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ABSTRACT

Motivation: The motif discovery problem consists of finding over-
represented patterns in a collection of biosequences. It is one of
the classical sequence analysis problems, but still has not been
satisfactorily solved in an exact and efficient manner. This is partly
due to the large number of possibilities of defining the motif search
space and the notion of over-representation. Even for well-defined
formalizations, the problem is frequently solved in an ad hoc manner
with heuristics that do not guarantee to find the best motif.
Results: We show how to solve the motif discovery problem (almost)
exactly on a practically relevant space of IUPAC generalized string
patterns, using the p-value with respect to an i.i.d. model or a Markov
model as the measure of over-representation. In particular, (i) we
use a highly accurate compound Poisson approximation for the null
distribution of the number of motif occurrences. We show how to
compute the exact clump size distribution using a recently introduced
device called probabilistic arithmetic automaton (PAA). (ii) We define
two p-value scores for over-representation, the first one based on
the total number of motif occurrences, the second one based on the
number of sequences in a collection with at least one occurrence.
(iii) We describe an algorithm to discover the optimal pattern with
respect to either of the scores. The method exploits monotonicity
properties of the compound Poisson approximation and is by orders
of magnitude faster than exhaustive enumeration of IUPAC strings
(11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We
justify the use of the proposed scores for motif discovery by showing
our method to outperform other motif discovery algorithms (e.g.
MEME, Weeder) on benchmark datasets. We also propose new
motifs on Mycobacterium tuberculosis.
Availability and Implementation: The method has been
implemented in Java. It can be obtained from http://ls11-www.

cs.tu-dortmund.de/people/marschal/paa_md/

Contact: tobias.marschall@tu-dortmund.de; sven.rahmann@tu-
dortmund.de

1 INTRODUCTION
De novo motif discovery is the task of uncovering exceptional
patterns in texts. Especially in the context of biological sequences,
this problem has been extensively studied in the hope that over-
represented motifs carry structural, regulatory or other biological
significance. Many different measures of ‘exceptionality’ have been
proposed. In a review article, Sandve and Drabløs (2006) survey
more than 100 published algorithms for motif discovery. Due to
space constraints, we can review only a few of the methods here.
Weeder (Pavesi et al., 2004) models motifs as strings. Given a set of
sequences, it searches for motifs that occur (with a bounded number
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of mismatches) in as many sequences as possible. This is achieved
by a pattern-driven search using a suffix tree of the given sequences.
In an assessment by Tompa et al. (2005), Weeder outperformed 12
other competitors with respect to most measures. MEME (Bailey
and Elkan, 1994) is an almost classical alignment-based motif
discovery algorithm. Motifs are represented as position weight
matrices (PWMs) and optimized using an expectation–maximization
(EM) strategy. Although not as good as Weeder, MEME performed
well in the assessment by Tompa et al. (2005). Seeder (Fauteux
et al., 2008) is a recently published algorithm that tries to combine
the merits of a pattern-driven search (used in a first phase) and
alignment-based search (used in a second phase). MotifCut (Fratkin
et al., 2006) approaches the motif discovery problem from a graph
theoretic point of view and represents every k-mer in a given set of
sequences as a vertex. Then, a motif is represented by a subgraph.
For motif discovery the maximum density subgraph is searched. For
a detailed overview of the field, we refer the reader to the review of
Sandve and Drabløs (2006).

Despite all these efforts, the problem has not satisfactorily been
solved yet, as shown in the assessment of 13 common motif
discovery algorithms by Tompa et al. (2005). Recently, steps have
been taken to precisely understand what makes the problem so
difficult. Sandve et al. (2007) studied the ability of popular motif
models (PWMs, IUPAC strings, mismatch models) to separate the
true motifs from the background. Remarkably, all these models
turn out to have comparable discriminative power, but are not
sufficient to capture all motifs. Consequently, a split benchmark set
is proposed: the first part contains datasets with motifs that can in
principle be recognized and can therefore serve as a benchmark
for algorithms based on such models; the second part contains
the remaining datasets, useful to evaluate more powerful models.
Besides the motif model, the scoring function plays an important
role. Li and Tompa (2006) complement their earlier paper (Tompa
et al., 2005) by assessing several scoring functions. They compare,
for each dataset, the predicted motif’s scores to the score of the true
motif. The evaluated scoring functions are the log-likelihood of a
PWM [as used by MEME, see Bailey and Elkan (1994)], Z-scores
[as used by YMF, see Sinha and Tompa (2003)], and a sequence
specificity score [as used by Weeder, see Pavesi et al. (2004)]. The
authors conclude that the sequence specificity score outperforms the
others with respect to the used dataset, but is not perfect. They also
propose a new score function learned from the used data, but we are
not aware of any motif discovery procedure that optimizes it.

A natural motif score is the probability that, under a suitable
background model or null model, the given motif m occurs at
least as frequently as observed in the given sequence(s) s, that is,
P(Xm|s| ≥Occm(s)), where Xm

n denotes the random variable counting
the occurrences of m in a random text of length n, and Occm(s)
is the number of occurrences of m in s. This probability is called
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p-value or significance of motif m. Computing the p-value or, more
generally, the whole distribution of the occurrence count, exactly is
complicated, because motif occurrences may overlap each other or
their reverse complements and therefore occur in clumps (maximal
groups of overlapping occurrences), making simple moment-based
approximations of the distribution inaccurate. The problem has been
studied by various authors, including Lladser et al. (2008); Marschall
and Rahmann (2008); Nicodème et al. (2002); Régnier (2000) and
Reinert et al. (2000). All these methods, however, are too slow to be
used directly for exhaustive motif discovery, where one evaluates
the score of each single motif in the motif space.

