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A B S T R A C T

Non-destructive testing techniques have gained importance in monitoring food quality over the years. Hyper-
spectral imaging is one of the important non-destructive quality testing techniques which provides both spatial
and spectral information. Advancement in machine learning techniques for rapid analysis with higher classifi-
cation accuracy have improved the potential of using this technique for food applications. This paper provides an
overview of the application of different machine learning techniques in analysis of hyperspectral images for
determination of food quality. It covers the principle underlying hyperspectral imaging, the advantages, and the
limitations of each machine learning technique. The machine learning techniques exhibited rapid analysis of
hyperspectral images of food products with high accuracy thereby enabling robust classification or regression
models. The selection of effective wavelengths from the hyperspectral data is of paramount importance since it
greatly reduces the computational load and time which enhances the scope for real time applications. Due to the
feature learning nature of deep learning, it is one of the most promising and powerful techniques for real time
applications. However, the field of deep learning is relatively new and need further research for its full utilization.
Similarly, lifelong machine learning paves the way for real time HSI applications but needs further research to
incorporate the seasonal variations in food quality. Further, the research gaps in machine learning techniques for
hyperspectral image analysis, and the prospects are discussed.
1. Introduction

Quality of food products plays a pivotal role in determining its pref-
erence for consumers, processors, and other stakeholders (Ali et al.,
2020; Sharma et al., 2019). The testing of food quality has been largely
subjective, laborious as well as destructive. Thus, many fast, reliable, and
non-destructive techniques have been developed over the years for the
determination of extrinsic and intrinsic quality parameters of food
products. Imaging based non-destructive techniques, such as hyper-
spectral imaging (HSI), Raman imaging (RI), fluorescence imaging (FI),
soft X-ray imaging, laser light backscattering, and magnetic resonance
imaging (MRI) have become popular for food quality determination
(Hussain et al., 2019).

Hyperspectral imaging (HSI) integrates the advantages of spectros-
copy and imaging (spatial information) and has been successfully applied
for the quantification of internal and external attributes of different food
products (Mahesh et al., 2015). The limited abilities of the software and
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hardware components of HSI system greatly reduces the rapid acquisition
of image and its analysis. This limitation restricts the application of HSI
system in on-line or real time industrial application.

One of the most important challenges with hyperspectral imaging is
the extraction of useful information from the high dimensional hyper-
spectral data (hypercube) containing redundant information. Other
challenges during hyperspectral imaging includes sensor noise, change in
illumination and environmental factors, heterogeneity of sample and
anisotropy. Hence, efficient algorithms and chemometrics are needed for
reduction of dimensionality of hyperspectral data to improve the adap-
tion of HSI in real time food applications. The algorithms will help in
reducing the computation time and process, improving the performance
of the model and bring in robustness by reducing irrelevant variables and
redundancies (Liu et al., 2017).

Machine learning grew as a subdomain of Artificial Intelligence (AI)
that comprises algorithms capable of deriving useful information from
data and utilizing that information in self-learning for making good
nickavasagan).
ornbrough Building, School of Engineering, University of Guelph, 50 Stone Road
9; fax: þFax: (519) 836 -0227, Email: mannamal@uoguelph.ca

6 January 2021
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:dsaha@uoguelph.ca
mailto:mannamal@uoguelph.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crfs.2021.01.002&domain=pdf
www.sciencedirect.com/science/journal/26659271
www.editorialmanager.com/crfs/
https://doi.org/10.1016/j.crfs.2021.01.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.crfs.2021.01.002
https://doi.org/10.1016/j.crfs.2021.01.002


D. Saha, A. Manickavasagan Current Research in Food Science 4 (2021) 28–44
classification or prediction. Machine learning have gradually gained
popularity due to its accuracy and reliability. Improved hardware and
software components of machine vision systems have made the machine
learning algorithms to process the data faster and give reliable decisions
in very less time. Machine learning techniques have been widely applied
in quality determination of agricultural and food products. Different
machine learning techniques like Artificial Neural Network (ANN), Fuzzy
logic, decision trees, Naïve Bayes, k-means clustering, support vector
machines (SVM), random forest (RF), k-Nearest Neighbor (k-NN) and so
on have been used extensively in agriculture related fields (Rehman
et al., 2019). Deep learning is such another subdomain of machine
learning that have shown superior performance in image classification of
different food products and have established its potential to outperform
even humans in some cases when trained adequately (Zhou et al., 2019).

Researchers have previously reviewed the different applications of
machine learning techniques in food and agriculture field. However,
there are no reviews exclusively on the application of different machine
learning techniques in analysis of hyperspectral images of food materials.
Hence, this review discusses the latest machine learning approaches used
by researchers in analysis of hyperspectral data of food products, their
characteristic features, and their performance while processing of
hyperspectral images. The research gap, future trends and scope for
development are also discussed and the authors feel that this work may
act as a useful resource for the researchers working in the domain of
hyperspectral imaging and machine learning applications in food
products.

2. Hyperspectral imaging systems

In general, a hyperspectral system consists of a source of light, device
for dispersion of wavelength, detector and a computer equipped with
image acquisition software. The configuration mainly depends on the
application type for which the HSI system is to be used for acquiring high
quality hyperspectral images. In most cases of hyperspectral trans-
mittance and reflectance imaging, tungsten halogen lamps are used as a
source of light since it produces an uninterrupted spectrum in the visible
to near infrared region and stable, durable and low cost. However, it has
some disadvantages owing to which LED lights are gaining prominence
now-a-days (Qin et al., 2013). The reflectance and transmission spectra of
samples are captured using hyperspectral detectors. The most common
types of detectors which are used in different spectral range in hyper-
spectral imaging are: Silicon: 3360-1050 nm; Lead Sulphide (PbS) –

1100–2500 nm; Indium–Gallium-Arsenide (InGaAs): 900–1700 nm. The
quality of the images is generally determined through the performance of
the detector. In general, a highly sensitive detector with elevated signal
to noise ratio is preferred.

HSI systems operates in four modes based on the process of image
acquisition mode viz., whiskbroom, staring, pushbroom and snapshot. Of
the four modes, pushbroom hyperspectral imaging system, collecting
spectra of line by line, is the most used for online applications in food
industry (Jia et al., 2020). The snapshot technology is a non-scanning
technique having no moving part and records a complete
three-dimensional hypercube with each video frame. The snapshot
technology is gaining importance with time since the image is captured
entirely at once, but further research is required for more successful
application of this HSI technology.

The most common measurement methods for hyperspectral imaging
are reflectance, transmittance and interactance. The measurement tech-
nique is dependent upon sample type and the property being investi-
gated. In general, reflectance mode is used in most agricultural
applications since it can obtain relatively good useful information from
the sample (El Masry et al., 2012). The analysis of the hyperspectral
images is generally done through available softwares like Unscrambler,
ENVI and so on, but these do not provide the options for online or real
time image analysis. Over the past few decades, efficient machine
learning techniques have been developed for the fast analysis of
29
hyperspectral images so that the entire system can be operated under
online or real time conditions.

3. Machine learning techniques

Machine learning encompasses algorithms that possess the ability to
learn from data without relying on explicit programming. It can be
broadly classified into supervised, unsupervised and reinforcement
learning. The different machine learning techniques are discussed in
detail in the subsequent sections.

3.1. Supervised machine learning

Supervised learning requires learning a model from labelled training
data that helps in making classification or prediction about the future
data. Supervised indicates samples sets in which the desired output is
known. In other words, the labelling of data is done to guide the machine
to look for the exact desired pattern. Regression and classification are a
subdomain of supervised learning (Garreta and Moncecchi, 2013). Some
of the supervised learning tools are Artificial Neural Network, Decision
Trees, Random Forest, Support Vector Machines k-Nearest Neighbor,
Logistic Regression, Naïve Bayes and Linear Discriminant Analysis.

3.1.1. Artificial neural network (ANN)
Artificial neural networks (ANNs) were developed to imitate the

functioning of human brain based on the working principle of biological
neurons (Jamshidi, 2003). An ANN is a congregation of interconnected
neurons having thresholds, weights and an activation function (Khaled
et al., 2018). The simplest ANN is a multi-layer perceptron composed of
an input layer, hidden layer, and output layer (Sanz et al., 2016). Neural
networks have proven their effectiveness in pattern generation and
classification whereby the feed forward neural networks have proven to
be the most widely applied neural network (Nturambirwe and Opara,
2020). Back propagation is the method used for training the neural
network. It involves the fine tuning of weights in a neural network based
on the previous epochs (iteration) error rate.

