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Abstract: In this paper, we report chemical modifications of inulin by seven kinds of aromatic Schiff
bases, which are different from their substituent groups. The obtained inulin derivatives were
confirmed by FTIR, 1H NMR, and 13C NMR. Then, we studied their antifungal activity against four
kinds of plant pathogens involving Botrytis cinerea, Fusarium oxysporum f. sp. cucumerium Owen,
Fusarium oxysporum f. sp. niveum, and Phomopsis asparagi by the mycelium growth rate method.
The results revealed that all inulin derivatives were endowed with significant antifungal activity
compared to inulin. Among them, 6-amino-(N-4-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin
(4CBSAIL) and 6-amino-(N-3,4-dichlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (3,4DCBSAIL),
which were synthesized from p-chlorobenzaldehyde and 3,4-dichlorobenzaldehyde, could completely
inhibit the growth of the test fungi at 1.0 mg/mL. The inhibitory indices of the inulin derivatives were
related to the type, position, and number of substituent groups (halogens) on the Schiff bases. The
results confirmed that it was feasible to chemically modify inulin with Schiff bases to confer high
antifungal activity to inulin. The products described in this paper have great potential as alternatives
to some harmful pesticides used for plant disease control.
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1. Introduction

There is considerable interest in developing polysaccharides for biological applications because
they are cheap, nontoxic, biocompatible, and biodegradable. Inulin is one such kind of plant-derived
polysaccharide and is distributed in more than 36,000 kinds of vegetables, as well as some
microorganisms [1]. The most abundant sources of inulin are the tubers of Helianthus tuberosus and
Cichorium intybus [2]. Inulin is made up of D-fructofuranose units, which are linked by β-2,1-glycosidic
bonds, and usually combined with a glucose residue at the terminal [3]. It is worth mentioning that
this particular structure makes inulin very popular as a kind of sugar or fat replacer in the food
industry because inulin cannot be digested in the small intestine and thus has few calories [4,5].
Moreover, inulin has been extensively developed in pharmaceutical applications as a drug carrier
to cure colon diseases since it avoids decomposition by digestive enzymes [6–10]. Also, as a kind
of prebiotic, inulin could promote the proliferation of some beneficial bacteria in the colon, mainly
including Bifidobacteria and Lactobacilli, thus inhibiting the growth of harmful bacteria and enhancing
the intestinal microbial balance to stimulate the immune system [11]. Not only that, inulin could also
promote the body’s absorption of minerals, prevent colon cancer, and relieve constipation, giving
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inulin the reputation as a physiologically functional food [12–15]. In recent decades, inulin has found
some new applications in fields such as drug carriers, effluent treatments, biofuels, tissue engineering
scaffolds, and so forth. [16–20]. However, most inulin applications are direct additions of its raw
material, and considering its many admirable physiological functions and natural abundance, especially
compared with well-developed polysaccharides such as chitosan and cellulose, the utilization of inulin
is obviously insufficient.

In order to develop polysaccharides, chemical modification is regarded as a targeted, convenient, and
highly efficient strategy that could improve and even introduce new characteristics for specific applications.
In recent years, inulin modification for industrial applications has received more attention [21,22].
However, despite inulin having many natural advantages, its deficiency in some biological activities, such
as antimicrobial activity, is an important factor which limits its applications [23,24]. As a consequence,
some efforts based on chemical modification have been carried out to enhance inulin’s biological
activity [25,26]. Schiff bases, characterized by the –N=CH– (imine) group, are of considerable interest in
many fields such as fungicides, catalysts, and preservatives [27–30]. In the last few decades, Schiff bases
have been a popular topic of study for structural modifications of polysaccharides due to their expanded
biofunctional properties [31–33]. However, a Schiff base modifying inulin has been rarely reported in
the literature.

