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Abstract: This paper presents a transport and recovery of silver ions through bulk liquid membranes
based on n–decanol using as carriers 10–undecylenic acid and 10–undecylenyl alcohol. The transport
of silver ions across membranes has been studied in the presence of two types of magnetic oxide
nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with
and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver
ions by bulk liquid membranes using 10–undecylenic acid and 10–undecylenyl alcohol as carriers
were performed by comparison with lead ions. The configuration of the separation module has been
specially designed for the chosen separation process. Convective-generating magnetic nanoparticles
were characterized in terms of the morphological and structural points of view: scanning electron
microscopy (SEM), high-resolution SEM (HR–SEM), energy dispersive spectroscopy analysis (EDAX),
Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential
scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested
were tested for silver ion transport and separation through n–decanol liquid membranes with selected
carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase,
pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the
receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver
ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl
alcohol.

Keywords: bulk liquid membranes; 10-undecilenic acid carrier; 10-undecenol carrier; silver separa-
tion; silver transport; magnetic nanoparticles; oxide nanoparticles; turbulence promotors

1. Introduction

The liquid membrane consists of a distinct organic phase that separates two other
aqueous phases [1]. The aqueous phase containing the species about to be transported is
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called the source phase (SP) and the aqueous phase that receives the transported species
is called the receiving phase (RP) [2]. Membrane processes are individualized through
the use of the ion carrier, the carrier (C) that exists in the organic phase (the membrane)
compared to the traditional extraction system, which uses complexants. Proper selection
of the carrier is crucial for the efficiency of liquid membranes. High separation selectivity
factors are achieved when the chosen carrier has a high affinity for one of the components
of the feed solution [2,3].

The main advantage of liquid membranes is that the solubility and diffusion coeffi-
cients of the compounds in a liquid medium are higher than in a solid medium, and the
addition of a transport agent further grows the permeability of the membrane [4,5].

The pure membrane solvent rarely ensures the selectivity of the separation pro-
cess, that is why specific complexants or carriers are introduced in the liquid mem-
brane (Figure 1): macrocyclic compounds (crown ethers, cryptans, spherants, calixarenes,
cyclodextrins) [6,7], chemically modified classical complexants (especially with groups
lipophilic) [8], functionalized nanospecies (nanoparticles, nanotubes, vesicles, micelles) [9–11].
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The main advantages of liquid membranes are high selectivity, guided by the use of
adequate carriers, accessibility of laboratory experiments, but also on a pilot or industrial
scale [12,13], diversity of technical manufacturing methods: bulk liquid membranes (BLM),
liquid membranes on support (SLM), or emulsion liquid membranes (ELM) [14–17].

Other advantages of the liquid membranes: they are simple in concept and operation,
are modular and easy to achieve on a large scale, have low energy consumption, and
therefore, have a remarkable potential for impact on the environment and energy issues [18–20].

Thus, the liquid membranes continue to be a viable alternative both for classical
separation processes (precipitation, ion exchange, adsorption, extraction) and the other
membrane methods (polymers, composites, ion exchangers) [19–22].
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However, the liquid membranes also have important disadvantages that current
research is trying to either reduce or overcome [23–26]. Basically, the problems to be solved
are related to finding new carriers (to increase and direct the selectivity), increasing the
mass transfer surface (adapting the design of each type of membrane), improving the
membrane stability and avoiding solvent losses (including the use of green solvents),
achieving convective transport in and through the membrane [27–31].

Reducing the number of chemical substances in the process of separation with liquid
membranes is also a priority that can place them among the ecological processes and also
increase their competitiveness with other types of membranes [32,33].

Bulk liquid membranes remain the basic tools in the laboratory study of new carrier
performances. At the same time, in these cases, the design of the permeator must be
adapted to the requirements of the considered separation and transport process, and this
objective is easily feasible in the case of bulk liquid membrane permeates. This study
aims at introducing in the practice of membrane separations a bifunctional, accessible,
biodegradable carrier of known biomedical interest, namely 10–undecylenic acid (unde-
cenoic acid) [34–41], as well as testing a new type of permeation module in the process of
transport and separation of silver ions.

This paper addresses the use of undecylenic acid and 10–undecylenyl alcohol as
carriers, for the transport and separation of silver ions in a bulk liquid membrane system
based on n-decanol, with magnetic convection promoters based on oxide nanoparticles.