ANNs have found its applications in detection of mechanical damage
in mushrooms, single kernel wheat hardness estimation, cold injury in
peaches, honey adulteration, prediction of firmness in kiwi fruit
(Rojas-Moraleda et al., 2017; Erkinbaev et al., 2019; Pan et al., 2015;
Shafiee et al., 2016; Siripatrawan et al., 2011). ANNs have been widely
used as a single algorithm machine learning tool in hyperspectral image
analysis (Table 1). The studies given in Table 1 involved the use of
spectral pre-processing techniques like Savitzky-Golay first derivates
(SGD1), mean centering (MC), orthogonal signal correction (OSC) and
multiplication scatter correction (MSC) for elimination of spectral noise
and other non-useful spectral information. The spatial information from
the hyperspectral imaging was segmented through global thresholding
and Otsu algorithm to derive different features and required information
about the region of interest. Once the spectral pre-processing and image
processing is completed, use of Successive projections algorithm (SPA),
ant colony optimization (ACO), Principal Component Analysis (PCA) was
implemented for selection of key wavelengths and reduction of the
redundant information generated through hyperspectral imaging (He
et al., 2020). Most of the studies used back propagation (BP) feed forward
artificial neural network for hyperspectral image analysis. At present, BP
based classifiers are used extensively in different applications owing to its
high classification accuracy, simplicity, robustness, sensitivity and
automation (Golhani et al., 2018). Besides, the studies indicated that only
three layers (input, hidden and output) with varying neurons in each
layer is enough to build a model with high accuracy. Hence, addition of
more hidden layers may slightly increase the accuracy but will also in-
crease the computational load (Erkinbaev et al., 2019). The different type
of transfer functions available for transfer of information from one layer
to the other in a neural network are sigmoid function, linear transfer
function, hyperbolic tangent function and logistic function. The studies



Table 1
Artificial Neural Network (ANN) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-
processing

Image
processing

ANN characteristics ANN
Computational
software

Classification
accuracy

References

Network type Network topology Training set:
Validation
set

Input layer Hidden layer Output layer

Number Nodes Number Nodes Number Nodes

Detection of
mechanical
damage in
mushrooms

900–1700 Savitzky-Golay
Second derivative

Harris corner
detection
algorithm

Polak–Ribie're
conjugate
gradient Back
propagation

101 – 01 30 05 – 80:20 MATLAB
R2012b

91% Rojas-Moraleda
et al. (2017)

Estimation of
wheat
hardness
(single kernel)

1000–2500 Savitzky-Golay first
derivates (SGD1);
mean centering (MC)
and orthogonal
signal correction
(OSC)

Image
thresholding

Two-layer Back
Propagation
neural Network
(BPNN)

01 – 02 03 01 – 80:20 MATLAB 8.2 90% Erkinbaev et al.
(2019)

Detection of cold
injury in
peaches

400–1000 – – Back-
propagation
feed-forward
neural network

01 420 01 03 01 02 80:20 – 96% Pan et al. (2015)

Detection of
adulteration
in honey

400–1000 Savitzky-Golay
algorithm (2nd-
order polynomial
with 3-point
window)

Otsu
algorithm for
image
thresholding

Back-
propagation
feed-forward
neural network

01 – 01 10 01 – 70:30 MATLAB 95% Shafiee et al.,
2016

Detection of
mites in flour

400–800 Multiplication
scatter correction
(MSC); Successive
projections
algorithm (SPA) and
ant colony
optimization (ACO)

Image
thresholding

Back
Propagation
Neural Network

01 – 01 05 01 03 67:33 MATLAB
R2017b

98% He et al. (2020)

Detection of
stored insects
in rice and
maize

400–1000 Normalization Otsu
algorithm for
image
thresholding

Back
Propagation
Neural Network

01 – 03 – 01 – 60:40 MATLAB
R2009b

98% Cao et al. (2014)

Prediction of
firmness in
kiwi fruit

400–1000 Sawitzky–Golay
algorithm with 2nd
order polynomial

Image
thresholding

Back-
propagation
feed-forward
neural network

01 03 01 03 01 01 70:30 MATLAB 97% Siripatrawan
et al. (2011)

Detection of
chilling injury
in apple

400–1000 – Global
thresholding

Back-
propagation
feed-forward
neural network

01 826 01 05 01 02 66:34 MATLAB 7.0 98.4% Elmasry et al.
(2009)

Differentiation
of wheat
classes

900–1700 – Image
cropping and
statistical
mean
centering

BPNN
Wardnet BPNN

01
01

75
75

01
01

79
78

01
01

08
08

60:40 for
BPNN;
70:30 for
Wardnet
BPNN

MATLAB 7.0 90% Mahesh et al.
(2008)

Identification of
wheat classes

900–1700 Normalization Image
cropping and
thresholding

Back
propagation
neural network

01 100 01 – 01 08 60:40 MATLAB
R2006a

92.1% Choudhary et al.
(2008)
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discussed here involved the implementation of sigmoid function in
transferring information from one layer to the other (Rojas-Moraleda
et al., 2017). ANN behaves like a black box and hence it is important to
properly tune the hyperparameters like learning rate, decay rate, mo-
mentum to reduce the chances of underfitting or overfitting (Cui et al.,
2018). The values of the learning rate, momentum and initial weight
used in these studies were 0.1, 0.1 and 0.3 respectively. The amount by
which the weights are updated is referred to as the learning rate. Besides,
momentum is responsible for accelerating the learning rate and decay
rate is responsible for preventing the weights from growing too large. The
studies highlighted that the classification accuracy or prediction of ANN
have been more than 90% indicating its high efficiency in analysis of
hyperspectral data. However, ANN requires a large data set for training to
build a good model. It is imperative to say that both the spatial and
spectral information obtained from hyperspectral imaging sometimes
referred to as data fusion should be fully utilized for building a good and
robust model.

3.1.1.1. Deep learning (DL). Deep learning is an effective machine
learning algorithm used for extracting features from original data for
classification, regression and detection. Deep learning involves a
representation-learning method through utilization of the deep ANN
comprising of multiple neuron layers. Convolutional neural network
(CNN) is the most widely used class of deep neural network for analyzing
images (Zhou et al., 2019). A typical CNN structure for classification
problems consists of different layers namely convolutional layers, pool-
ing layers and fully connected layers. The convolution layers consists of
filters (kernels) with a specified stride and is responsible for the extrac-
tion of useful features such as edges, from the input data image. Stride
can be explained as the number of shifts of pixels on the input data
matrix. The pooling layer is responsible for reducing the spatial size of
the input data thereby limiting the number of parameters and compu-
tation in the network. The pooling layer independently operates on each
feature map, whereby max pooling being the most common approach
used in the pooling process. In the fully connected layer, every node in
the first layer is associated with every node in the second layer of the
deep network system (Zhou et al., 2019).

The application of deep learning in hyperspectral imaging for food
applications is relatively new. Some of its recent application in food
include detection of bruises, diseases, identification of different varieties.
In the studies discussed in Table 2, convolutional neural network (CNN)
of deep learning architecture have been exclusively used for analysis of
hyperspectral data. After performing spectral pre-processing and image
segmentation, the depth features obtained from the hypercube is
implicitly extracted by CNN. It can integrate the information between
channels very efficiently in comparison to other traditional machine
learning algorithms. However, there is need for further research to find
the local correlation between image channels in hyperspectral imaging.
This problem is also prevalent in computed tomography imaging (Wang
et al., 2018). One of the most important aspects of deep learning is
feature learning. In this context, a study by Zhang et al. (2020) high-
lighted that automatic feature extraction from raw hyperspectral data is
achieved through a combination of 1D convolution and max pooling and
a relationship was established between the features extracted and cor-
responding levels using fully connected block. Training samples de-
termines the robustness and accuracy of the model. However, the
improvement in model performance may not be significant enough after
certain point due to redundant information in training samples of the
hyperspectral data. Hence, there should be a trade off between perfor-
mance and cost of model. For achieving higher model performance with
reasonable cost, a hold-out test was suggested followed by gradual
collection of samples till the test accuracy does not change significantly
(Qiu et al., 2018). In some cases, the availability of abundant and reliable
data is not available due to a number of factors. In such cases, some re-
searchers likeWeng et al. (2020) and Liu et al. (2019) have used principal
31
component analysis network (PCANet) and 2 Branch-CNN for building
robust models using relatively small datasets. Deep learning can yield
very poor performance when back propagation is directly applied in
combination with gradient based optimization. Hence, studies suggested
that a greedy layer-wise pretraining (training one layer at a time) can be
used for improving the Stacked Sparse Auto-Encoder (SSAE) optimiza-
tion (Liu et al., 2018). Qiu et al. (2018) found that the image patterns
share common characteristics with the spectral curve patterns. In other
words, the edges in images corresponds to minimum and peak in spectral
curves. Yu et al. (2018) highlighted that the most significant information
about the original input spectra is contained as deep spectral features in
the last layer of the network. In most of the studies discussed, the kernel
size of the convolutional layer has been taken as 3 � 3 with stride of 1 or
2 with the use of softmax function on the preceding fully connected layer
with an average classification accuracy of more than 95%. Softmax
function is generally applied to the immediately preceding fully con-
nected layer in an image classification problem in CNN. The softmax
yields the final output of the neural network and classifies an object
having probabilistic values between 0 or 1. In CNN, the commonly used
activation function is Rectified Linear Unit (ReLU). ReLU has the
advantage of introducing non-linearity in the convolutional network and
does not activate all neurons at the same time thereby reducing the
computational load on the network. Qiu et al. (2018) reported the use of
one padding layer in the convolutional neural network. It is the process of
introducing additional layers of zeros to the input image that facilitates
detailed representation of the information on the edges of the input
image when kernel filters are applied. In one of the studies, Liu et al.
(2019) applied batch normalization and dropout strategy technique in
training deep neural networks for combating the problem of overfitting,
reduction in the long training time and enhancement of accuracy of the
model. Batch normalization involves standardizing the inputs to a layer
for every mini batch. It enables higher learning rates and reduces the
sensitivity to the weight initialization. Dropout strategy involves the
process of ignoring the randomly selected neurons during training which
helps the network to be less sensitive to specific weights of neurons
thereby enabling better generalization. However, a study by Garbin et al.
(2020) provided some suggestions in using the batch normalization and
dropout strategy. The study indicated that the batch normalization
technique generally improves the accuracy and should be given first
preference for improving the convolutional neural networks whereas
dropout strategy should be applied very carefully and not necessarily it
may improve the accuracy each time.