It has been reported that the iminophosphoranes generated by Staudinger reduction of 6-azido-6-
deoxypolysaccharides are highly nucleophilic and could be attacked by aldehydes to form the
imine group at mild reaction conditions [34–36]. In our previous work, we reported the synthesis of
6-amino-6-deoxyinulin, which was conducted by the reaction between iminophosphorane intermediates
of inulin and water [37]. On this basis, we have chosen to explore an experimental route which uses
iminophosphorane intermediates of inulin as a substrate for the construction of the imine structure on
inulin. Many articles have reported the influences of halogens on antifungal activity [38–40]. As a
result, a series of aromatic aldehydes containing halogens were selected as the reactant. We expected a
distinct improvement of antifungal activity of the obtained derivatives, which would provide a novel
direction for the development of macromolecular fungicide.

2. Experimental

2.1. Materials

Inulin (from chicory; average degree of polymerization was 20) was purchased from Haoyuan
Biological Technology Co., Ltd., Xi’an, China. Triphenylphosphine (TPP, 95%); N-bromosuccinimide
(NBS, 99%); cuprous iodide (99.5%); and all of the aromatic aldehydes such as benzaldehyde
(98%), 2-fluorobenzaldehyde (98%), o-chlorobenzaldehyde (97%), 2-bromobenzaldehyde (98%),
p-chlorobenzaldehyde (98%), and 3,4-dichlorobenzaldehyde (97%) were purchased from Sigma-Aldrich
Chemical Co., Ltd., Shanghai, China. Other reagents such as N,N-dimethylformamide (DMF, 99.5%),
acetic anhydride (98.5%), pyridine (99%), acetone (99.5%), diethyl ether (99.5%), triethylamine (99%),
tetrahydrofuran (THF, 99%), and absolute ethyl alcohol (99.7%) were purchased from Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China. Potato dextrose agar (PDA) was purchased from Beijing
Land Bridge Technology Co., Ltd., Beijing, China. All the reagents were used without other purification.

2.2. Analytical Methods

2.2.1. Fourier Transform Infrared (FTIR) Spectroscopy

The infrared spectra of inulin and inulin derivatives were measured on a Jasco-4100 infrared
spectrometer (provided by JASCO Co., Ltd., Shanghai, China). The samples were measured with a
KBr disk at room temperature (RT). The data were recorded in the range of 4000–400 cm−1.
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2.2.2. Nuclear Magnetic Resonance (NMR) Spectroscopy

The NMR spectra (1H NMR and 13C NMR) of inulin and inulin derivatives were measured on a
Bruker AVIII 500 spectrometer (provided by Bruker Tech. and Serv. Co., Ltd., Beijing, China). Chemical
shift values were recorded in the range of 0–10 ppm (1H NMR spectra) and 0–180 ppm (13C NMR
spectra) at RT.

2.3. Synthesis

The synthesis routes of inulin derivatives are shown in Scheme 1. The synthesis of 6-azido-6-
deoxy-3,4-di-O-acetyl inulin (AAIL) was performed on the basis of our previous methods with
appropriate modifications [37]. The specific experimental steps are described below.

2.3.1. Synthesis of 6-bromo-6-deoxy-3,4-di-O-acetyl Inulin

In 100 mL DMF, 30 mmol inulin was dissolved in a 250 mL flask. After that, 90 mmol NBS was
added to the flask and stirred to clarification with a magnetic stirrer. Subsequently, the flask was placed
in an ice bath until the temperature dropped to 0 ◦C. At that time, 90 mmol TPP was added to the
flask within 30 min. After all the reagents were added, the solution was reacted at 80 ◦C for 3 h under
argon atmosphere. After that, the solution was poured into excess acetone and the precipitates were
separated by centrifugation and washed with acetone three times. Then, the obtained precipitates
were dissolved in 100 mL pyridine and added to 15 mL acetic anhydride. The solution was stirred
overnight at room temperature under argon atmosphere. Eventually, the solution was poured into
excess ice water and the precipitates were separated by centrifugation and washed carefully with
deionized water three times. The 6-bromo-6-deoxy-3,4-di-O-acetyl inulin was freeze-dried at −53 ◦C
in vacuum. Yield: 87%; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 33 (C-6-Br), δ 20 (CH3–acetyl),
δ 60–103 (furanose rings); FTIR: v 3451 (OH), v 1735 (C=O of acetyl), v 661 (C-6-Br).