1.1 Our contributions
We bring together rigorous motif statistics and motif discovery.
We demonstrate that a compound Poisson approximation is an
excellent approximation to the exact distribution of occurrence
counts. In contrast to earlier methods, we use the exact clump size
distribution in the compound Poisson approximation. In particular,
we show how to use probabilistic arithmetic automata [PAA,
introduced by Marschall and Rahmann (2008)] to calculate the exact
clump size distribution for a motif under either an i.i.d. or Markovian
background model (Section 2). Based on the compound Poisson
approximation, we develop a pattern-driven approach to discover
IUPAC motifs with low p-values (either with respect to the total
number of occurrences or to the number of sequences the motif
occurs in). The returned motif has the optimal score within a pre-
defined pattern space. Exhaustive search of the motif space becomes
possible because we exploit certain monotonicity properties of the
Poisson distribution (Section 3), allowing us to prune a large fraction
of the motif space. To evaluate the method, we run experiments on
a benchmark set proposed by Sandve et al. (2007). Our method
outperforms the other methods evaluated by Sandve et al. (2007),
namely Weeder (Pavesi et al., 2004) and MEME (Bailey and Elkan,
1994) (Section 4). We also present previously unknown motifs on
Mycobacterium tuberculosis that are strikingly overrepresented.

1.2 Notation and motif space
Let �={A,C,G,T} be the alphabet of nucleotides and 2� its power
set. Define � :=2� \{∅} and note that each c∈� uniquely maps
to a IUPAC one-letter code; e.g. {A,G} corresponds to the IUPAC
code R. Let �∗ be the set of finite strings over �. Each m∈�∗ is
called generalized string. We define a motif of length l to be an
element of �l . In the remainder of this article, we use the terms
motif, pattern and generalized string interchangeably. Given a motif
m∈�∗ and a string s∈�∗, we write Occm(s) to denote the number
of occurrences of m in s. When S is a set of strings, we define
Occm(S) :=∑

s∈S Occm(s). For a random variable A, its distribution
is denoted L(A).

Discovering motifs in practice requires us to choose a suitable
space of motifs to be searched. Different motifs models are used in
practice, such as PWMs, IUPAC (consensus) strings, string sets, and
others. In this article, we use motifs of length 10 over the IUPAC
alphabet �. We further restrict the space to patterns containing at
most six c∈� with |c|=2 (IUPAC codes R, Y, W, S, K, M), zero
characters with |c|=3 (IUPAC codes B, D, H, V) and at most two
characters with |c|=4 (IUPAC code N). We denote this motif space
by M. It consists of 17 880 633 344 motifs. While this choice may
seem arbitrary at first, the motifs in M are neither too short nor

too long nor too specific nor too degenerate; hence they cover many
biologically interesting ones. Many biological motifs are shorter
or longer than 10 bp, but the elements of M can at least form
well-conserved cores of longer (or reasonable extensions of shorter)
motifs.

2 APPROXIMATING THE OCCURRENCE COUNT
DISTRIBUTION

The most principled measure of exceptionality of a motif m is
a p-value (or its negative logarithm) of its observed occurrence
count, i.e. score(m) :=−logP(Xm|s| ≥Occm(s)), where the probability
measure P refers to a random sequence model to be specified, and Xm

n
denotes a random variable counting motif occurrences in a random
text of length n. Theoretically, we can compute score(m) for all 17.8
billion m∈M exactly with PAAs (see below), but this would take
years of CPU time. Therefore, we have developed a set of techniques
to prune a large part of the motif space without missing relevant
motifs.

The first technique, developed in this section, is a highly accurate
compound Poisson approximation of L(Xm

n ). Section 3 then shows
how to exploit monotonicity properties of this approximation to
obtain an efficient motif discovery algorithm.

2.1 Compound Poisson approximation
The main difficulty in obtaining simple accurate approximations of
the occurrence count distribution of a motif lies in the fact that the
strings constituting a motif may occur in clumps.

Definition 1. Given a sequence s∈�∗ and a motif m∈M, a
clump is a maximal set of overlapping occurrences of m in s.

For example, let m :=ACA and s :=GACACATTACAAA. Then s
contains three occurrences of m in two clumps (bold).

To approximate the distribution of the occurrence count, we
assume the number of clumps to be Poisson distributed and the
size of each clump to follow a yet unknown distribution. We
further assume that the number of clumps and all clump sizes are
independent. Thus, the random number of occurrences is expressed
as a sum of a (random Poisson) number of independent random
variables with the same unknown distribution.

Definition 2 (Compound Poisson distribution). Let C be a
Poisson distributed random variable and (Bi)i∈N independent,
identically distributed random variables with arbitrary common
distribution � :=L(Bi). Then

∑C
i=1 Bi is said to have a compound

Poisson distribution CP(λ,�), where λ=E(C).

Compound Poisson distributions have previously proven useful
for approximating occurrence count distributions (Roquain and
Schbath, 2007; Schbath, 1995; Waterman, 1995). We interpret Bi
in Definition 2 as the size of (number of motif occurrences in) the
i-th clump. In contrast to the cited articles, we use exact clump size
distributions � =L(Bi).

Stefanov et al. (2007) compare the exact clump number
distribution to the Poisson approximation and find that the latter
performs well for rare words, motivating the above assumption.
The Poisson distribution with expectation λ is denoted by P(λ);
the probability to see exactly j clumps equals P(λ)(j)=e−λ ·λj/j!.
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We denote the j-fold convolution of� with itself by�∗j . Then the
probability mass function of the compound Poisson distribution can
be written as a Poisson-weighted linear combination of �’s j-fold
convolutions: CP(λ,�)(i)=∑

j≥0 P(λ)(j)·�∗j(i).
We need to compute � and the expected number of clumps λ.

For �, we use a framework called PAA (Marschall and Rahmann,
2008), which we briefly describe below to make this exposition
self-contained.