3.1.2. Support vector machines (SVM)
Support Vector Machines (SVM) aims at obtaining the optimal hy-

perplanes (separating points of one class from the rest) through selection
of ones passing through the largest gaps possible between points of
different classes. New points are then classified to a certain class
depending on the side of the surfaces they fall on. The process of creating
an optimal hyperplane reduces the generalization error and thereby the
chances of overfitting. The different kernel functions used in SVM are
linear kernel function, radial basis function, polynomial kernel function
and sigmoid kernel function. SVM is very effective while working with
high dimensional spaces which require learning from several features in
the problem. SVM has also been found to be effective when the data is
relatively small i.e., a high dimensional space with few points (Raschka
and Mirjalili, 2017). Besides, they require less memory storage as a
subset of points is used only to represent the boundary surfaces. How-
ever, SVMmodels involve intensive calculations while the model is being
trained. Further, they do not quantify the confidence percentage of a
prediction which otherwise can be done through k-fold cross-validation
with an increased computation cost.

The SVM based machine learning techniques have been mostly used
in classification of different food products, agricultural crops, detection
of diseases, adulteration, seed viability, quantification of chemical con-
stituents in agricultural materials (Table 3). In the studies concerning the



Table 2
Deep Learning (DL) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-processing Image processing Deep learning characteristics DL
Computation
software

Classification
accuracy

References

Deep learning
network type

Network topology and
features

Parameter values/
Pertinent
particulars

T ing
s
V ation
s

Detection of
aflatoxin in
peanut

400–1000 – Image binarization and
thresholding

Convolutional
Neural Network
(CNN)

1st layer- input; 2nd layer-
convolution; 3rd layer-sub-
sampling; 4th layer-
convolution; 5th layer-sub-
sampling; Output layer
(fully connected); epochs:
1-100

Mean Error-
11.39–2.74%;
Time required:
150–15000s

8 – 96% Han and
Gao (2019)

Detection of
internal
mechanical
damage in
blueberries

400–1000 – Subsampling, image
resizing, data augment
and normalization

Two convolutional
neural networks
used: Residual
Network (ResNet)
and ResNeXt

Convolution layer filter
size: 3 � 3; stride:2;
Activation function:
Rectified Linear Unit
(ReLU)

Learning rate,
decay rate and
decay step: 0.1, 0.1
and 32,000

8 MATLAB
R2014a

88% Wang et al.
(2018)

Determination of
chemical
compositions in
dry black goji
berries

900–1700 – Image thresholding Convolutional
Neural Network
(CNN)

One-dimension (1D)
convolution layers, max
pooling layers, ReLU
activations, a fully
connected layer.
convolution kernel size: 3
� 3; stride:1; Max pooling
layers: 2; stride:2

Learning rate and
batch size: 0.005
and 5

6 MATLAB
R2014b;
PYTHON 3

88% Zhang
et al.
(2020)

Determination of
rice varieties

400–1000 Multivariate scatter
correction (MSC),
standard normal
variate (SNV),
Savitzky–Golay
smoothing and
Savitzky-Golay's first-
order

Texture parameters
calculation: gray-level
gradient co- occurrence
matrix (GLGCM),
discrete wavelet
transform (DWT) and
Gaussian Markov
random field (GMRF)

Principal
component analysis
network (PCANet)
deep learning
network

– – 7 MATLAB
R2017b;
PYTHON

98.57 Weng et al.
(2020)

Detection of
internal defects
in cucumber

400–1000 – Image thresholding Convolutional
Neural Network
-Stacked Sparse
Auto-Encoder
(CNN-SSAE) deep
learning
architecture

Greedy layer-wise
unsupervised pretraining;
Staking of additional
output layer (softmax
classifier) on pre-trained
SSAE; training through
gradient descent with back-
propagation

Sparsity control
parameter (β)-0.1
on encoding
neurons; two
layers: 16 encoding
neurons in each
layer

8 – 91% Liu et al.
(2018)

Prediction of
firmness and
soluble solid
content of pear

400–1000 Multiplicative signal
correction (MSC);
successive projections
algorithm (SPA)

Image thresholding Stacked auto-
encoders (SAE) and
fully-connected
neural network
(FNN)

Feature extraction from
hyperspectral data through
SAE

Input for FNN: SAE
extracted features

8 MATLAB 8.1;
PYTHON

Firmness: 89%;
Soluble solid
content: 92%

Yu et al.
(2018)

900–1700 – Wavelet transform
(Daubechies 8- basis

Convolutional
neural network

Two convolutional layers,
max pooling layer, fully

Learning rate-
0.0005

8 – 92% Qiu et al.
(2018)

(continued on next page)
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Table 2 (continued )

Study Wavelength
range (nm)

Spectral pre-processing Image processing Deep learning characteristics DL
Computation
software

Classification
accuracy

References

Deep learning
network type

Network topology and
features

Parameter values/
Pertinent
particulars

Training
set:
Validation
set

Identification of
rice variety
(single seed)

function; decomposition
level 3); Image
thresholding

(CNN) adapted from
Visual Geometry
Group (VGG) Net

connected layer, dropout
and dense layers (output
layer). Kernel size-3x3;
stride-1; padding-1;
epochs:200; ReLU
activation function;
softmax function on output

Detection and
quantification
of nitrogen
content in
rapeseed leaf

400–1000 – Image thresholding Stacked auto-
encoders (SAE) and
fully-connected
neural network
(FNN)

Feature extraction from
hyperspectral data through
SAE

Input for FNN: SAE
extracted features

80:20 MATLAB 8.1;
PYTHON

90% Yu et al.
(2019)

Classification of
coffee bean
varieties

900–1700 Savitzky–Golay first-
order derivative

Image segmentation:
watershed algorithm

Two branch
convolutional
neural network
(2B–CNN)

1st branch: 1D convolution
of spectral features; 2nd
branch: 2D convolution of
spatial features; Fully
connected layer-Absent;
Training- Batch
normalization and dropout
strategy; epochs: 100

Trained weights:
effective
wavelengths
indicator

80:20 – 95% Liu et al.
(2019)

Detection of
bruises in
strawberry

900–1700 Savitzky–Golay first-
order derivative

Image segmentation:
watershed algorithm

Two branch
convolutional
neural network
(2B–CNN)

1st branch: 1D convolution
of spectral features; 2nd
branch: 2D convolution of
spatial features; Fully
connected layer-Absent;
Training- Batch
normalization and dropout
strategy; epochs: 200

Trained weights:
effective
wavelengths
indicator

80:20 – 99% Liu et al.
(2019)
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Table 3
Support Vector Machines (SVM) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-processing Image processing SVM characteristics SVM
Computational
software

Classification
accuracy

References

Kernel
function

Parameter values/
Pertinent particulars

Cross
validation

Training set:
Validation
set

Detection of early decay
in strawberry through
prediction of total
water-soluble solids

1000–2500 Standard normal variate
correction (SNV); successive
projection algorithm (SPA)

Image masking Radial basis
function

Gamma (γ): 1
Penalty factor (c):
3.16

Five-fold 70:30 MATLAB R2014 94% Liu et al.
(2019)

Detection and
identification of fungal
infection in cereals

400–1000 Successive projection
algorithm (SPA)

Image cropping and
thresholding

Radial basis
function

Grid search
optimization method:
Kernel parameter
values

Five-fold 67:33 – 99% Lu et al.
(2020)