2.3.2. Synthesis of AAIL

In a 250 mL flask, a mixture of 6-bromo-6-deoxy-3,4-di-O-acetyl inulin (10 mmol) and sodium
azide (30 mmol) in 100 mL DMF was stirred at 80 ◦C for 3 h under argon atmosphere. After that, the
solution was precipitated into excess ice water and the precipitates were separated by centrifugation.
Then, the crude products were washed with deionized water and ethyl alcohol several times. AAIL was
obtained by freeze-drying at −53 ◦C in vacuum. Yield: 68%; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl),
δ 52 (C–6–N), δ 20 (CH3–acetyl), δ 60–103 (furanose rings); FTIR: v 3451 (OH), v 2107 (C–6–azido),
v 1734 (C=O of acetyl).

2.3.3. Synthesis of Inulin Derivatives

In a 25 mL flask, 2 mmol AAIL, 6 mmol triphenylphosphine, and 60 mmol aromatic aldehydes
were mixed and dissolved in 15 mL THF. The reaction was carried out with magnetic stirring at 50 ◦C.
The reaction process was monitored by infrared spectroscopy. After the reaction was completed, the
solution was poured into excess diethyl ether and the precipitates were separated by suction filtration
and washed with diethyl ether and acetone three times. The eventual products were obtained by
freeze-drying at −53 ◦C in vacuum after further purification in a Soxhlet apparatus with acetone for
48 h.

6-amino-(N-benzylidene)-6-deoxy-3,4-di-O-acetyl inulin (BSAIL): Yield: 64%; DSimine 0.34;
13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 128–136 (aromatic carbons), δ 21 (CH3–acetyl);
FTIR: v 1742 (C=O of acetyl), v 1670 (imine), v 3061, 1595, 1540, 694, 757 (benzene ring).

6-amino-(N-2-fluorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (2FBSAIL): Yield: 68%; DSimine

0.53; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 164 (C-7=N), δ 162 (C-9-F), δ 116–132 (C-8, 10-13),
δ 21 (CH3–acetyl); FTIR: v 1739 (C=O of acetyl), v 1670 (imine), v 3060, 1582, 1530, 1486, 1455, 764
(benzene ring).
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6-amino-(N-2-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (2CBSAIL): Yield: 75%; DSimine

0.94; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 129–135 (aromatic carbons), δ 21
(CH3–acetyl); FTIR: v 1740 (C=O of acetyl), v 1664 (imine), v 3062, 1592, 756, 692 (benzene ring).

6-amino-(N-2-bromobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (2BBSAIL): Yield: 82%; DSimine

0.71; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 124–134 (aromatic carbons), δ 21
(CH3–acetyl); FTIR: v 1740 (C=O of acetyl), v 1673 (imine), v 3062, 1589, 1529, 758 (benzene ring).

6-amino-(N-4-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (4CBSAIL): Yield: 79%; DSimine

0.69; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 129–139 (aromatic carbons), δ 21
(CH3–acetyl); FTIR: v 1735 (C=O of acetyl), v 1676 (imine), v 3062, 1596, 1490 (benzene ring).

6-amino-(N-4-bromobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (4BBSAIL): Yield: 71%; DSimine

0.50; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 121–135 (aromatic carbons), δ 21
(CH3–acetyl); FTIR: v 1741 (C=O of acetyl), v 1668 (imine), v 3062, 1592, 1485, 754 (benzene ring).

6-amino-(N-3,4-dichlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (3,4DCBSAIL): Yield: 88%;
DSimine 0.68; 13C NMR/DMSO-d6: δ 170 (C=O–acetyl), δ 162 (C-7=N), δ 128–136 (aromatic carbons),
δ 21 (CH3–acetyl); FTIR: v 1739 (C=O of acetyl), v 1673 (imine), v 3062, 1592, 755, 727 (benzene ring).
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Scheme 1. Synthetic pathway of inulin derivatives.