2.2 Exact motif statistics with PAA
In a nutshell, a PAA is a Markov chain plus state emissions (i.e. an
HMM) plus a value set with state-specific arithmetic operations on
the values. PAAs provide a unifying framework for a variety of exact
probability computations in sequence analysis. Among other things,
the exact distribution of the occurrence count can be obtained, as
shown by Marschall and Rahmann (2008). Alternative methods to
compute the occurrence count distribution exist (Boeva et al., 2007;
Lladser et al., 2008; Nicodème et al., 2002; Nuel, 2008), but they do
not provide a general framework. We briefly re-state the essentials
of the PAA formalism here.

Definition 3 (PAA). A PAA is a tuple
(
Q,q0,T ,E,(πq)q∈Q,N,

n0,(θq)q∈Q
)
, where (1) (Q,q0,T ) is a Markov chain: Q is a finite set

of states, q0 ∈Q is called start state (it may be alternatively replaced
by a probability distribution over all states),

(
T (p,q)

)
p,q∈Q is a

stochastic transition matrix. (2) (Q,q0,T ,E,(πq)q∈Q) is a hidden
Markov model: E is a finite set called emission set, each πq is a
probability distribution on E associated with state q. (3) N is a finite
set called value set, n0 ∈N is called start value, each θq :N ·E →N
is an operation associated with state q.

The semantics are as follows: the automaton begins in its start
state q0. In state p, T (p,q) gives the probability of going to state
q. While going from state to state, a PAA performs a chain of
calculations on a set of values N . In the beginning, it starts with
the value n0. Whenever a state transition is made, the entered state,
say state q, generates an emission according to the distribution πq.
The current value and this emission are then subject to the operation
θq, resulting in the next value.

Let (Yk)k∈N0
denote the automaton’s random state process, i.e.

P(Yk =q) is the probability of being in state q after k steps.
Analogously, we write (Zk)k∈N0

and (Vk)k∈N0
to denote the

sequence of emissions and the sequence of values resulting from
the performed operations, respectively. Then V0 ≡n0 and Vk =
θYk

(Vk−1,Zk).
Usually, we are interested in the value distribution after k steps,

P(Vk =n) for all times k and values v. These probabilities are
obtained from the joint state-value distribution by marginalization
over states. The state-value distribution can efficiently be computed
using dynamic programming (Marschall and Rahmann, 2008). The
resulting algorithm is closely related to the forward algorithm known
from HMMs [see, for example, Durbin et al. (1998)].

2.2.1 Motif statistics with PAAs To study the pattern matching
statistics for a motif m, we first construct a deterministic finite
automaton (DFA) that recognizes �∗m. This can be done in a
variety of ways, e.g. via the Aho-Corasick automaton of all strings
constituting m, or via a simple linear non-deterministic automaton
that recognizes a generalized string, which is subsequently converted
into a DFA using the standard subset construction.

Based on this DFA, we define a PAA that operates on the same
state set Q and has the same start state q0. In case of an i.i.d. text
model, the transition function T can be derived from the DFA’s
transition function by ‘replacing’all characters with their probability.
For Markovian text models of order k, a similar procedure is possible
after cloning each state to accommodate for different k-mer histories.

To count motif occurrences, both emission set and value set are the
natural numbers (or a finite subset thereof). Each state corresponds to
a recently read substring; so for each state’s emission distribution, we
employ a deterministic distribution that simply emits the number of
matches to be counted upon entering the state. For convenience, we
denote this numberμ(q). Note that in this article usuallyμ(q)=0 for
states that do not correspond to a word in m and μ(q)=1 otherwise.
In general, for motifs that consist of words of unequal length, we
may have μ(q)>1 for some states.

To sum up the occurrences, we start with value n0 :=0 and define
all operations to be additions, that is, θq : (n,e) �→n+e. (In practice,
we cut off the distribution at a maximal value of interest M and set
θq : (n,e) �→min{n+e,M}.)

The above exposition sketches exact pattern matching statistics
with PAAs. For more details, refer to Marschall and Rahmann
(2008). This concludes our review of previous material on PAAs.
Recall that it is impractical to compute the distribution of each
potential motif in M.

2.3 Computing the exact clump size distribution
We now explain how PAAs can be used to exactly calculate a
pattern’s clump size distribution. By definition, a clump consists of
at least one match. We call a match’s last character match position
and consider the first match position in a clump. Further, we call the
distribution of PAA states at such positions clump start distribution
and denote it by ϕ; i.e. given that k is the first match position in a
clump, then P(Yk =q)=:ϕ(q). For now, we assume ϕ to be known
and come back to the task of its calculation later.

If 	≥2 is the length of the given motif, then a clump ends if 	−1
consecutively visited states do not emit a match. That means we need
to keep track of (i) the number of non-match states consecutively
visited and (ii) the number of matches the clump contains so far.

The PAA framework allows us to achieve this by modifying the
PAA described in Section 2.2. We define a new value set N ′ :=N·N
with the start value n′

0 := (0,0) and attach the following semantic:
if we are in state q and the current value is (h,x), we have seen h
matches in the current clump and the last of these matches occurred
x steps in the past; i.e. if x=0, a match has been emitted from the
current state. We define the operations accordingly:

θ ′
q :((h,x),e

) �→
{

(h+e,0) if e>0 ,

(h,x+1) otherwise .

In other words, if a match has been found (e>0), we increase the
number of matches h by e and reset the distance to the last match to
0. Otherwise (e=0, no match occurred), h remains unmodified, but
the number of steps since the last match x is increased.

To incorporate the clump start distribution ϕ, we need one
additional state q′

0 that becomes the new start state; consequently,
we set Q′ :={q′

0}∪Q and define the new transition function to be

T ′ : (p,q) �→
{
ϕ(q) if p=q′

0 ,

T (p,q) otherwise .
(1)
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In practice, we cannot handle the infinite value set N ′. We can,
however, truncate the clump size distribution to be calculated and
use the value set N ′′ :={1,...,M}·{0,...,	−1} along with adapted
operations θ ′′

q . Employing one of the algorithms given by Marschall
and Rahmann (2008), we can then calculate the joint state-value
distribution. To make the resulting recurrence better accessible to
the reader, we state it explicitly in terms of the table ρk(q,h,x) :=
P
(
Yk =q,Vk = (h,x)

)
.