Classification of
foodborne bacterial
pathogens grown on
agar plates

400–1000 Standard Normal Variate
(SNV); CARS (Competitive
Adaptive Weighted
sampling)

Image thresholding Radial basis
function

Optimization
algorithm: Particle
Swarm Optimization;
Kernel parameter (γ):
46.20;
Penalty factor (c):
1.45

Five-fold 70:30 MATLAB R2018a 98% Bonah et al.
(2020)

Classification of infected
maize kernels

900–1700 Successive projection
algorithm (SPA)
Image cropping

Ostu segmentation
and watershed
algorithms

Radial basis
function

Grid search
optimization method:
Kernel parameter
values

Five-fold 70:30 MATLAB R2013b 100% Chu et al.
(2020)

Degree of aflatoxin
contamination in
peanut kernels

400–720 Fisher method: obtaining
narrow band spectrum

De-noising, contrast
enhancement; Image
thresholding

Radial basis
function

Grid search
optimization method:
Kernel parameter
values

Five-fold 70:30 MATLAB R2015b 96% Zhongzhi
et al. (2020)

Detection of black spot
disease in pear

400–1000 1st order derivative,
multiplicative signal
correction (MSC), and mean
centering

Image segmentation:
Spectral angle
mapper

Radial basis
function

– Five-fold 70:30 MATLAB R2017a 98% Pan et al.
(2019)

Identification of
adulterated cooked
millet flour

900–1700 CARS (Competitive Adaptive
Weighted sampling)

Image thresholding Radial basis
function

Grid search
optimization method:
Kernel parameter
values

Ten-fold 67:33 MATLAB R2011b 100% Shao et al.
(2018)

Determination and
visualization of soluble
solids content in winter
jujubes

Spectral range 1:
400–1000;
Spectral range 2:
900–1700

Wavelet transform and
moving average smoothing;
area normalization;
successive projection
algorithm (SPA)

Image segmentation:
mask creation

Radial basis
function on
LS-SVM

Regularization
parameter (γ): 5.750
� 107;
Kernel parameter
(σ2): 9.760 � 104

– 70:30 MATLAB R2017b Spectral range 1:
89%; Spectral
range 2: 87%

Zhao et al.
(2020)

Classification of maize
seed

400–1000 Normalization Image segmentation:
Adaptive threshold
segmentation

Radial basis
function

– Ten-fold 50:50 MATLAB R2009b 94% Xia et al.
(2019)

Determination of viability
of corn seed

1000–2500 Standard normal variate
(SNV), Savitzky-Golay 2nd
derivative

Image thresholding Linear basis
function

– Ten-fold 70:30 – 100% Wakholi
et al. (2018)
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application of SVM classifier in analysis of hyperspectral images,
different spectral pre-processing techniques like standard normal variate
correction (SNV), Savitzky-Golay derivatives, multiplicative signal
correction (MSC) and mean centering were used for improving the
spectral features whereas image segmentation techniques like Otsu al-
gorithm, watershed algorithm, thresholding and spectral angle mapper
were used for spatial feature extraction from the hyperspectral images.
Besides, effective wavelength selection from the wavelength range was
carried out using successive projection algorithm (SPA) and CARS
(Competitive Adaptive Weighted sampling) for improving the classifi-
cation model. In most of the studies (Table 3) conducted on the analysis
of hyperspectral images, radial basis kernel function (RBF) of SVM was
used. The radial basis function (RBF) is a non-linear function and it re-
duces the complexity of the training process (Lu et al., 2020). The tuning
of two parameters namely regularization parameter/penalty factor (C)
and kernel parameter (γ) is very vital since it helps in improving the
accuracy level of the RBF based SVM classifier. The regularization
parameter C is a trade-off between smooth decision boundary and correct
classification of training points. Higher value of C promotes overfitting
whereas lower values of C promotes underfitting. The gamma parameter
in RBF regulate the influence of a single training example. Higher values
of gamma indicate highly flexible or non-linear boundaries and low
values of gamma indicate a more linear boundary. Most of the recent
studies involved the application of grid search (GS) algorithm in opti-
mization of kernel parameters for improving the classification accuracy
(Table 3). However, GS algorithm involves higher computational time
and works good only with low dimensional dataset having few parame-
ters. In a study by Bonah et al. (2020), the concept of genetic algorithm
(GA), and particle swarm optimization (PSO) was introduced for opti-
mization of kernel parameters of SVM in improving the classification
accuracy. Among the algorithms used, the PSO algorithm enhanced the
classification accuracy of SVM to 100% for training set and 98.44% for
prediction set. PSO has the advantage of preventing the data points of
being trapped in local optima followed by increased accuracy and lower
training time (Cho and Hoang, 2017). Bonah et al. (2020) also introduced
the use of Least Square SVM (LS-SVM) in their studies instead of SVM.
One of the limitations of SVM lies in constrained optimization pro-
gramming which have been overcome by LS-SVM that applies linear
equations instead of quadratic programming. LS-SVM has been found to
have good prediction with faster execution time in comparison to SVM.
While dealing with LS-SVM, two parameters namely regularization
parameter-gamma (γ) and kernel parameter (σ2) need proper tuning for
yielding good results. The kernel parameter (σ2) is also designated as
squared bandwidth and if the value of this parameter is too low it leads to
overfitting whereas an extremely higher value leads to underfitting to the
sample data (Yasin et al., 2014). In another study, Chu et al. (2020)
involved the use of object wise and pixel-wise approach for feature
extraction from hyperspectral images for classification of infected maize
kernels. It was observed that the pixel wise approach improved the
classification accuracy of SVM to 100% in comparison to object wise
approach. In object -wise approach, the average spectra of individual
kernel are analyzed whereas in pixel-wise approach, the individual pixel
in the region of interest is taken into consideration for analysis. Hence,
the information obtained through pixel-wise approach is much more
exhaustive than object-wise approach. Besides, pixel-wise classification
helped in generating better visualization maps representing the spatial
knowledge of the infected kernels. The studies involving the use of SVM
classifier (Table 3) extensively used k-fold cross validation for model
verification. In most cases, the value of k is either 5 or 10 indicating a
5-fold cross validation or 10-fold cross validation for verification of
developed SVM model.

3.1.3. Decision trees (DT)
Decision trees represents a structure like a tree having internal nodes

representing a test on a feature, each branch representing the result of a
test, and each leaf node representing the class label followed by the
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execution of decision after considering all the features. The classification
rules in a decision tree represent a pathway from root to leaf. Hence, a
decision tree comprises of three types of nodes: Root nodes, internal
nodes and leaf nodes. It can handle different data types such as numeric,
ratings, categorical and are also capable of handling missing data in
response as well as independent variables. Decision tree is based on a
series of Boolean tests. The working of a decision tree starts with the
greedy algorithm, in which the tree is structured in a top-down iterative
divide-and-rule approach. In the initial stage, the root node comprises of
the training data set. The input data is divided iteratively based on
selected features. The test features at each node are splitted based on
decision tree functions like Gini index and entropy. The Gini index or
impurity is a measure of a criterion to lessen the probability of misclas-
sification. Entropy or information gain provides with the amount of
disorder in a set which means that when entropy is zero, all the points of
the target classes are the same. Several separate tree models can be
combined to enhance the performance of a model better known as
ensemble learning. The different decision tree algorithms used for model
development are Iterative Dichotomizer 3 (ID3), C 4.5 and classification
and regression tree (CART). One major advantage of a decision tree is the
non-requirement of creation of dummy variables. However, the key issue
with the decision tree is the large growth of the tree resulting in one leaf
per observation. Besides, it is impossible to reconsider a decision once the
training data set have been divided for answering a problem (Swamy-
nathan, 2017).