2.4. Antifungal Assay

An antifungal assay was performed according to reports in the literature and minor modifications
were necessary [25,28]. In brief, each sample was dispersed in distilled water and then mixed with
sterilized PDA to make a series of final concentrations at 0.1, 0.5, and 1.0 mg/mL. After the mixture
was transferred to a plate and cooled to solid, a piece of PDA (diameter of 5 mm) containing the test
fungi was placed in the middle of the test plate and the mycelium was incubated at 27 ◦C and 60%
humidity until the mycelium of fungi reached the edges of the control plate (without the presence of
sample). At last, the inhibitory index was calculated as follows (Equation (1)):

Inhibitory index (%) = (1 − Da/Db) × 100 (1)

where Da is the diameter of the growth zone in the test plates and Db is the diameter of the growth zone
in the control plates. All tests were repeated three times and the results were calculated as the mean.
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2.5. Statistical Analysis

All the data related to the antifungal activity are displayed as mean± standard deviation (SD,
n = 3) for triplicates. Significant difference analysis was determined using Scheffé’s multiple range test.
The significant differences were defined at p < 0.05.

3. Results and Discussion

3.1. Structure of the Inulin Derivatives

The structures of inulin and inulin derivatives were characterized by FTIR (Figure 1), 1H NMR
(Figure 2), and 13C NMR (Figure 3) spectroscopy. As shown in Figure 1, the characteristic absorption
peaks of saccharide were located at 3401 (O–H stretching), 2923 (–CH2 stretching), and 1025 cm−1

(C–O–C bending) [37]. In the IR spectrum of AAIL, there were distinct peaks at 2107 and 1734 cm−1 that
belonged to the azido and acetyl, respectively [37]. Regarding inulin derivatives, compared with AAIL,
the absorption of acetyl (1734 cm−1) still existed, but the absorption of azido (2107 cm−1) disappeared
completely. Instead, there were new peaks at about 1670 cm−1, which belonged to the imine. Moreover,
there were no absorptions of aromatic aldehydes (1700 cm−1) found in inulin derivatives, which
indicated that these derivatives were well purified [35,41]. Besides, at 3060 and 1450–1600 cm−1, there
appeared the characteristic absorption of the benzene ring. At the fingerprint region, absorptions at
754, 727, and 693 cm−1 were also evidence of the benzene conjunction [35].
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Figure 1. FTIR spectra of inulin, 6-azido-6-deoxy-3,4-di-O-acetyl inulin (AAIL), and inulin derivatives.

1H NMR (Figure 2) and 13C NMR (Figure 3) were useful for further characterizing the structure of
inulin, AAIL, BSAIL, 2FBSAIL, 2CBSAIL, 2BBSAIL, 4CBSAIL, 4BBSAIL, and 3,4DCBSAIL. The signals
of the inulin skeleton, including the anhydroglucose unit, appeared at δ 3.00–5.40 ppm in 1H NMR
and δ 60–103 ppm in 13C NMR [37], which always existed for every inulin derivative. After azide
substitution, for the 1H NMR of AAIL compared to inulin, new signals appearing at δ 3.69 and δ

2.03 ppm were assigned to the H–C6–N and the hydrogen of the acetyl (Ac), respectively. Similarly, for
the 13C NMR of AAIL, signals at δ 52.58 and δ 170.28 ppm were attributed to the C6-N and C=O of the
acetyl (Ac), respectively. After further reaction, in the 13C NMR spectrum of inulin derivatives, the
signals of C6-N moved to δ 63 ppm. Additionally, signals at about δ 164 ppm were assigned to the
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N=C7. Meanwhile, new chemical shifts appearing in the range of δ 120–140 ppm contributed to the
aromatic carbons of the benzene ring. In the 1H NMR spectrum of inulin and inulin derivatives, signals
appearing at about δ 8.05 ppm were assigned to the H–C7=N. Signals in the range of 7.00–8.60 ppm
were assigned to the aromatic hydrogens of the benzene ring [35].