Lemma 1 (Explicit recurrence relation for ρk). Let ρk be defined
as above, then

ρ1(q,h,x)=
{
ϕ(q) if μ(q)=h and x=0,

0 otherwise.

ρk+1(q,h,x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
q′∈Q

	−2∑
x′=0

ρk
(
q′,h−μ(q),x′)·T (q′,q)

if μ(q)>h>0 and x=0,∑
q′∈Q

ρk(q′,h,x−1) ·T (q′,q)

if μ(q)=0 and x>0,

0 otherwise.

While the lemma can be proven directly from the definition of the
ρk and θ ′

q, using the Markov property on the state process, the reader
should keep in mind that the PAA framework makes it unnecessary
to state and prove the lemma explicitly, as the whole mechanism is
inherent in the generic PAA state-value computation of Marschall
and Rahmann (2008).

Updating from table ρk to table ρk+1 takes O(|Q|2 ·M ·	2)
time, as can be seen from the recurrence. Note, however, that
by construction of the PAA from a DFA, each states out
degree is bounded by the alphabet size. Therefore, the transition
matrix is sparse, and the runtime for an update is bounded by
O(|�|·|Q|·M ·	2).

A clump ends if no new match has occurred 	−1 steps after the
previous match. Using the ρk , the clump length distribution � is
thus given by

�(h)=
∞∑

k=0

∑
q∈Q

ρk(q,h,	−1) . (2)

To actually compute �, we start with the initial table ρ1 and
iteratively calculate the tables ρk for larger k. Each ρk contributes to
the sought distribution through the inner sum from Equation (2) and
we can successively add the contributions to an intermediate clump
size distribution. Observe that the total probability mass in ρk is
an upper bound for the difference between the intermediate clump
size distribution and the exact one. Thus, we iterate until the total
probability mass drops under an accuracy threshold. The number of
necessary steps, however, is bounded by O(M ·	), because a clump
containing M matches can have a length of at most O(M ·	). In total,
we need O(|�|·|Q|·M2 ·	3) time to compute the exact clump size
distribution. In practice, for motif discovery,�=4, and M and 	 are
small constants.

2.3.1 State distribution at clump start Let us come back to
computing the clump start distribution ϕ needed in Equation (1).

The PAA’s state process (Yk)k∈N0
is a Markov chain (Marschall

and Rahmann, 2008) and, hence, the classical theorems [see, for

instance, Brémaud (1999)] about existence of and convergence to
an equilibrium distribution apply: irreducibility and aperiodicity
are sufficient for convergence to a unique equilibrium distribution.
Assuming that (i) a pattern does not start with a wildcard and
(ii) for a Markovian text model of order k, all (k+1)-mers have
positive probability of occurring, these conditions can be verified to
be fulfilled by construction of the PAA.

We consider the joint distribution of state and steps since the last
match position. We define Lk as the number of steps since we last
encountered a match before step k. Thus

P
(
Lk =x

)=P
(
μ(Yk−x)>0,

μ(Yk−x+1)= ...=μ(Yk−1)=0
)
.

Again we use the PAA framework to compute the joint state-value
distribution L(Yk,Lk) for any desired k. The clump start distribution
is now given by

ϕ(q)= lim
k→∞P

(
Yk =q,Lk ≥	∣∣μ(Yk)>0

)
. (3)

In practice, the limits for k →∞ exist and converge in a few steps to
double precision. On a test set of 1000 motifs from M (Section 2.5),
convergence is reached after k =54.6 iterations on average.

2.4 Distribution of clump number
To complete the construction of a compound Poisson approximation,
we need the expected number of clumps λ(k) in a text of length k
and thereby parametrize the Poisson approximation of the clump
number.

The expected number of pattern occurrences E(Vk) is easily
computed (Robin et al., 2005) as E(Vk)= (k−|m|+1)·ηm, where ηm
is the motif’s (stationary) occurrence probability at any text position
(in other words, its expected number of occurrences in a string of
length |m|). Since we know the exact clump size distribution �, we
can also calculate its expectation E[�]=:ψ . Then we obtain

λ(k)= E(Vk)

ψ
.

2.5 Quality of approximation
In an earlier article (Marschall and Rahmann, 2008), we presented
a method to exactly compute the distribution of the occurrence
count. This gives us the possibility to compare the approximation
introduced in the last section to the exact distribution. We randomly
sample 1000 motifs from the motif space M described in
Section 1.2 and calculate exact distribution and compound Poisson
approximation (using clump size distributions truncated at size 25).
To assure a realistic background model, a third-order Markov model
is estimated from the genome of M. tuberculosis. For background
models estimated from other species, similar results are to be
expected.

Figure 1 shows boxplots of the relative errors of log-probabilities
in the occurrence count distributions for 0 to 20 occurrences
and random texts of length 1000 and 10 000. The probabilities
themselves range over many orders of magnitude; the probability of
observing 20 matches lies in an average order of magnitude of 10−43

for text length 1000 and 10−23 for text length 10 000. Therefore,
we consider log-probabilities. A relative error of 4% (for text length
1000 and 20 occurrences, 75% of motifs have lower error) here
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Fig. 1. Boxplots showing the relative error of log probabilities made by
compound Poisson approximation. (Top) On random texts of length 1000.
The expected number of occurrences is 0.184 (averaged over all motifs).
(Bottom) On random texts of length 10 000. The expected number of
occurrences is 1.857 (averaged over all motifs).

means that we miss the correct order of magnitude (e.g. −43) by 4%.
We see that the relative errors increase towards the right tail of the
distributions. This can be explained by observing that the length of a
clump (in terms of number of characters) is not taken into account by
our approximation. When the text ‘gets filled up’ with occurrences,
the approximation becomes inaccurate. Note that 20 occurrences of
length 10 would occupy up to 200 characters (depending on overlap).
This is one-fifth of a 1000 character sequence. This explains why
the accuracy decreases much slower towards the right tail for text
length 10 000 (Figure 1B).