The similarity between decision tree algorithm and human thinking
process has led to its adoption in different fields like detection and
identification of diseases in food products, evaluation of food quality,
classification of agricultural products (Table 4). Different spectral pre-
processing techniques like Savitzky-Golay derivatives, multiplicative
signal correction (MSC) and normalization were used for improving the
spectral features whereas image segmentation techniques like histogram
thresholding, global thresholding and Gray-level co-occurrence matrix
(GLCM) were used for extracting spatial information from the hyper-
spectral images. Sequential forward selection (SFS) was used for selec-
tion of effective wavelength for improving the model classification
accuracy. Ren et al. (2020) in his studies used three different decision
trees such as fine tree, medium tree and coarse tree for quality evaluation
of black tea using hyperspectral data and concluded that the fine tree
model outperformed the other two decision tree models. The selection of
a tree and a subsequent good fit depends on the factor of minimum
conflict of the tree with the training data. The present study used Gini
index as split attribute criteria for choosing the optimal target and quality
of the model. The authors also used the concept of data fusion (spectral
and textural) for building robust classification models using hyper-
spectral data. In another study, Vel�asquez et al. (2017) reported the
successful classification of fat and meat based on pixel level information
of the hyperspectral data and provided an efficient way of classifying beef
marbling. Gomez-Sanchis et al. (2008) used CART model of decision tree
for decay classification in mandarin using hyperspectral data. The
advantage with CART is that the presence of outliers does not affect the
model, thereby paving the way for working with dimensionality data
such as pixel classification of hyperspectral data. The other type of de-
cision tree model used by researchers is Logistic Model Tree (LMT). LMT
is a combination of logistic regression and C 4.5 decision tree learning
method. Information gain is used for splitting and LogitBoost algorithm
for creating logistic regression in each tree node followed by pruning
through CART to eliminate the problem of overfitting (Chen et al., 2017;
Luo et al., 2019). The authors (Ropelewska et al., 2018; Baranowski et al.,
2013) reported high classification accuracy with hyperspectral data
while using LMTmodel of decision tree. In most of the studies, it has been
found that the classification accuracy is more than 90% which indicates
the robustness of the decision tree as a classifier.

3.1.4. Random forest (RF)
A random forest can be imagined as a congregation of decision trees.



Table 4
Decision trees (DT) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-
processing

Image processing Decision trees characteristics DT Computational
software

Classification
accuracy

References

Decision tree
model

Parameter values/
Pertinent
particulars

Cross-
validation

Training set:
Validation set

Evaluation of black
tea quality

900–1700 Multiplicative scatter
correction (MSC)

Texture parameters
calculation: Gray-level
co-occurrence matrix
(GLCM)

Fine tree model Split attribute
criteria: Gini index;
No of splits: 100

Five-fold 67:33 MATLAB R2017b 93% Ren et al.
(2020)

Classification of beef
marbling

400–1000 – Global thresholding Classification and
Regression Trees
(CART)

– Five-fold 71:29 MATLAB R2010a 99% Vel�asquez et al.
(2017)

Detection of codling
moth infestation in
apples

400–1000 Normalization;
sequential forward
selection (SFS)

Histogram thresholding Classification and
Regression Trees
(CART)

– Four-fold 80:20 MATLAB R2014b 82% Rady et al.
.2017

Detection of
microbial spoilage
in mushroom

400–1000 – Image thresholding Classification and
Regression Trees
(CART)

– Five-fold 57:43 MATLAB 7.0 95% Gaston et al.
(2011)

Classification of
infected and
healthy wheat
kernels

400–1000 – Image thresholding Logistic model tree
(LMT)

– Ten-fold 80:20 Waikato Environment
for Knowledge Analysis
(WEKA) 3.9

97% Ropelewska
et al. (2018)

Classification of
bruised apples

400–1000 Savitzky–Golay
method (second
derivative)

Otsu thresholding
algorithm

Logistic model tree
(LMT)

Minimum number
of instances:15;
Number of Boosting
Iterations: �1

Ten-fold 83:17 WEKA 98% Baranowski
et al. (2013)

Detection of
Marssonina blotch
in apples

400–1000 Savitzky–Golay
method (second
derivative)

Image thresholding Classification and
Regression Trees
(CART)

Split attribute
criteria: Gini index;
No of splits: 100

Ten-fold 80:20 MATLAB R2014a 80% Shuaibu et al.
(2018)

Prediction of beef
tenderness

400–1000 – Image thresholding Classification and
Regression Trees
(CART)

– Five-fold 63:37 MATLAB 84% Konda
Naganathan
et al., 2015

Classification of
decay in
mandarins

400–1000 – Image thresholding Classification and
Regression Trees
(CART)

– Five-fold 80:20 – 93% Sanchis et al.,
2013

Identification of
aflatoxin
contaminated corn
kernels

400–1000 – Image thresholding Classification and
Regression Trees
(CART)

– Five-fold 50:50 MATLAB; WEKA 90% Zhu et al.
(2015)
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Table 5
Random Forest (RF) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-
processing

Image processing Random Forest
characteristics

RF
Computational
software

Classification
accuracy

References

Number of
decision
trees

Training set:
Validation
set

Detection of scab
disease on potatoes

900–1700 – Greedy Stepwise;
Image thresholding:
Otsu algorithm;
Gaussian blurring
cluster

500 75:25 WEKA 97% Dacal-Nieto
et al. (2011)

Detection of bruises in
apple

400–1000 – Image thresholding:
Otsu algorithm

130 75:25 PYTHON 100% Che et al.
(2018)

Identification of rice
seed cultivar

900–1700 – Image thresholding – 75:25 MATLAB
R2009b

100% Kong et al.
(2013)

Classification of degree
of bruising in apples

400–1000 Standard normal
variate (SNV), 1st
Derivative,
Savitzky-Golay
(SG) smoothing

Image thresholding – 70:30 MATLAB 9.0;
PYTHON

92% Tan et al.
(2018)

Determination of honey
floral origin

400–1000 – Image thresholding – 70:30 MATLAB
R2012a

92% Minaei et al.
(2017)

Inspection for varietal
purity of rice seed

900–1700 – Image thresholding 500 75:25 MATLAB 84% Vu et al.
(2016)

Identification of freezer
burn on frozen
salmon surface

900–1700 Standard normal
variate (SNV)

Image thresholding 50 75:25 MATLAB
R2015b

98% Xu et al.
(2016)

Detection and
classification of virus
on tobacco leaves

400–1000 Standard normal
variate (SNV);
Successive
projections
algorithm (SPA)

Image thresholding 71 67:33 MATLAB 85% Zhu et al.
(2017)

Discrimination of
kiwifruits treated
with different
concentrations of
forchlorfenuron

900–1700 Standard normal
variate (SNV);
Successive
projections
algorithm (SPA)

Image thresholding 200 67:33 MATLAB
R2012a

94% Dong et al.
(2017)

Detection of fungal
infection in
strawberry

400–1000 Baseline correction;
Savitzky-Golay
second derivate

Image thresholding 10 75:25 WEKA 89% Siedliska
et al. (2018)
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In random forests, a decision tree is created with a subset of training
examples which are selected on random basis with replacement. Further,
random number of features are also used at each set from the set of
features. This process of tree growing is continued numerous times,
thereby creating a set of classifiers. At time of prediction, in each
instance, each grown tree predicts its target class in a similar way as done
in decision trees. The class which is voted the most by the trees i.e., the
class which is predicted most by the trees becomes the suggested one by
the classifier. Random forest involves the averaging of multiple decision
trees that suffer individually from high variance for building a more
robust model having a better performance and less prone to overfitting.
The pruning of random forest is non-essential as the classifier is quite
strong to noise emanating from individual decision trees. The parameter
which requires most attention is the number of trees to be chosen for the
random forest. In general, more the number of trees, better the perfor-
mance of the model or classifier obtained at the cost of higher compu-
tational cost. The effect of overfitting in random forest can be reduced by
decreasing the size of the bootstrap samples which may increase the
randomness of the random forest (Raschka and Mirjalili, 2017). How-
ever, reduction in the size of the bootstrap samples will negatively affect
the overall performance of the random forest. In most practical appli-
cations, the bootstrap sample size is taken to be the same as the number
of samples in the original training data set, thereby providing a good
trade off between bias and variance. Random forests are not as easily
interpretable as decision trees and the application of random forest is not
favorable where the number of features are less (Garreta and Moncecchi,
2013).

Random forests have gained much importance during the last decade
in its application in machine learning for their sound performance in
37
classification, ease of use and scalability. Random forest has been suc-
cessfully applied for analysis of hyperspectral images for detection of
plant diseases, fungal infection and bruises in fruits and vegetables,
classification of different agricultural products, quality of processed fish
products (Table 5). The different spectral pre-processing techniques
applied in the studies were Savitzky-Golay derivatives, Standard Normal
Variate (SNV) and baseline correction. Image processing techniques like
Otsu thresholding and Gaussian blurring cluster were used for processing
the spatial information. Besides, effective wavelength selection from the
wavelength range was carried out using successive projection algorithm
(SPA) for building a robust classification model. Che et al. (2018) in his
study reported that random forest can combine weak classifiers to obtain
a strong classifier having high classification accuracy with strong
anti-noise ability. Since random forest is a combination of many decision
trees, the finding of optimal decision trees is important for robust model
development. In this study, the authors used exhaustive grid search
method for finding an optimal number of decision trees with the highest
classification accuracy. Dong et al. (2017) reported that the number of
decision trees are randomly generated through bootstrap sampling
(random replacement sampling) in which around two-third of the orig-
inal samples are included in a bootstrap sample and the remaining
one-third sample do not make any contribution, generally referred to as
out-of-bag (OOG) samples. Bootstrap sampling decreases the correlation
among the trees through introduction of different training sets. Xu et al.
(2016) reported that the selection of optimal number of trees is obtained
through careful inspection of the change in the out-of-bag error with
accumulation of trees. In general, the use of more decision trees provides
for a more robust estimate from out-of-bag (OOG) predictions. However,
the cost and time involved in computation also increases which



Table 6
k-Nearest Neighbor (k-NN) applications in hyperspectral image analysis of food products.