2. Materials and Methods
2.1. Reagents and Materials

The reagents and materials used in the presented work were of analytical grade.
They were purchased from Merck (Merck KGaA, Darmstadt, Germany): iron (wire),

silver nitrate, lead nitrate, sodium chloride, sodium hydroxide, hydrochloric acid, nitric
acid; and, from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany): 10–undecylenic acid
(undecenoic acid, molar mass: 184.28 g/mol, density: 912 kg/m3, solubility in water:
0.074 mg/mL), undecylenyl alcohol (10–undecen–1–ol, or 11–hydroxy–1–undecene, molar
mass: 170.29 g/mol, density: 846 kg/m3, solubility in water: 0.061 g/L), n–decyl alcohol
(molar mass: 158.28 g/mol, density: 830 kg/m3, solubility in water: 0.037 mg/L).

The purified water characterized by 18.2 µS/cm conductivity was obtained with a
RO Millipore system (MilliQ® Direct 8 RO Water Purification System, Merck, Darmstad,
Germany). The tubular dialysis membranes were from Visking (Medicell Membranes Ltd.,
London, UK).

2.2. Methods
2.2.1. Preparation of the Oxide Magnetic Nanoparticles

The method of obtaining iron-based magnetic nanoparticles is the electrochemical one,
previously presented in detail [42,43]. In this case, the electrolysis is performed in pure
water (to obtain magnetic nanoparticles of iron oxides) and in silver nitrogen electrolyte
10−1 mol/L (to obtain magnetic nanoparticles based on silver and iron oxides).

In this paper, the nanoparticles are obtained using silver nitrate as an electrolyte,
in order to avoid impurity with chloride anions which were found in the nanoparticles
obtained previously.

A 250 mL volume of the considered solution (pure water or silver nitrate) was in-
troduced into an electrolysis cell of the PARSTAT 2273 Potentiostat (Princeton Applied
Research, AMETEK Inc., Oak Ridge, TN, USA). This equipment is provided with three
electrodes: pure iron anode and cathode, and a platinum wire as a reference. Cyclic voltam-
metry was performed for a potential sweep between −0.5 and +1.23 V at a scan rate of
50 mV/s. The experimental procedure took place at room temperature [42].

After six hours of work, black nanoparticles were collected at the cell base. Afterward,
they were magnetically transferred into a dialyzer with a regenerated cellulose membrane.
Continuous dialysis was performed until a pH sample was obtained. The pH was followed
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up with a combined selective glass electrode (HI 4107, Hanna Instruments Ltd., Leighton
Buzzard, UK) and a multi-parameter system (HI 5522, Hanna Instruments Ltd., Leighton
Buzzard, UK) [43].

The samples of nanoparticles containing iron oxide or iron-silver oxide were charac-
terized by scanning electron microscopy (SEM and HFSEM), EDAX, magnetization, UV-Vis
and atomic absorption spectroscopy, and thermal analysis (TG, DSC) [44].

2.2.2. Obtaining the Liquid Membranes on n–decyl Alcohol–Oxide Nanoparticles

A volume of 600 mL (about 498 g), n-alcohol (n-decanol), and 2.0 g of iron or silver-iron
oxide nanoparticles were placed in an 800 mL glass tank. In this system, 1 g of 10–undecen–
1–ol is then added. In another 800 mL vessel, the same components are introduced and
then 1 g of 10–undecylenic acid is added.

Every glass tank was placed in an ultrasonic bath (Elmasonic S, Elma Schmidbauer
GmbH, Singen, Germany) for two hours while observing the complete dispersion. Finally,
a dark brown dispersed liquid system was formed.

2.2.3. The Transport and Separation of the Silver Ions

The study of transport and separation was performed in an installation, with a per-
meation module (cell) (1), made using simple laboratory means (Figure 2): a 1000 mL
cylindrical glass vessel, a conical–cylindrical glass funnel (with a useful volume of 150 mL)
and silicone rubber connecting tubes. The circulation of the fluids that constitute the source
phase (SP) and receiving phase (RP) is performed using peristaltic pumps (2,3) and the
agitation of the membrane particles with magnetite wand shakers (4).
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The laboratory installation allows the variation of the source and receiving phase
flows, and the stirring speed of magnetic rods (rotations/min).