It is worth noting that the occurrence count distributions are
governed by an exponential decay towards the right tail. Thus,
when calculating p-values (i.e. summing over a distribution from
a fixed k to infinity), errors do not accumulate significantly; i.e.
the summands, and hence the introduced errors, rapidly become
insignificantly small.

On average, computing the distribution for text length 1000
took 97.4 ms using the compound Poisson approximation and
121.1 ms using the exact method on an Intel Core 2 Duo CPU
at 2.66 GHz, running Linux 2.6.24. For text length 10 000, we
measured 97.8 ms and 1209.1ms, respectively. Note that the
runtime of the approximation is independent of the text length,
while the exact method’s runtime increases linearly with the text
length.

3 MOTIF DISCOVERY
As stated in Section 2, to evaluate the significance of a motif, we
compute the compound Poisson approximation of its p-value.

Depending on the situation, two different ways of counting
occurrences can be reasonable. First, we may consider the total
occurrence count in a sequence (or in a set of sequences) as usual
(see Definition 4 below). Second, especially when considering a
set of many short sequences, it may be more desirable to consider
the number of sequences with at least one occurrence instead
(Definition 6).

For an i.i.d. background model, we present an algorithm that finds
an optimal scoring motif with respect to either of these significance
measures (Sections 3.2 and 3.3). For Markovian background models,
we use the i.i.d. model as a pre-filter (Section 3.4).

3.1 Motif scores
Assume we are given a finite set of strings S ={s1,...,sn} over
the alphabet �. For any motif m∈M, we write �m, ψm and
ηm to denote its clump size distribution, expected clump size
and the expected number of occurrences on a string of length
|m|, respectively. �m, ψm and ηm implicitly refer to a (i.i.d. or
stationary Markovian) text model estimated from S. The first score
we introduce is the compound Poisson p-value approximation for
the total number of motif occurrences.

Definition 4 (Total count p-value). For a motif m∈M, let a :=∑
s∈S(|s|−|m|+1) be the adjusted total sequence length, and define

λm :=a ·ηm/ψm (expected number of clumps in S) and

ptotal(m) :=
∞∑

i=Occm(S)

CP(
λm,�m

)
(i) (4)

=1−
Occm(S)−1∑

i=0

CP(
λm,�m

)
(i).

The second measure to be introduced regards the number of
sequences that contain at least one motif occurrence. Before we
define it, we make an auxiliary definition to ease notation:

Definition 5 (Binary distribution D). For λ>0, define

D(λ)(k) :=
{

e−λ k =0 ,

1−e−λ k =1 .

Notice that for every clump size distribution �, we have
�(0)=0 and, hence, D(λ)(0)=CP(λ,�)(0) and D(λ)(1)=∑∞

i=1CP(λ,�)(i).

Definition 6 (Sequence count p-value). For a motif m∈M, let
rm := ∣∣{s∈S :Occm(s)≥1}∣∣ (number of observed sequences with an
occurrence), λm,i := (|si|−|m|+1)·ηm/ψm for 1≤ i≤n (expected
number of clumps in sequence i). Define

pseq(m) :=
|S|∑

i=rm

(D(λm,1)∗ ...∗D(λm,n)
)
(i),

where ∗ denotes the convolution operation.
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3.2 Pruning the search space
The goal in the next section is to find the motif with the best ptotal(m)
or best pseq(m) value. To this end, we now present two lemmas
of central importance to the practicability of exact motif discovery
based on the above scores. They give, for ptotal and pseq, thresholds
for the number of matches necessary to obtain a p-value below a
given constant T . The thresholds can be calculated provided that we
know a motif’s expectation ηm and an upper bound for the expected
clump size c>ψm.

Let us analyze the right-hand side of Equation (4). We can
separately consider the contributions of each possible clump count
hidden in the compound Poisson distribution. When the clump count
is at least Occm(S), there are necessarily at least Occm(S) matches;
in this case we do not need to evaluate the clump size distribution!
Furthermore, when parametrizing a Poisson distribution with a
decreased expected clump count, the probability of observing more
than k clumps decreases as well (for every k). These two ideas are
formalized in the following lemma.

Lemma 2 (Monotonicity of ptotal). Let m∈M, c>ψm, T ∈[0,1).
Define

K :=max
{
k ∈N :

∞∑
i=k

P(aηm

c

)
(i)>T

}
, (5)

where a is chosen as in Definition 4. Then

rm :=Occm(S)≤K ⇒ ptotal(m)>T .

Proof. Let �∗j
m denote the j-fold convolution of �m with itself.

Starting from Definition 4, we get

ptotal(m)=
∞∑

i=rm

CP(aηm

ψm
,�m

)
(i)

=
∞∑

i=rm

( ∞∑
j=0

P(aηm

ψm

)
(j)·�∗j

m

)
(i)

=
∞∑

j=0

P(aηm

ψm

)
(j)·

∞∑
i=rm

�
∗j
m (i)

(i)
>

∞∑
j=rm

P(aηm

ψm

)
(j)

(ii)
>

∞∑
j=rm

P(aηm

c

)
(j).

Inequality (i) is true because clumps have, by definition, at least size

one and, hence,
∑∞

i=rm
�

∗j
m (i)=1 for j≥rm. Inequality (ii) holds due

to c>ψm and the fact that the cumulative distribution function of
a Poisson distribution is monotone in the parameter λ. If rm ≤K , it
follows from (5) that

∑∞
i=rm

P( aηm
c

)
(i)>T . Thus, ptotal(m)>T . �

In an analogy to the above lemma, we can exploit a monotonicity
property of D(λm,1)∗ ...∗D(λm,n) to get a lower bound for the
number of motif occurrences necessary to obtain a score pseq>T .