Study Wavelength
range (nm)

Spectral pre-
processing

Image processing k-NN characteristics k-NN
Computational
software

Classification
accuracy

References

Value of k Training set:
Validation
set

Assessment of
packaged cod

400–1000 Area Normalization;
1st derivate

Image
thresholding

3 75:25 R 100% Washburn
et al. (2017)

Classification of
coffee species

900–1700 Standard Normal
Variate; 1st
derivative; mean
centering

Image
thresholding

5 73:27 MATLAB 7.0 100% Calvini
et al. (2015)

Detection of
aflatoxin in
maize

400–1000 Multiplicative signal
correction (MSC)

Image
thresholding

– 82:18 MATLAB R2018b 99% Gao et al.
(2020)

Detection of
pesticide
residue on
spinach leaves

900–1700 Multiplicative signal
correction (MSC)

Image
thresholding

– 80:20 MATLAB
R2016b;
PYTHON 3.6

99% Zhan-qi
et al. (2018)

Classification of
fat and lean
tissue in packed
salmon

400–1000 Mean-centering and
unit variance
normalization

Image
thresholding

17 80:20 MATLAB R2012a 100% Ivorra et al.
(2016)

Evaluation of
sugar content in
different potato
varieties

400–1000 Weighted baseline Image
thresholding

3 and 5 75:25 MATLAB 7.0 86% Rady et al.
(2015)

Classification of
contaminants in
wheat

900–1700 Standard Normal
Variate (SNV)

Image
thresholding,
background
separation

– 75:25 MATLAB 8.1 >90% Ravikanth
et al. (2015)

Classification of
fresh Atlantic
salmon fillets

400–1000 Standard Normal
Variate (SNV)

Image
thresholding

3 80:20 Interactive Data
Language (IDL)
7.1

88% Sone et al.
(2011)

Classification of
black beans

400–1000 Standard Normal
Variate (SNV)
Successive
projections
algorithm (SPA)

Textural attributes
extraction: Gray
level co-
occurrence matrix

– 80:20 MATLAB 2009 98% Sun et al.
(2016)

Identification of
states of wheat
grain

900–1700 Standardization and
multiple scattering
correction

Image
thresholding

7 (for reverse side of
wheat grain);
6 (ventral side of
wheat grain)

75:25 MATLAB R2018b 95% Zhang et al.
(2019)
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ultimately decreases the performance of the model. Hence, there should
be a trade-off between the number of trees and the performance of the
model (Xu et al., 2016). In another study by Tan et al. (2018), random
forest has been applied for development of bruise identification model in
apples. The authors found that by applying image thresholding opera-
tion, it is very difficult to obtain a segmented image containing complete
bruised area of an apple with high chances of misjudgment for the edge of
the bruised area. Hence, supervised training of spectra for bruised and
non-bruised area of the apple was done in random forest for building a
good identification model. The developed model was able to successfully
predict the transition between the non-bruised and bruised area of the
apple, thereby enabling accurate identification of the bruised area
through extraction of the spectral data. Vu et al. (2016) highlighted in his
study that instead of using the average spectrum on all the pixels of the
hypercube, the spectral data at each pixel may be more useful while
investigating the chemical features of a food product. In his study, he
found that when spectral and spatial features are combined for building
the random forest model, the accuracy increased from 74% to 84%.
Dacal-Nieto et al. (2011) in his study have provided a guide for selection
of mtry parameter in building of random forest model. The parameter
(mtry) is a measure of the number of variables available for splitting at
each node of the tree. In this study, the value of mtry was selected as the
square root of p which represents the number of features of the problem.
The studies involving application of random forest in analysis of hyper-
spectral data showed high level of accuracy (>90%) in most cases.
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3.1.5. k -nearest neighbor (k-NN)
k-Nearest Neighbor (k-NN) involves the storing of all available cases

followed by classification of new cases based on a similarity metric i.e.,
distance. k-NN usually uses three distance metrics namely Manhattan
distance (city block), Euclidean distance (Frobenius), P norm distance
(Minkowsky) while calculating the distance between the points. Based on
the distance metric selected, the k-NN algorithm searches the training
dataset for the k samples that are nearest to the point to be classified. The
new data point is assigned a class label of the new data point through
majority vote among its k nearest neighbors. The optimal value of k is
important for finding a good balance between underfitting and over-
fitting. If the value of k is too small, it will be more prone to noise points
and if the k value is too large, the neighbourhood may comprise of points
from other classes. The main advantages of k-NN is that the cost of the
learning process is nil. No optimization is required and its easy to pro-
gram with high accuracy (Raschka and Mirjalili, 2017). It is worthwhile
to report that k-NN is very prone to overfitting due to the curse of
dimensionality. The curse of dimensionality describes a situation in
which the feature space tends to become increasingly scattered for a
higher number of dimensions for a training dataset of fixed size. In other
words, the closest neighbors being relatively far away in a
high-dimensional space can give a very good estimate (Garreta and
Moncecchi, 2013).

The simplicity and high accuracy of k-NNmachine learning algorithm
has encouraged its applications in different areas such as classification of
different food varieties, detection of toxic substances and contaminants
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in food products, pesticide residue in leafy vegetables, chemical con-
stituents based classification of food products (Table 6). In this ML al-
gorithm, the performance of the model is mainly influenced by the
number of nearest neighbors (Washburn et al., 2017). The studies con-
ducted involved the implementation of different spectral pre-processing
and image processing techniques to the raw hyperspectral data. There-
after, the authors varied the value of k to observe a possible improvement
in the performance of the model. Most of the studies have experimented
with the value of k from 3 to 6. The values of k are generally not chosen to
be either 1 or 2 owing to the mechanism of tie-breaker in k-NN (Borges
et al., 2015). As a rule of thumb, the choice of k is obtained by the square
root of number of samples under study (Duda and Hart, 1973). Among
the three-distance metric used in k-NN algorithm, the Euclidean distance
is preferred by researchers since it results in good classification accuracy
(Zhang et al., 2019). k-NN has not only found its applications as a good
ML algorithm but also used by researchers in optimal wavelength (Xin
et al., 2019) and feature selection (Zhan-qi et al., 2018) of hyperspectral
data. Xin et al. (2019) proposed a fast and reliable method of obtaining
best wavelet decomposition layer and effective wavelength selection of
hyperspectral data through coupling of wavelet basis functions and
k-nearest neighbor. The different wavelet basis functions like db6, sym5,
sym7 and db4 were used for selection of effective wavelength of hyper-
spectral data. The decomposition of the original spectral signal was
carried out through wavelet transform followed by use of k-NN algorithm
for analyzing high frequency signal of each layer of wavelet decompo-
sition leading to the selection of best layer and effective wavelengths of
hyperspectral data. Zhan-qi et al., 2018 used Chi-square test for feature
selection of hyperspectral data combined with k-NN in detection of
pesticide residue on spinach leaves. The Chi-square test calculates and
rank the correlation degree between each dimension category and fea-
tures and ultimately retains the most related dimensional features. After
the Chi-square feature selection process, the prediction accuracy ob-
tained through k-NN algorithm in the study was found to be 99%. In a
study by Guo et al. (2018), higher accuracy of hyperspectral image
classification is obtained when k-NN is combined with guided filter. The
authors used joint representation k-NN with front and posterior guided
filter for extracting spatial information and performing denoising oper-
ation respectively to obtain high classification accuracy. Most of the
studies indicated high accuracy (>90%) while applying k-NN for analysis
of hyperspectral data.

3.1.6. Logistic regression (LR)
Logistic Regression belongs to the class of supervised learning and is

used in classification problems. Basically, it is based on the concept of
probability and is a predictive analysis algorithm. In general, Logistic
regression is used for binary classification of materials. It results in a
discrete binary outcome between 0 and 1. Logistic Regression evaluates
the relationship between the independent variable (features) and the
dependent variable (label, to be predicted) by calculating the probabil-
ities using the logistic function (Swamynathan, 2017). The difference
between linear regression and logistic regression lies in the fact that the
outcome of the logistic regression is discrete whereas linear regression
yields a continuous value. It is widely used owing to its high efficiency,
simple, less computation and is highly interpretable. However,
non-linear problems cannot be solved with logistic regression since it
provides linear decision surface. It is mostly used when the data is line-
arly separable. Logistic Regression can predict only a categorical
outcome and is prone to overfitting.