The monitoring of the concentration of chemical species is performed directly in the
system (with selective ion microsensors). The validation is done by periodic sampling
(every 30 min) and spectrometric analyses (UV-Vis and atomic absorption).
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The flows of the silver ions (or lead ions) from the source phase [45,46] were deter-
mined against the measured permeate mass within a determined time range, applying the
following formula:

J =
M
S·t (mg/(m2 s)) or ((mol)/(m2 s)) (1)

M being the permeate mass (g or mol), S being the effective surface of the membrane (m2),
and t the time (s) necessary to collect the permeate volume.

The extraction efficiency (EE %) for the species of interest using the concentration of
the solutions [33,34] was calculated as follows:

EE(%) =

(
c0 − c f

)
c0

·100 (2)

cf being the final concentration of the solute (considered chemical species) and c0 the initial
concentration of solute (considered chemical species).

The same extraction efficiency can also be computed based upon the absorbance of
the solutions [47–50], as in:

EE(%) =
(A0 − As)

A0
·100 (3)

A0 being the initial absorbance of the sample solution and As the current absorbance of the
sample.

2.3. Equipment

The microscopy studies, SEM and HFSEM, were performed on a Hitachi S4500 system
(Hitachi High-Technologies Europe GmbH, Krefeld, Germany).

Thermal analysis, TG-DSC, was performed with a STA 449C Jupiter apparatus, from
Netzsch (NETZSCH-Gerätebau GmbH, Selb, Germany). Each sample weighed approx-
imately 10 mg. The samples were placed in an open alumina crucible and heated up to
900 ◦C, at a 10 K·min−1 rate, under a flow of 50 mL·min−1 dried air. As a reference, we
used an empty alumina crucible. The evolved gases were analyzed with an FTIR Tensor 27
from Bruker (Bruker Co., Ettlingen, Germany), equipped with a thermostatic gas cell.

The nanoparticle magnetization diagrams were determined with Quantum Design
MPMS 3 Magnetometer (Quantum Design Europe, Darmstadt, Germany) based on su-
perconducting quantum interference device detection (SQUID). The DC operation mode
applied allowed to run SQUID -vibrating- sample magnetometer (VSM) measurements.

To assess and validate the content in metal ions, the atomic absorption spectrometer
AAnalyst 400 AA Spectrometer (Perkin Elmer Inc., Waltham, MA, USA) with WinLab32—
AA software (Perkin Elmer Inc., Waltham, MA, USA), with a single–element hollow–
cathode lamp was used. The operating current was set up at 2 mA, wavelength 248.3 nm,
and 0.2 nm spectral bandwidth for determining the iron content. For silver, the values of the
experimental parameters are a wavelength of 328.1 nm, and a 0.7 nm spectral bandwidth,
at an operating current of 5 mA.

The UV–Vis studies on the nanoparticles samples were performed on dual-beam
UV equipment–Varian Cary 50 (Agilent Technologies Inc., Santa Clara, CA, USA) at a
resolution of 1 nm, spectral bandwidth 1.5 nm, and 300 nm/s scan rate. The UV-Vis spectra
of the samples were recorded for a wavelength from 200 to 800 nm, at room temperature,
using 10 mm quartz cells.

Spectroscopy Bruker Tensor 27 Fourier Transform Infra-Red (FTIR) with Diamond
ATR (Bruker Optik GmbH, Ettlingen, Germany) was used to study the interactions between
the chemicals used in the developed membranes. FTIR analysis was recorded in the range
of 500 to 4000 cm−1.

The UV–Vis analysis of the silver ions solutions was performed on a CamSpec M550
spectrometer (Spectronic CamSpec Ltd., Leeds, UK).
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The UV–Vis spectra of the samples were recorded for a wavelength ranging from 200
to 800 nm, at room temperature, using 10 mm quartz cells.

The electrochemical analysis was followed up with a PARSTAT 2273 Potentiostat
(Princeton Applied Research, AMETEK Inc., Oak Ridge, TN, USA). A setup with a glass
cell with three electrodes has been used.

The chloride anion concentration (in receiving phase) was determined using a com-
bined selective chloride electrode (HI 4107, Hanna Instruments Ltd., Leighton Buzzard,
UK) and a multi-parameter system (HI 5522, Hanna Instruments Ltd., Leighton Buzzard,
UK).

3. Results and Discussions

In terms of applications in chemical synthesis, undecylenic acid is an excellent spacer
and surface coating agent: nanoparticles, nanotubes, films, and membranes [51–54].