Lemma 3 (Monotonicity of pseq). Let m∈M, c>ψm, and T ∈
[0,1). Define λ′

m,i := (|si|−|m|+1)·ηm/c for 1≤ i≤n, and let

K :=max
{

k ∈N,k ≤|S| :
|S|∑
i=k

(D(λ′
m,1)∗ ...∗D(λ′

m,n)
)
(i)>T

}
.

Then ∣∣{s∈S :Occm(s)≥1}∣∣≤K ⇒ pseq(m)>T .

Proof. Follows directly from the fact that the cumulative
distribution function of D(λ′

m,1)∗ ...∗D(λ′
m,n) is monotone in

each λ′
m,i. �

We now explain how to exploit the above lemmas for motif
discovery. Our goal is to find all motifs with a p-value below a given
threshold T . We assume an upper bound to the expected clump size,
denoted c=ψmax , to be known and come back to its choice below
(for the impatient, ψmax :=3 works for the motif space M defined
in Section 1.2). Then either lemma provides a lower bound K on the
number of necessary occurrences. Motifs with fewer occurrences do
not need to be evaluated in detail.

While the above lemmas help in finding a safe occurrence
threshold K , they do not save us much work yet, since the Poisson
parameter in Lemma 2 and the λ′

m,i in Lemma 3 depend on the
frequency of the motif ηm. The punch line now is that, in an i.i.d.
model, ηm is independent of the order of characters; i.e. ηm is
invariant under permutations.

We call a set of all permutations of a motif abelian pattern and
write, for example, C4N3 to denote the set of patterns consisting of
four Cs and three Ns. For an abelian pattern, we compute ηm and
derive a threshold for the number of required matches by applying
Lemma 2 or Lemma 3 just once.

3.2.1 Bounding expected clump size For the application of
Lemma 2 or Lemma 3, an upper bound for the expected clump size
needs to be known. In our implementation, we use the hard-coded
value 3.0 as a bound, which is, from our experience, sufficient for all
relevant cases. For the motif space M considered in this article, let
us verify that the bound holds. The motif with the largest expected
clump size must consist of the most frequent characters. (Otherwise,
replacing all characters with the most frequent one would yield a
larger expected clump size. Wildcard characters representing two
characters [R, Y, W, S, K, or M] would have to be replaced by the
wildcard character that represents the most and the second most
frequent character, etc.) Furthermore, the expected clump size grows
with the probability of the most frequent character. We assume
pA =0.4, pC =0.1 and pG =0.1 and pT =0.4, a distribution much
more biased than all distributions encountered in known biological
organisms. More biased distributions lead to more extreme clump
sizes, as the more frequent characters can conspire to overlap. Thus,
the worst-case motif must consist of As, Ws (the IUPAC symbol
for {A,T}), and Ns. We enumerate all those, calculate the expected
clump sizes and find the largest value to be 2.21, a safe distance
from 3.0.

3.3 Exact algorithm for i.i.d. background models
In order to run an exhaustive motif discovery algorithm, the only
component missing is an efficient way to count the number of
occurrences of a generalized string in a set of sequences S. To this
end, we walk an annotated suffix tree of S, as introduced by Sagot
(1998). The annotation of the suffix tree nodes with occurrence
counts permits a fast calculation of occurrence counts even for
generalized strings (where we need to branch the search path) and
allows us to skip many instances. This technique is often called
pattern-driven search; it has been used by many different motif
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discovery algorithms (Ettwiller et al., 2005; Pavesi et al., 2004;
Sinha and Tompa, 2003). We skip the details and refer the reader
to Sagot (1998). We obtain the following algorithm:

1. Construct a suffix tree containing all sequences from S.

2. Enumerate all abelian patterns that constitute the search
space M. For each abelian pattern do:

(a) Compute the motif frequency ηm (constant over all m in
the abelian pattern).

(b) Compute the distributions in Lemma 2 or 3 to obtain a
lower bound K for the number of matches necessary for
a p-value below T .

(c) Spell instances of the abelian pattern in lexicographic
order while walking the annotated suffix tree, skipping
instances where possible. Report motifs occurring more
than K times.

(d) For reported motifs, calculate exact clump size
distribution and compute p-value. Output motif if p-value
is below T ; discard otherwise.

3.4 Markovian background models
In practice, the i.i.d. model is too coarse for genomic motif discovery
and higher order contexts need to be taken into account. This creates
a problem: instances of an abelian pattern do not necessarily have
the same expectation under a higher order background model and,
hence, the described algorithm would not be applicable. Even though
it can be modified, it would lose efficiency.

However, we can use a two-stage algorithm as follows: (i) find
all motifs with a p-value below a threshold T with respect to the
i.i.d. model as described above. (ii) Re-evaluate these motifs with
respect to the Markovian model and discard them if their Markovian
p-value is not low enough (they can be explained by inter-character
dependencies found in DNA).

This efficiently discards motifs that have a too high p-value
with respect to the i.i.d. model or the Markov model. It may thus
happen that we miss motifs with low Markovian p-value but high
i.i.d. p-value. However, one could argue that such a motif merely
appears interesting because of low background frequencies of its
components, not because of its high occurrence count. While from a
computational point of view, this procedure is thus a heuristic, it has
the potential to lead to more biological meaningful (because more
frequent) motifs.

3.5 Suboptimal motifs
So far, we find the best motif (with respect to either p-value score
from Definition 4 or Definition 6). In practice, we are interested in
several good motifs. However, good motifs usually come in groups.
For instance, making one character in a motif more general or more
specific will in general not change its p-value very much. Therefore,
we are interested in a set of good independent motifs. The present
article does not discuss this problem in detail (which has no easy
solution). For now, we take a brute-force approach and initially
discover the best motif, report it, mask its occurrences in S, and
re-evaluate the occurrence counts and p-values of the remaining
motifs. Motifs whose p-value then rises above the threshold due to
lost occurrences are discarded. The remaining best motif is reported,
and the procedure is repeated until no good motifs remain.