The application of logistic regression has primarily been carried out
for classification of land cover using hyperspectral data in remote sensing
(Gewali et al., 2018). However, in one of the studies by Sanz et al. (2016),
classification of lambmuscle based on hyperspectral data was carried out
using Logistic regression. It was reported that a classification accuracy of
39
92% was achieved when principal component analysis (PCA) was com-
bined with logistic regression. In this study, the authors highlighted that
the parameters (θ) of the model require learning through the training set
and then the probability is calculated for classifying a new example. It has
reported that the accuracy obtained in other classification problems
using hyperspectral data was relatively low (Wang et al., 2018). Hence,
in logistic regression, efficient pre-processing of hyperspectral data is
very important before it is being fed to the LR classifier.

3.1.7. Naïve Bayes (NB)
Naïve Bayes is a powerful yet simple generative machine learning

classifier that utilizes the concept of conditional probability (Bayes' the-
orem) to describe the outcome probabilities of related events. In other
words, it evaluates the probability of an instancebelonging to a class based
on the probabilities value of each of the feature. The naïvewordhighlights
the assumption that each feature is independent and identically distrib-
uted than the others indicating that a feature value has no relationship
with the value of another feature (Rehman et al., 2019). At first, a fre-
quency table (similar to prior probabilities) of all classes is created by the
algorithm followed by the creation of a likelihood table. Thereafter, the
posterior probability is calculated. In general, Naïve Bayes has three
models namely Multinomial model, Poisson model and Bernoulli model.
Due to its simplicity, it has beenused inmanydomainswithhigh accuracy.
Themajor drawback of this algorithm is that it is incapable of learning the
interaction between two predictor variables/features due to the assump-
tion of conditional independence (Bishop, 2006).

Naïve Bayes have been successfully used on hyperspectral data in
bruise and cultivar detection of apples (Siedliska et al., 2014), detection
of contaminants in wheat (Ravikanth et al., 2015), detection of chilling
injury in cucumber (Cen et al., 2016). The classification accuracy in the
above hyperspectral imaging studies have been found to be more than
85%, 95% and 98% respectively. Most of the researchers have used the
multinomial naïve Bayes classifier model in their studies with hyper-
spectral data (Zhang et al., 2020). However, in several studies, it has also
been reported that the classification accuracy of the naïve Bayes classifier
is less than 75%, indicating a weak classification model (Qin et al., 2020;
Siedliska et al., 2017, 2018).

3.1.8. Linear discriminant analysis (LDA)
LDA is a linear transformation method that reduces the number of

dimensions in a dataset. LDA is considered as a supervised learning al-
gorithm, hence considered to have better feature extraction techniques
than Principal Component Analysis (PCA). The principle underlying LDA
involves finding the feature subspace that optimizes separability of class.
One of the assumptions in LDA is the normal distribution of the data and
statistical independence of the features. However, LDA can work still
reasonably well if the assumptions are violated (Raschka and Mirjalili,
2017). Linear Discriminant Analysis (LDA) is generally used for feature
extraction and aids in increasing the computational efficiency, reduction
in the degree of overfitting due to the curse of dimensionality models that
are non-regularized. It highlights the accuracy of the classification.

Due to the robustness of the LDA, it has been widely applied for
classification of agricultural and food products based on hyperspectral
data (Qin et al., 2020; Delwiche et al., 2019; Liu et al., 2010; Mahesh
et al., 2008). In most of the studies applying LDA for classification using
hyperspectral imaging, the average classification accuracy has been re-
ported to be more than 90% indicating the robustness of the classifier. In
a recent study, Xia et al. (2019) used the concept of multi-linear
discriminant analysis (MLDA) as a feature transformation in his studies
concerning identification of different maize varieties using hyperspectral
imaging. MLDA can be described as an improvement and extension of
LDA which provides for a multi-linear projection and mapping of the
input data from one space to another. MLDA based classification model
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obtained a significantly better average classification accuracy (99.13%)
than LDA based classification model (90.13%).

3.2. Unsupervised machine learning

Unsupervised learning involves dealing with unlabeled data or un-
known data structure. It explores the data structure to obtain meaningful
information without the help of a known outcome variable. Clustering
and dimensionality reduction are a subcategory of unsupervised learning
(Raschka and Mirjalili, 2017). Some of the unsupervised learning tools
are k-means clustering, Independent Component Analysis (ICA), Princi-
ple Component Analysis (PCA).

3.2.1. k-means clustering
k-means algorithm involves organizing data into clusters with the aim

of achieving high similarity between intra-cluster and low similarity
between inter-cluster. An item can belong to only one cluster since it
produces a definite number of non-hierarchical and disjoint clusters. k-
means is an instance of the expectationmaximization (EM) algorithm and
applies an iterative way of minimizing the intra-cluster Sum of Squared
Errors (SSE). The initial step begins with selection of randomly picked
centroids designated by the symbol k. Centroids can be explained as the
average location or arithmetic mean of all the points. The points which
are closest to each centroid point are assigned to that specific cluster.
Now, the centroid is recalculated by averaging the position coordinates
of all the points present in that cluster. The process is continued until the
convergence of the clusters take place (Garreta and Moncecchi, 2013). In
general, the distance between the centroid and the points is calculated by
Euclidean distance metric. k-means algorithm facilitates easy imple-
mentation when compared with other clustering algorithms. However,
k-means clustering requires the declaration of the number of clusters.
k-means clustering faces issues when clusters are of different size,
non-globular shapes and densities. Further, the occurrence of outlier can
lead to misrepresentation of the results.

The simplicity and the computational speed have encouraged the use
of k-means clustering in unsupervised classification using hyperspectral
imaging. Liu et al. (2010) applied k-means clustering for classification of
pork samples using hyperspectral data. In this study, Gabor filtering was
used for preprocessing of hyperspectral images followed by k-means
clustering. In k-means clustering, the authors used three distance met-
rices namely city-block distance, Euclidean distance and cosine distance
for calculating the distance between the points and centroid. It was re-
ported that the use of cosine distance in k-means clustering algorithm
achieved the highest accuracy of 83%. In another study by Liu et al.
(2012), an accuracy of 100% was reported in classification of eggs into
fertile and non-fertile ones on the 0th day of incubation and 84% accuracy
on 4th day of incubation. Singh et al. (2007) used k-means clustering for
detection of fungal infection in wheat but the performance of the clas-
sifier was found to be poor (accuracy<70%) in comparison to other
discriminant classifiers. k-means clustering has been applied for good
segmentation of potato hyperspectral images in non-destructive detec-
tion of potato quality. The excellent segmentation provided by k-means
clustering helped in improving the classification accuracy of the
discriminant models for potato quality determination (Ji et al., 2019).

3.2.2. Dimensionality reduction

3.2.2.1. Principal component analysis (PCA). Principal Component
Analysis is about the creation of new set of uncorrelated variables from a
set of possibly correlated variables. The newly created variables lie in a
new coordinate system where the projected data in the first coordinate
represents the highest variance followed by the projected data in the
second coordinate representing the second highest variance and so on.
The newly formed coordinates are named as the principal components
(PC). Besides, transforming the original data, the PCA provides with two
parameters namely Eigen vectors and Eigen values that help in the
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interpretation of the chemometric analysis. The Eigen values gives the
information about the variation in each PCA band and the Eigen vectors
or loading vectors gives the information about the weighting function for
obtaining the PCA scores. In general, the number of principal compo-
nents obtained is equal to the number of original dimensions, but those
PCs having higher variance are selected. The condition of orthogonality
(uncorrelated) is to be complied with remaining principal components
when each new principal component is added. When the first principal
components are retained, the reduction in the dimensionality of data
occurs, thus helping in visualization of the data. Similarly, when the first
and second principle components are retained, the examination of data
can be done using a two-dimensional scatter plot (Raschka and Mirjalili,
2017). As a result, PCA can be used as a resource tool for exploratory data
analysis before creating predictive models. The major advantage of PCA
lies in obtaining a low-dimensional space from a high-dimensional one
while retaining variance to the maximum extent possible and hence
protect the model from the curse of dimensionality. PCA does not require
a ground truth in performing its projections; it only depends on the
learning features values.

The popularity and the powerful nature of PCA makes it the most
widely used dimensionality reduction techniques in building robust
classification models using hyperspectral data (Rojas-Moraleda et al.,
2017; Erkinbaev et al., 2019; He et al., 2020; Vu et al., 2016; Zhu et al.,
2016; Dong et al., 2017). Konda Naganathan et al. (2015) used different
PCA techniques namely chemometric principal component analysis
(CPCA), sample principal component analysis (SPCA) and mosaic prin-
cipal component analysis (MPCA) in reducing the spectral dimensionality
of the hyperspectral images of beef. It was reported that CPCA with first
five loading vectors gave the best performance than the other two PCA
techniques. Besides, the CPCA operates on one-dimensional data through
averaging of spatial pixels of hyperspectral images and hence require
minimum time in creating the loading vectors. The studies conducted
using PCA on hyperspectral data have been limited to use of a maximum
of first five loading vectors or score images by the researchers. All the
relevant and useful features of interest have been found within this first
five score images. Besides, in most cases, it has been reported that the
application of PCA have significantly improved the classification accu-
racy of the ML classifier.