The use of undecylenic acid as a carrier in liquid membranes has several arguments
that derive from its bifunctional chemical structure: surface agent properties, the ability of
the carboxyl group to interact with various metal ions, the specific tendency of the double
bond (C=C) to interact with silver, high solubility in alcohols and insolubility in water.

To highlight the transport characteristics, a coupled transport type system with a
carrier was chosen (Figure 3). The membrane consists of n–decanol in which magnetic
oxide nanoparticles coated with undecenoic acid are dispersed. The source phase (SP)
consists of a silver nitrate and silver nitrate and/or lead nitrate solution in equimolar
concentrations, dissolved in ultrapure water. The receptor phase (RP) consists of a solution
of hydrochloric acid, with a concentration between 10−5 mol/L and 10−1 mol/L.
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To highlight the influence of the carboxyl group and implicitly of the alkylene group,
all experiments were duplicated using 10–undecen–1–ol as a control carrier.

The use of the permeator from Figure 2 allows the variation of the following parame-
ters: the volume of membrane phases, the flow rate of the aqueous phases in the system
(source phase and receiving phase), the rotation speed of the magnetite rods that drive the
turbo-slow promoters (magnetic oxide nanoparticles), the nature of the magnetic particles
in the membrane phase, the nature of membrane carriers, the composition of aqueous
phases (pH of the source and receptor phase).
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The experimental study performed has three main objectives, each with specific
activities: preparation and characterization of oxide magnetic nanoparticles, transport of
silver ions through bulk liquid membranes with undecenoic acid carrier and magnetic
nanoparticles, and separation of silver ions from lead ions by bulk liquid membranes using
undecylenyl alcohol and undecenoic acid as carriers.

3.1. The Preparation and Characterization of Magnetic Nanoparticles

To obtain the iron oxide magnetic nanoparticles in the electrolytic silver nitrate solu-
tion, cyclic voltammetry with pure iron electrodes and a platinum reference electrode was
chosen, and the potential was swept between −0.5 and +1.23 V.

The following reaction steps are known for the electrolysis mechanism in electrolyte
without interfering electroactive species [55–59]:

Fe � Fe2+ + 2e− (4)

Fe2+ � Fe3+ + 1e− (5)

H2O � 2H+ + 2e− +
1
2

O2 (6)

2H2O + 2e− � H2 + 2OH− (7)

Fe3+ + OH− � Fe(OH)3(s) (8)

3Fe(OH)3(s) + H+ + e− � Fe3O4(s) + 5H2O (9)

The silver discharge potential, which is affected by the equilibrium constants of the
reactions, imposes the electrolysis potential to which the silver ion aqueous complexes,
used as electrolytes, are discharged [50].

In the study, magnetic nanoparticles were obtained by electrolysis in pure water
(NP–Fe) and in silver nitrate solution (NP–Fe–Ag).

The main characteristics of the obtained nanoparticles are given in Figure 4, which
presents the results of the examination by scanning electron microscopy (SEM) and energy
dispersive spectroscopy analysis (EDAX), and in Figure 5, which shows the magnetization
curves.

Oxide nanoparticles have a similar morphology for both types of nanoparticles
(Figure 4a–d). The nanoparticle sizes range between 20 and 50 nm, detailed for a wider
range of electrolytes [42,43,55–57].

The surface composition of the nanoparticles reveals Fe and O in the case of nanopar-
ticles obtained by electrolysis in pure water, and Fe, O and small amounts of Ag for the
nanoparticles obtained by electrolysis in silver nitrate solution (Figure 4e,f).

The saturation magnetization of iron oxide-based nanoparticles (NP–Fe) is slightly
higher than that of iron and silver oxide nanoparticles (NP–Fe–Ag) (Figure 5a,b).

The thermal gravimetric analysis, differential scanning calorimetry (TGA), and Fourier
Transform InfraRed (FTIR) spectroscopy for the evolved gases (Figures 6–8) complete data
regarding the nanoparticles dispersed in n-decanol in the presence of 10–undecylenyl
alcohol and undecenoic acid.
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Figure 6. Thermal characteristics of iron oxides based magnetic nanoparticles (NP–Fe).

The working technique, thermal analyzer coupled with the Fourier transform infrared
spectrometer (FTIR), allows the highlighting of chemical species desorbed and thermally
degraded depending on the temperature.