Table 1. nCC on benchmark suites proposed by Sandve et al. (2007)

Benchmark Weeder MEME Our method

Algorithm Markov 0.052 0.082 0.120
Algorithm real 0.110 0.068 0.149

The results given for Weeder and MEME are taken from Sandve et al. (2007).
Best results in each row are printed in bold.

4 EVALUATION

4.1 Benchmark data
Designing good benchmark sets for motif discovery is not trivial.
While synthetic sequences involve a somewhat arbitrary choice
of background and motif model, real datasets are never annotated
perfectly. To evaluate our algorithm, we use the carefully crafted
benchmark suites proposed by Sandve et al. (2007). They generated
different datasets by either implanting transcription factor binding
site (TFBS) occurrences into a background generated from a third-
order Markov model or by extracting their original neighborhood
from the respective genome. For each dataset, they analyzed whether
or not the motif can, in principle, be discriminated from the
background by popular motif models (namely, mismatch models,
PWMs or IUPAC strings). They propose to use the datasets
with good theoretical discrimination to benchmark algorithms and
the rest to benchmark more powerful models. This makes the
performance analysis of a new algorithm more informative, as
effects originating from motif model and algorithm are not mixed up.
Consequently, we use their ‘algorithm’ suite to assess our method.
This benchmark suite is again divided into two parts: algorithm
Markov and algorithm real. The former contains true binding
sites from the TRANSFAC database implanted into synthetic
backgrounds generated by third-order Markov models (50 datasets).
The latter contains the same binding sites in their original genomic
context (50 datasets). Refer to Sandve et al. (2007) for more details
on the dataset generation.

For each of the 100 datasets, we estimated an i.i.d. model from
the data. Then, we extracted all motifs with a pseq score <10−8

with respect to this i.i.d. model (10 358 patterns on average).
Subsequently, these patterns were re-evaluated with respect to a
third-order Markov model (again estimated from the data for each
dataset). The highest scoring motif was reported as the result. We
used the web service accompanying the paper by Sandve et al.
(2007) to calculate the nucleotide-level correlation coefficient (nCC)
defined as follows:

nCC := TP·TN−FP·FN√
(TP+FP)·(FP+TN)·(TN+FN)·(FN+TP)

,

where TP, TN, FP, and FN are the numbers of true/false
positive/negative predicted characters (nucleotides). The use of
this measure allows an integrated assessment of sensitivity and
specificity.

The obtained scores in comparison to Weeder Pavesi et al. (2004)
and MEME Bailey and Elkan (1994) are listed in Table 1. None
of the resulting nCC values indicates good performance, and one
could question whether in this range it has any meaning at all.
Nevertheless, the reported performance represents that state of the
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art on this benchmark dataset, and the use of the proposed exact
exhaustive method improves the mark somewhat.

We followed Sandve et al. (2007) in choosing Weeder and
MEME as competitors, because, on the one hand, they are known
to peform well on this type of benchmark. [In fact, Weeder
outperforms its 12 competitors with respect to most evaluated
measures in Tompa et al. (2005).] On the other hand, they represent
different approaches to motif discovery. While MEME models
motifs as PWMs and optimizes them using an EM approach, Weeder
is based on mismatch models and employs a pattern-driven search
on a suffix tree.

Because of the large number of datasets (100), we ran the
algorithm on a compute cluster. Since it consists of heterogeneous
machines (CPU clock rates ranging from 1.6 GHz to 2.0 GHz), the
measured runtimes must be interpreted with care. We give them
in CPU time, i.e. the time a single (average) CPU would have
needed to perform the task. The exact motif search using i.i.d. models
took 11.8 CPU hours on average per dataset. The re-evaluation of
top scoring motifs took 10.7 CPU minutes on average per dataset.
Had we performed an exhaustive enumeration and calculated the
pseq (with respect to an i.i.d. model) for each motif separately, the
computation would have lasted ∼ 4.8 years per dataset (extrapolated
runtime). Our method has provided a speedup factor of at least 3500
or three to four orders of magnitude.

4.2 Motifs in non-coding regions of M. tuberculosis
Mycobacterium tuberculosis is a species of pathogenic bacteria
causing tuberculosis. Its genome has been completely deciphered
(GenBank accession number AL123456). To demonstrate the utility
of the proposed motif discovery algorithm in a whole genome
setting, we search for motifs in the non-coding (i.e. putatively
regulatory) regions of M. tuberculosis. The non-coding parts of the
genome comprise 2402 regions consisting of 398 419 bp, which is
about one-tenth of the whole genome.

We employ the two-stage procedure described in Section 3 to
search forward and backward strand in parallel. In a first phase,
we discover all motifs from M with a p-value below a pre-selected
threshold with respect to an i.i.d. model. Here, we choose a threshold
of 10−50, resulting in 494 575 motifs. In a second phase, those
motifs are re-evaluated with respect to a third-order Markov model
derived from the regulatory regions. To obtain several motifs, we
used the strategy described in Section 3.5. Due to the large input,
the computations took 247.5 CPU hours for the first phase and
44.7 CPU hours for the second-phase; subsequent second phase re-
evaluations took less and less time. Again, the calculations were
performed in parallel on a mixed cluster. These results show that
exact motif discovery based on rigorous statistics, although still a
considerable computational burden, now lies within the reach of
today’s computers.