3.2.2.2. Independent component analysis (ICA). Independent component
analysis (ICA) is considered as a further step of principal component
analysis (PCA) technique and considered as a powerful tool for extraction
of source signals or useful information from the original data. PCA fol-
lows the principle for optimization of covariance matrix of the data
representing statistics of second-order, whereas ICA follows the optimi-
zation of statistics of higher-order such as kurtosis. Hence, it can be said
that while PCA obtains uncorrelated components, ICA yields indepen-
dent components (Raschka and Mirjalili, 2017). The extraction of the
independent components is done by a) Non-Gaussianity maximization, b)
mutual information minimization, or c) using maximum likelihood (ML)
estimation method. ICA have been used in image segmentation for
extraction of different useful layers from the original image.

The applications of Independent component analysis have been
extensively used in signal processing arena (Tharwat, 2018). The studies
concerning the application of ICA in processing of spectral data reported
that the original spectra are decomposed into source signals which ulti-
mately simplifies the interpretation of the results (Chuang et al., 2014;
Boiret et al., 2014). However, limited studies have used ICA for pro-
cessing of hyperspectral images. One noteworthy study was performed by
Mishra et al. (2019) for detection of peanut flour in wheat flour using ICA
and hyperspectral imaging. To achieve this, the authors used Random
ICA by blocks and Joint Approximation Diagonalization of
Eigen-matrices (JADE) algorithm to obtain the optimal number of inde-
pendent components that represents the source signals of different
chemical constituents from the original data set. The study concluded
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that the optimal number of independent components obtained as seven
which was sufficient for determination of peanut traces distribution in
the sample using the hyperspectral images.

3.3. Reinforcement machine learning

Machine learning has been broadly classified into unsupervised
learning and supervised learning. However, reinforcement learning (RL)
refers to the application of specific task-oriented algorithms in a manner
to learn achieving a complex objective (goal) or the way to maximize
along a particular dimension over many steps (Suuton and Barto, 1998).
RL mimics the way humans and animals learn in the absence of a mentor.
RL is based on the concept of interaction of the agent with the environ-
ment. For example, humans and animals learn to walk in the absence of a
mentor whereas agents will acquire the learning by trial and error. RL is
based on giving rewards, to agents when they complete the assigned
work by themselves (Aljaafreh, 2017). RL problems are mostly modeled
as a Markov decision process (MDP). A Markov decision process gener-
ally involves a 5-tuple (S, A, P, R,Ɣ), where S represents a finite set of
states, A represents a finite actions set, P represents the probability of
transition, R represents the reward provided immediately, and Ɣ repre-
sents the factor of discount. Reinforcement learning application may
transform the scenario of automation in agriculture and food industry as
it can be used for teaching robots to adjust their temporal behavior ac-
cording to the relation between them and the surroundings (Bechar and
Vigneault, 2016).

4. Research gap

The industrial application of hyperspectral imaging (HSI) for quality
inspection of food products is challenged with different limitations it
possesses. Most of the on-going research in this field is limited to
laboratory-scale. There are challenges exist in abilities of the hardware
and software of the HSI systems. The extraction of useful information
from the high dimensional hyperspectral data is a cumbersome task. The
cost of the hyperspectral system is very high which limits its application
in real world. Most of the machine learning algorithms used for analysis
of hyperspectral data involves manual feature extraction which greatly
increases the computation time. In addition to the spectral data, the
spatial information obtained from hyperspectral data need to be utilized
to the maximum extent i.e. fusion of spectral and spatial data for devel-
oping more robust models. The review of literature revealed repeated use
of only specific machine learning algorithms in analysis of hyperspectral
images. The studies related to application of deep learning algorithms in
food products is limited and requires further research for its full utili-
zation. At present, the popular ML algorithms work in isolation i.e., it
executes a ML algorithm based on a training dataset to develop a model
and hence the ML algorithm does not make any effort in retaining the
knowledge learned and use them in future learning. The studies which
have been incorporated in this review mainly highlights the application
of machine learning in horticultural crops whereas comparatively less
studies are available on cereals, pulses and oilseeds. Though there have
been studies related to hyperspectral detection of insect affected grains,
pulses, very few studies have reported the application of machine
learning for sorting or grading based on quality characteristics (both
external and internal) of these crops.

5. Future trends and scope for development

The establishment of hyperspectral imaging system in the food in-
dustry depends largely on the successful address of the different issues
hindering its applications. Future work should involve the way for
minimizing the cost of the hyperspectral imaging device through devel-
opment of low-cost materials for fabrication. With the advancement in
computing system, improved hardware and software of the HSI system
should be developed for rapid processing of hyperspectral images.
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Currently, the machine learning algorithms has a narrow specific appli-
cation in food which requires standardization for wider applications
(Nturambirwe and Opara, 2020).

The use of advanced machine learning algorithms like deep learning
and life-long machine learning should be used more effectively for its
potential in real time applications. Deep learning employs automatic
feature learning from the hyperspectral data unlike other traditional
machine learning algorithms. The identification of effective wavelength
(EW) regions from the entire working spectrum in hyperspectral imaging
is important for real time online applications since EW selection reduces
the equipment cost and computational load of HSI. In this context, a
pioneering work has been reported by Liu et al. (2019) in selection of
effective wavelengths and spectral-spatial classification in hyperspectral
imaging. It was found that two branch convolutional neural network
(2B–CNN) based on deep learning has excellent accuracy and involved
less computation time thereby facilitating for real time online applica-
tions. But more research is required for improving the robustness of the
proposed 2B–CNN model. Very few studies have indicated the potential
of deep learning models for building predictionmodels. Further, research
is required for developing effective deep learning models for prediction
which can outperform other prediction development methods. In deep
learning process, a considerable time is taken for the training process
followed by high complexity and several hyperparameters of the model
which complicates the optimization process (Zhou et al., 2019). Further,
deep learning involves training of huge amount of data for good classi-
fication accuracy. So, more research in this direction is required for
development of simpler networks based on deep learning approach.

Environmental factors play an important role in the dynamic change
of the quality pattern in food products over time. Hence, the potential of
incremental learning or lifelong machine learning approach may be
utilized for building models with high classification or prediction accu-
racy. Lifelong learning (LL) involves a reinforcement learning approach
and use of the accumulated knowledge over time in future learning and
solving problems. With time, the LL algorithm gains more and more
knowledge and becomes more efficient in learning. The continuous
learning ability of LL algorithm mimics the human intelligence system
(Chen and Liu, 2018).

In hyperspectral imaging system, most of the research work involved
the analysis of the spectral information. However, the spatial information
obtained through hyperspectral imaging is not fully utilized and can
provide some key information (Han et al., 2019). The combination of the
spectral and spatial information (at pixel level) for image processing will
help to achieve a better classification accuracy of the developed model.
The relationship between the spectral dimension and classification accu-
racy need to be analyzed and an effective weighted filter may be designed
for good classification of hyperspectral images (Guo et al., 2018).

The potential of Independent Component Analysis (ICA) in dimen-
sionality reduction of hyperspectral data has not been utilized fully.
Future studies on hyperspectral imaging should involve the use of ICA in
studies concerning detection of adulterants in different food products . It
is very difficult to choose an algorithm that will solve most of the prob-
lems, hence choosing an appropriate algorithm is very important for
effectiveness of the model. Hence, future work is required to build a
framework for algorithms that can be recommended for specific appli-
cations (Nturambirwe and Opara, 2020).

6. Conclusions

Hyperspectral imaging technique is a powerful tool for non-
destructive assessment of quality in agricultural products. However,
the huge amount of information generated by HSI is difficult to process
and that limits its use in real time industrial applications. Furthermore,
extracting useful information from the high dimensional hyperspectral
data containing redundant information is a challenging task. Hence, for
making online hyperspectral imaging inspection a reality, emerging and
efficient algorithms are needed. In this context, machine learning
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algorithms can play an effective role in analysis of hyperspectral images
with high accuracy. Besides, advanced machine learning algorithms like
deep learning have found its potential application in hyperspectral image
analysis of agricultural products. Since deep learning involves automatic
feature learning during the training stage, it has more potential for real
time applications than other traditional machine learning algorithms.
The scope of lifelong machine learning should be explored further, and
its application should be extended to other agricultural crops for quality
monitoring. More future work is required in developing simpler networks
based on deep learning and lifelong learning for reducing the high
complexity and optimization task involved in implementing these
advanced ML algorithms for analysis of hyperspectral images.
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