All of the abovementioned data proved the successful preparation of inulin derivatives.
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3.2. Degree of Substitution (DS)

The DS for inulin derivatives was calculated by the ratio of the integral values of protons H7-13

to that of inulin backbone protons (H1-6/6′) [35,42–44]. For example, the DSimine value of BSAIL was
calculated according to Equation (2) by 1H NMR (Figure 4). The results are summarized in Table 1.

DSimine =
7× IH,aromatic+H,7

6× IH,AGU
(2)

where I represents the integral values, H,aromatic is the aromatic protons, H,7 is the proton of -CH=N,
and H,AGU is the inulin backbone protons. The coefficient 7 means the amount of hydrogen protons
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on the inulin backbone, and the coefficient 6 means the amount of hydrogen protons on the benzene
ring and imine.
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Table 1. The yield and the degree of substitution of inulin derivatives.

Compound Yield Degree of Substitution

Inulin / /
BSAIL 64% 0.34

2FBSAIL 68% 0.53
2CBSAIL 75% 0.94
2BBSAIL 82% 0.71
4CBSAIL 79% 0.69
4BBSAIL 71% 0.50

3,4DCBSAIL 88% 0.68

3.3. Solubility and Antifungal Activity

Figure 5 shows the aqueous solutions of samples at 1.0 mg/mL, room temperature. Except AAIL
and 3,4DCBSAIL, all samples showed favorable water solubility and their solutions were prepared at a
concentration of 0.1–1.0 mg/mL. For AAIL and 3,4DCBSAIL, considering that they are homodisperse
in deionized water, their antifungal activity was tested together with other samples.

Due to the pressure of environmental pollution, as well as the rising incidence of drug-resistant
pathogens, antifungal polymers are part of a novel approach to developing antifungal agents that have
the advantages of high efficiency, broad spectrum, low toxicity, slow release, and so forth. Annually,
economic losses for farmers caused by pathogenic fungi are tremendous. As a result, four kinds of
plant pathogens, namely, Botrytis cinerea, Fusarium oxysporum f. sp. cucumerium Owen, Fusarium
oxysporum f. sp. niveum, and Phomopsis asparagi, were selected to evaluate the antifungal activity of
the synthesized inulin derivatives by the mycelium growth rate method. Each sample was tested at
0.1, 0.5, and 1.0 mg/mL. The results are shown in Figures 6–9.

As shown in Figures 6–9, inulin exhibited no inhibitory effect against the test fungi due to the
lack of a functional group. AAIL showed negligible antifungal activity, as azide grafting had no effect
on antifungal action. Regarding inulin derivatives, at the test concentrations, all of them exhibited
distinct antifungal activity compared with inulin against the four test fungi, and the inhibitory indices
increased with increasing concentrations.

Figure 6 shows the antifungal activity of inulin, AAIL, and inulin derivatives against B. cinerea.
For the seven kinds of inulin derivatives (BSAIL, 2FBSAIL, 2CBSAIL, 2BBSAIL, 4CBSAIL, 4BBSAIL,
and 3,4DCBSAIL), their inhibitory rates ranged from 54% to 100% at 1.0 mg/mL. The inhibitory rate of
BSAIL was 48% at 0.5 mg/mL, and the value reached 65% at 1.0 mg/mL. In other words, the introduction
of Schiff bases to inulin helped confer to it high antifungal activity. When the Schiff bases were added
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with halogen substituent groups, the antifungal activity of inulin derivatives was subsequently affected.
The inhibitory rates of the inulin derivatives were in the following order: 3,4DCBSAIL > 4CBSAIL >