For iron oxide based magnetic nanoparticles (NP–Fe and NP–Fe–Ag) the specific ther-
mal diagrams are presented in Figures 6 and 7. These thermal diagrams were obtained for
the particles recovered from the membrane dispersion, in order to observe the interaction
with the carrier and/or the working solvent.

The iron oxide nanoparticles (NP–Fe) sample (Figure 6) is losing 0.64% of the initial
mass in the temperature interval RT–155 ◦C. This process is accompanied by an endother-
mic effect, with a minimum at 57.7 ◦C. It can be attributed to the elimination of some
solvent molecules (water) adsorbed on the surface of the nanoparticles. After 155 ◦C the
sample mass is slightly increasing, with 0.13%, up to 220 ◦C, in an exothermic process.
This can be attributed both to the oxidation of Fe (II) to Fe (III) and to the transformation
of magnetite to maghemite. Between 220–400 ◦C the sample is losing 0.80% of initial
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mass, most probably by eliminating the surface –OH moieties. The exothermic effect from
631.1 ◦C is attributed to the phase transition magnetite to hematite, a characteristic effect
for such samples [60]. The residual mass is formed by red Fe2O3, representing 97.96%.
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The sample of iron-silver oxide nanoparticles (NP–Fe–Ag) (Figure 7) is losing 9.65%
of the initial mass between RT–155 ◦C, the process being accompanied by an endothermic
effect, with the minimum at 71 ◦C. This can be attributed to the elimination of the adsorbed
solvent molecules–the vibrations around 2900–3000 cm−1 (characteristic to Csp3–H–) can
be seen in the FTIR 3D plot (Figure 8a).

The sample continues to lose mass (0.78% up to 220 ◦C and 0.88% up to 400 ◦C), the
elimination of the solvent and of surface –OH moieties being overlapped with the oxidation
of magnetite to maghemite (the exothermic effect from 197.7 ◦C). The phase transition from
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magnetite to hematite occurs at 645.2 ◦C, as indicated by the exothermic effect on the DSC
curve. The residual mass is 88.46% and is composed of red Fe2O3.

The most important peaks are at 2939 and 2850 cm−1 (Csp3–H)—for the organics
in evolved gases; 2355 and 2322 cm−1 for CO2 at temperatures over 200 ◦C; 1724 and
1714 cm−1 for the most intense band (could be C=O); 1488, 1381, 1278, 1081 and 1009 cm−1

are in the fingerprint area (Figure 8b).
At low temperatures (Figure 8a,b) some organics are constituted of the major compo-

nents of the evolved gases. At 197 ◦C and 256 ◦C, there are two small evolving events, in
which CO2 is the identified component (can be due to burning the organic molecules still
present on nanoparticle surface).

The silver deposited on the surface of magnetic iron oxide nanoparticles can be
oxidized at low temperatures, but only if it is not protected by an organic layer (which is
the case in this sample). The removal of the organic adsorbed molecules in terms of mass
loss and endothermic effect would mask such a process (the oxidation of silver). If the
silver is deposited in Ag2O form, then the oxide is decomposed in the interval 150–200 ◦C.
This process is overlapped with oxidation of Fe2+ to Fe3+ and therefore, given the low silver
content, we can not detect such decomposition. At higher temperatures, silver is inert and
no other reactions can be identified for it.

The thermal study shows that nanoparticles containing silver (NP–Fe–Ag) adsorb a
detectable amount of organic compounds (solvent and/or carriers).

3.2. The Transport of Silver Ions through Bulk Liquid Membranes with Undecenoic Acid and
Magnetic Nanoparticles Carrier

The silver ion is very often found in the separation, concentration and purification
with liquid membranes due to the need for its recuperative separation, but also for its
well-known biocidal effect [61–64]. In the particular case of this study, the silver ion is an
important tracer because it has a specific interaction with undecenoic acid through the
double bond, but also a nonspecific one due to the carboxyl group. Transport tests have a
theoretical importance, regarding the introduction of an accessible bifunctional compound
as a carrier in liquid membranes, but also an applicative importance, considering the
biomedical importance of both the carriers and the silver ion. Testing of 10–undecylenyl
alcohol as a carrier was performed under the same experimental conditions in order to
highlight the effect of the carboxyl group for the considered transport and, implicitly, the
contribution of the alkylene group (double bond) in this process (Figure 9).
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The experiments of transporting the silver ion through bulk liquid membranes based
on n–decanol, containing as a carrier the undecenoic acid, followed the influence of the
pH of the receptor phase, the role of the carrier and oxide magnetic nanoparticles in the
membrane system, the flow effect of the two aqueous phases, source and receptors and
the influence of magnetic agitation of the liquid membrane containing magnetic oxide
nanoparticles (Figure 10).
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In the experiments performed, the concentration of nanoparticles and carriers was the
same, following the hydrodynamic parameters of the liquid membrane and the receiving
phase on the transport of silver ions.