To judge whether this computational effort pays off in practice,
we again seek to compare our method with other motif discovery
algorithms. Unfortunately, many available software packages are not
applicable to this dataset. Weeder, for instance, restricts its search
to motifs occurring in at least half of all sequences, which renders it
useless in this setting. One software package usable for our purpose
is MEME. We used the command line version of MEME 4.0.0
(http://meme.sdsc.edu/meme4/meme-download.html) compiled on
a Linux machine. To make the competition as ‘fair’ as possible,

Table 2. Overview of IUPAC-motifs found by our method in non-coding
regions of M. tuberculosis

Motif Expectation Occurrences p-value

1 AGACSCARAA 1.7 122 6.5 ·10−176

2 GCATCGTCRC 5.2 99 7.1 ·10−88

3 CGWCGWCGNN 195.2 313 1.9 ·10−72

4 CTCCTCMTCR 3.5 77 1.9 ·10−69

5 GGGACGGAAA 0.5 42 3.5 ·10−63

6 NYTCGNCGAR 94.6 191 3.6 ·10−56

7 NNYWGATCWR 120.6 211 3.3 ·10−52

Table 3. Overview of motifs (consensus strings of reported PWMs) found
by MEME in non-coding regions of M. tuberculosis

Consensus Occurrences E-value Similar to Table 2

AGACGCAAAA 161 4.6 ·10−190 (1)
GCATCGTCGC 115 7.0 ·10−108 (2)
GTTTCCGTCC 44 1.1 ·10−31 (5)a

CGGCGTGTCG 104 1.5 ·10−34 —
AGTCTCCGGA 31 1.8 ·10−14 —
GGGCGGTTCA 41 2.7 ·10−9 —
TTCTTGGAAA 32 4.2 ·10−11 —
GATCGCAAGC 37 2.1 ·10−15 —
GATCTGAGAC 17 4.4 ·102 —
AACGTGAACT 23 2.7 ·10−2 —

The right most column references are row numbers of motifs in Table 2.
aSimilar to the reverse complementary motif.

we instructed MEME to search for 10 motifs of length 10 on both
DNA strands and allowed any number of motif occurrences in each
sequence1. MEME was run on a 2 GHz PC and reported its results
after 15.2 h of CPU time (about 1/20 of our method’s time).

Tables 2 and 3 show the motifs found by our method and MEME,
respectively. Both methods agree on the two top-scoring motifs.
The third best motif discovered by MEME is as well found by
our algorithm. Note that the E-value score reported by MEME
considerably drops from the fourth to the fifth motif, i.e. the last
six motifs reported are not strong ones (and therefore maybe noise).
But why did our algorithm fail to find the fourth MEME motif?
We calculated the p-value of the IUPAC string that represented the
PWM returned by MEME best and found it to be 3.6 ·10−40. That
means, we missed this motif due to the quite demanding p-value
threshold of 10−50. We did find, however, four other motifs with an
even better p-value, which were missed by MEME.

The AGACSCARAAmotif appears to have two different functions:
on the one hand, as part of a transcription terminator; on the other
hand, as part of a clustered regularly interspaced short palindromic
repeat (CRISPR) involved in bacteriophage response (C. Kaleta,
personal communication). The function of the remaining motifs is
apparently unknown. Because of their high statistical significance,
they are excellent candidates for further investigations about their
biological meaning.

1Precise commandline options: -dna -mod anr -nmotifs 10 -w
10 -revcomp -maxsize 500000 -maxsites 500.
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5 DISCUSSION
In this article, we bridge the gap between rigorous motif statistics
and motif discovery. On the motif statistics side, we describe a
new algorithm to exactly compute the clump size distribution with
respect to Markovian text models. Furthermore, we experimentally
verify that the resulting compound Poisson approximation is highly
accurate. On the motif discovery side, we show that, in the i.i.d.
case, an exact, pattern-driven approach is feasible in practice. The
main ‘tricks’ here are the decomposition of the motif space into
abelian patterns and the use of the monotonicity properties proven in
Lemmas 2 and 3. To the best of our knowledge, these properties have
not been used before. In the concluding evaluation, we demonstrate
that our method outperforms Weeder and MEME on the benchmark
suite proposed by Sandve et al. (2007). It should be noted that,
to avoid obfuscating the results, we did not perform any post-
processing. That means all returned motifs had a length of 10. Most
probably the results can further be improved by extending the motifs
into both directions.

The described motif discovery procedure works equally well
when searching forward and backward strand of DNA in parallel; the
PAA used for statistics can be constructed for a joint motif consisting
of both, the forward pattern and its reverse. Another advantage of the
approach lies in its parallelizability. Different abelian patterns can
simply be evaluated on different CPUs. Note that, using all cores,
the algorithm will evaluate almost 18 billion motifs in <3 h on a
recent quad core system.

Future work. The filtering step can be optimized in several ways:
We used a fixed upper bound of 3.0 for the expected clump size and
showed that it holds by exhaustively checking it for all motifs in M.
It would be more elegant to have a direct proof and tighter bounds.
In the Markov model, we may be able to skip the i.i.d. filtering step
if we can find a tight and easily computable lower bound on ηm for
certain groups of motifs: note that Lemmas 2 and 3 still hold when
ηm is replaced by a lower bound.

Another optimization of practical interest is to speed up and
find alternative ways of formalizing the discovery process of
suboptimal motifs. The present brute-force approach works, but
using conditional probabilities given the already discovered motifs
may provide a more elegant solution.

Even though the motif space M was chosen with some care, it
cannot cover all potentially interesting motifs. However, we may
speculate that most biologically relevant motifs can be discovered
by starting a local hill-climbing search from the M-motifs using
operations such as generalizing/specializing sites of the motif,
extending or shortening the motif at its left or right border. This
remains to be evaluated in future work. In any case, the shortcuts
introduced in this article show that efficient exact motif discovery is
now possible for fairly large and biologically relevant motif spaces.

Recently, Hannenhalli (2008) reviewed current trends in
TFBS search. He points out that better TFBS models and
integrative searching (using additional information as evolutionary
conservation, TF interactivity, etc.) are important lines of future
improvements. Therefore, the method we present here should be
seen as one component in a larger pipeline for TFBS discovery.

In this context, it may prove especially useful that the presented
method returns statistically meaningful scores.

Conflict of Interest: none declared.
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