2CBSAIL > 2BBSAIL > 4BBSAIL > BSAIL > 2FBSAIL. The inhibitory rates of 3,4DCBSAIL, 4CBSAIL,
2CBSAIL, 2BBSAIL, and 4BBSAIL were greater than that of BSAIL, which indicates that chlorine and
bromine could help to further improve the antifungal activity of inulin on the basis of the Schiff bases.
The inhibitory rates of 3,4DCBSAIL and 4CBSAIL were both 100% at 1.0 mg/mL, and at the same
concentration, the inhibitory rates of 2CBSAIL, 2BBSAIL, and 4BBSAIL were 80%, 77%, and 69%,
respectively. On the contrary, the introduction of fluorine decreased the antifungal activity of inulin
compared with BSAIL, as the inhibitory rate of 2FBSAIL was 54% at 1.0 mg/mL. By analyzing the
inhibitory indices of 2CBSAIL and 4CBSAIL, we found that chlorine substituted at the para-position of
benzene was more effective than that substituted at the ortho-position. However, this result was in
contrast to that of 2BBSAIL and 4BBSAIL, and the inhibitory rate of 2BBSAIL was higher than 4BBSAIL.
Moreover, it was found that the inhibitory rate of 3,4DCBSAIL was larger than 2CBSAIL and 4CBSAIL,
which means that the antifungal activity of the inulin derivatives with double chlorine was stronger
than that with single chlorine against B. cinerea.

Figures 7 and 8 shows the antifungal activity of samples against F. oxysporum f. sp. niveum and
P. asparagi, respectively. The results were similar to those listed above in some respects. Firstly, the
Schiff bases with different kinds of substituent groups (halogens) had different effects on the antifungal
activity of inulin derivatives. Chlorine was superior to bromine, and bromine was superior to fluorine.
Secondly, for the same halogen, chlorine substituted at the para-position of benzene was more efficient
at improving the antifungal activity of inulin derivatives than that substituted at the ortho-position,
but the regularity was the opposite for fluorine. Moreover, 3,4DCBSAIL always exhibited rather strong
antifungal activity. Its inhibitory indices against F. oxysporum f. sp. niveum and P. asparagi were 89%
and 73%, respectively.

Figure 9 shows the antifungal activity of samples against F. oxysporum f. sp. cucumerium Owen.
All the inulin derivatives exhibited significant antifungal activity and the inhibitory rate of 3,4DCBSAIL
was 100% at 1.0 mg/mL. These results further confirm the advantage of grafting Schiff bases onto inulin
to impart high antifungal activity to inulin.

Among the four test fungi, B. cinerea exhibited the most sensitivity to the inulin derivatives, and
the inhibitory indices of the inulin derivatives were all above 50% at 1.0 mg/mL, which was related
to the synergistic role of halogens. 3,4DCBSAIL exhibited the strongest antifungal activity for both
strains of F. oxysporum. However, F. oxysporum f. sp. niveum was more sensitive to the derivatives
containing chlorine. Differently, F. oxysporum f. sp. cucumerium Owen was easier to be restrained by
the derivatives containing bromine.
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4. Conclusions

In this study, seven kinds of inulin derivatives modified by Schiff bases were successfully
synthesized. Their structure characteristics were confirmed by FTIR, 1H NMR, and 13C NMR. The
antifungal activity of these derivatives against four kinds of plant pathogens, namely, B. cinerea,
F. oxysporum f. sp. cucumerium Owen, F. oxysporum f. sp. niveum, and P. asparagi, was studied by the
mycelium growth rate method in vitro. Firstly, the results confirmed the feasibility of modifying inulin
with Schiff bases to confer high antifungal activity to inulin. Then, we found that the type, the position,
and the number of substituent groups (halogens) on Schiff bases had an effect on the derivatives’
antifungal activity. The halogens could have a synergistic effect, as they exhibited a variety of biological
activities, including antifungal activity and electron-withdrawing capacity. In general, chlorine was
more helpful to further improve the derivatives’ antifungal activity on the basis of Schiff bases. More
chlorine resulted in stronger antifungal activity. The same derivative had different inhibitory effects on
different fungi. Many fungicides containing halogens have pronounced toxicities and their residues
in the environment have already caused serious environmental problems. When these groups are
grafted onto inulin, they could be released slowly, which would largely resolve the environmental
issue. Further studies will be carried out to test this hypothesis.

This paper provides a practical strategy to develop novel inulin derivatives bearing Schiff bases
with high antifungal activity. The products described in this paper have great potential as alternatives
to some harmful pesticides used for plant disease control.
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