In the receiving phase, the concentration of chloride ions was kept relatively constant
using a solution of sodium chloride of concentration 2.0 mol/L, and the pH was imposed
by the concentration of hydrochloric acid (10−5 mol/L up to 10−1 mol/L) so that the
pH gradient is a support of the driving force of the transfer of silver ions. The source
phase consists of a solution of silver nitrate in ultra-pure water with a concentration of
10−4 mol/L.

Figure 10a shows the evolution of silver ions concentration in the source phase de-
pending on the pH of the receiving phase. Hydrodynamic parameters (source phase flow,
receiving phase flow and magnetic agitation of membrane nanoparticles) was constant
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but not optimized. Increasing the pH gradient, the pH of the receiving phase compared to
the pH = 7 of the source phase, leads to an increase in the transport speed over the entire
studied range.

The insignificant increase variations of silver ions concentration in the source phase
towards the end of the working time (at pH = 1 in the receiving phase) has multiple
explanations related to the error induced by the cotransport of the protons from the
receiving phase to the source phase and also to the slight measuring errors at high dilutions.
After approximately 60 min of operation, there is an acceleration of the transport speed for
all studied systems.

In the case of the experiments aiming at the influence of the recirculation of source
phase flow (Figure 10b), an acceleration of the transport speed is found after ~80 min
of operation, for all the studied systems. The transport speed increases over the entire
operating interval, as the flow increases.

For imposed conditions regarding the silver ion concentration in the source phase
at pH = 1, constant flow (5 mL/min) of the receiving phase and a flow of 20 mL/min
for the source phase, silver ion transport depending on the stirring speed of magnetic
nanoparticles in the membrane (Figure 10c), this concentration increases with higher
rotational speeds of the magnetic rods that generate the membrane convection. The effect
of magnetic convection is more pronounced after about 120 min of operation.

The relative level in the first part of the process shows that the flow of matter is
relatively constant during the process, which allows a rapid evolution when the supply
concentration decreases.

The evolution of the transport of silver ions from the source phase, at the flow of
30 mL/min, the source phase at pH = 1 and constant flow (5 mL/min) of the receiving
phase, with the magnetic agitation of the nanoparticles in the membrane (150 rot/min),
depending on the nature of the nanoparticles (Figure 11) shows a constant increase over
the entire time interval studied, being more accentuated for the iron oxide nanoparticles
than for the iron and silver oxide nanoparticles.
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Figure 11. Evolution of silver ion concentration in the source phase depending on the nature of
the nanoparticles, at a flow rate of 30 mL/min in the source phase with pH = 1; and constant
flow (5 mL/min) of the receiving phase, with magnetic stirring of nanoparticles in the membrane
(150 rot/min).

The blocking of the double bond in the carrier by interaction with the silver ions from
the NP–Fe–Ag nanoparticle, leads to the diminution of the possibilities of taking over the
silver ions from the source phase. Basically, the carrier is free to interact with the silver ions
in the source phase with both the carboxyl group and the double bond, in the case of the
NP–Fe nanoparticle, while in the case of the NP–Fe–Ag nanoparticle the alkenic group is
largely unavailable to transport, being in contact with the nanoparticle, the transport being
thus ensured only by the carboxyl group.
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The evolution of the silver ion concentration at the flow rate of 30 mL/min of the
source phase with pH = 1 and with the magnetic agitation of the nanoparticles in the
membrane (150 rot/min), for iron oxide nanoparticles in the source phase depending on
the flow of the receiving phase (Figure 12) shows a marked increase over the entire working
period. Unlike previous experiments, in this case, the initial period of relative stagnation is
missing, especially at higher flow rates of the receiving phase.
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The study presented in this section reveals that the rate of silver ion transport in a
liquid membrane permeator based on n–decanol, containing oxide magnetic nanoparti-
cles and undecenoic acid carrier depends on the flow of the source and receiving phase,
magnetic agitation of oxide nanoparticles in the membrane, pH of the receiving phase, the
nature of the magnetic particles in the liquid membrane.

