration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A procedure schematic shows the overall approach. The scalp EEG recording epoch started 

with the final word in each pair of facts. Participants were labeled as high performers or 

low performers based on a median split of their subsequent integration test performance, 

the range for which was 90% to 3% correct. Example EEG recordings from four recording 

channels (Fz, Cz, Pz, and Oz; out of 30) for one high performer and one low performer 

show that oscillations in the alpha range (9–12 Hz) were prominent. Analyses focused on 

alpha oscillations across all channels, split by participants’ ranked success in deriving the 

target integration facts through open-ended testing (high versus low performers). Following 

presentation of each fact, which was presented one word at a time (400 ms per word), 

participants were asked to indicate yes (checkmark) or no (X) as to whether they already 

knew the fact. A total of 30 fact pairs were presented. Related facts from a corresponding 

pair were separated by 2–4 intervening facts.
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Fig. 2. 
Oscillations in the alpha (9–12 Hz) range were prominent across all 30 recording channels 

during the 2.4 s fact recording epoch and baseline period (the 2.4 s preceding the recoding 

epoch). The blue and black lines show mean (center of line) and SEM (thickness of line 

above and below mean) power across all 80 participants for the fact epoch and baseline 

period, respectively, and are plotted against the left Y axes (absolute power in dB) and X 

axes (frequency in Hz). The peach lines show for each channel the fact-baseline differences 

(mean ± SEM across participants) and are plotted against the right Y axes (power difference 

in dB) and X axes. Dashed horizontal lines indicate 0 (no difference) on the right Y 

axes. Horizontal peach lines bookended by circles indicate frequency ranges for which the 

difference was statistically significant (p < .01; see Section 2.4.5 [Calculation of statistical 

significance] for details of significance testing). Statistically significant power decreases 

encompassing the alpha range (9–12 Hz) were observed in numerous central and posterior 

channels. No statistically significant power increases in the delta range (1.5–3.5 Hz) were 

observed.
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Fig. 3. 
Analyses of channel-channel alpha coherence indicated that alpha coherence during the fact 

recording epoch significantly increased relative to baseline across a large cluster of channels. 

(A) Depiction of alpha coherence analyses using one example pair of channels (FT9 and F4; 

fact and baseline lines show mean ± SEM across 80 participants). The mean fact-baseline 

coherence difference across participants in the alpha (9–12 Hz) range was plotted as a color-

coded path weight on a network of all possible paths between all 30 channels. (B) Plots 

of alpha coherence path weights and channel weights averaged across fact condition (Fact 

1 and Fact 2) but separately for thirds (0.8-s time intervals indicated by the center-point) 

of the 2.4 s fact recording epoch. The weights for all paths connected to a channel were 

summed to calculate the weight for that channel, and the channel weights were plotted as 

color-coded circles according to channel position. Statistical significance relative to baseline 

was evaluated using a cluster-based (neighboring channels) random permutation approach 
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(see Section 2.4.5 [Calculation of statistical significance] for details of significance testing). 

P- and d-values denote statistical significance and effect size (Cohen’s d), respectively.
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Fig. 4. 
High performers showed more alpha coherence for the second fact (i.e., the only opportunity 

to integrate the facts) versus the first fact in each pair of related facts, whereas low 

performers did not. Increased alpha coherence in high performers was first evident at 

posterior central-parietal channels and subsequently extended to frontal regions. Alpha 

coherence channel weights are plotted for thirds (0.8 s time intervals indicated by the 

center-point) of the 2.4 s recording epoch for the first (Fact 1) and second (Fact 2) paired 

facts and are shown separately for high and low performers. Statistical significance of 

differences between Fact 2 and Fact 1 and between high and low performers was evaluated 

using a cluster-based (neighboring channels) random permutation approach (Section 2.4.5 

[Calculation of statistical significance] for details of significance testing). P- and d-values 

denote statistical significance and effect size (Cohen’s d), respectively.
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Fig. 5. 
The phase of delta oscillations strongly modulated the amplitude of alpha oscillations, 

particularly at posterior sites. The mean (± SEM) standardized (Z-scored) alpha amplitude 

during the fact epoch is plotted for each channel as a function of that channel’s delta phase 

(in degrees; two full phase cycles are plotted for better visibility of the patterns). The vertical 

dashed lines indicate the phase of the delta peak (0°and 360°), with one complete cycle 

spanning 0–360°. Modulation of alpha amplitude by delta phase is reflected by sinusoidal 

waveforms, indicating how increases and decreases in alpha power occur rhythmically in 

accord with the relative delta phase. For example, for channel Oz, increases in alpha power 

occur near the delta trough (180°) and decreases in alpha power occur near the delta peak (0 

and 360°).
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Fig. 6. 
The extent to which channel-wise delta phase modulated channel-wise alpha amplitude 

during 0.8 s thirds of the fact epoch (relative to a grand mean delta signal computed 

across all channels as a baseline comparison) is shown for each channel for high and low 

performers as a color-coded modulation index (see Section 2.4.4 [Phase-amplitude cross-

frequency modulation] for details regarding how the modulation index was calculated). For 

the high and low performers, positive numbers indicate increased delta-alpha modulation 

during the fact epoch relative to a baseline that accounted for possible volume-conduction 

artifacts. For high-low differences, positive numbers indicate greater delta-alpha modulation 

during the fact epoch (relative to the baseline) for high performers. Statistical significance 

of differences between high and low performers was evaluated using a cluster-based 

(neighboring channels) random permutation approach (see Section 2.4.5 [Calculation of 

statistical significance] for details of significance testing). P- and d-values denote statistical 

significance and effect size (Cohen’s d), respectively.
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