For the permeator presented in Figure 2, using n–decanol as the liquid membrane and
undecenoic acid carrier, the following values lead to the best results of silver ion transport,
source phase flow: 30 mL/min, receiving phase flow: 9 mL/min, magnetic stirring of oxide
nanoparticles in the membrane: 150 rot/min, pH of the receiving phase: 1, and the nature
of magnetic particles in the liquid membrane: iron oxide.

Under these conditions, the extraction efficiency (EE) was determined for undecenoic
acid compared to undecylenyl alcohol (Figure 13).
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The obtained results show that undecenoic acid is much more efficient in separating
and transporting the silver ion than undecylenyl alcohol, revealing the superior contribu-
tion of the carboxyl group to the alcoholic one, but also the definite interaction of the silver
ion with the alkene double bond.

3.3. Separation of Silver Ions from Lead Ions by Bulk Liquid Membranes with Undecylenyl Alcohol
and Undecenoic Acid Carriers

The experiments performed for the transport and separation of silver and lead cations
from an equimolar solution with pH = 7 in the source phase and pH = 1 in the receiving
phase were carried out based on the operational parameters previously established: source
phase flow: 30 mL/min, receiving phase flow: 9 mL/min, and magnetic stirring of oxide
nanoparticles from the membrane: 150 rot/min, using turbulence generating particles in
the membrane, based on n–decanol and having as carriers, either undecylenyl alcohol, or
undecenoic acid.

The results of the experiments are shown in Figure 14. The extraction efficiency of
silver and lead ions differs, under the established working conditions, being clearly superior
in the case of silver. There are also noticeable differences in the results of the comparative
efficiency of the two carriers and, respectively, the oxide nanoparticles used. Thus, for
transport with undecenoic acid, better results are obtained compared to undecylenyl
alcohol, with the ferric oxide nanoparticles having a better extraction efficiency than iron
and silver oxide nanoparticles. The selectivity factor for silver ions compared to lead ions
exceeds the value of six units in all cases studied, indicating the possibility of separation
of the two ions. It is very interesting to note that, although the extraction efficiency in the
case of undecylenyl alcohol is lower, the separation factor is higher (it reaches eight units).
These results indicate that the silver ion is transported simultaneously by interaction with
the carboxyl and alkylene groups–for undecenoic acid, and by interaction with the double
alkylene bond in the case of undecylenyl alcohol. At the same time, in the case of lead ions,
for undecenoic acid, the transport is given by the interaction with the carboxyl group. For
undecylenyl alcohol, the transport mechanism must be approached through additional
research, adsorptions on nanoparticles, or embedding in micelles.
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alcohol, at a flow rate of 9 mL/min and pH = 1 in the source phase.

The experimental study undertaken for the separation of silver and lead ions led to
the validation of the interaction hypotheses illustrated in Figure 9:
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- The silver ion interacts with both the carboxyl and the alkylene type group in unde-
cenoic acid,

- The carboxyl groups of undecenoic acid interact with iron and silver ions from iron
oxide based nanoparticles,

- The alkylene group interacts with the silver ions in the silver and iron oxide nanopar-
ticles,

- Undecylenyl alcohol has an interaction with the silver ions in the silver and iron oxide
nanoparticles by the alkylene group.

The hypotheses issued are verified both by the transport rate and by the efficiency of
the silver ion separation process. Both undecenoic acid and undecylenyl alcohol can be
used to separate silver ions from equimolar solution with lead ions.

Based on data obtained by varying the main experimental parameters, it can be stated
that the ion transport in the membrane system takes place according to a mechanism and
kinetics involving the migration of ions from the source phase to the membrane interface,
their uptake into the membrane by the carrier, diffusion and convection (magnetically
induced) through the membrane, the uptake of the metal ion in the receiving phase from
the carrier by interaction and ion exchange with the hydronium ion from the receiving
phase. The protonated carrier returns to the source phase due to the pH gradient, but also
by the convection provided by the magnetic nanoparticle.

The transport mechanism is widely studied [10,11,21,22], and the intervention
of the hydrodynamic parameters improves both the speed and efficiency of the whole
process [42,43,65,66].

The kinetics and mechanism of the silver ion transport in the studied system (Figure 2)
require in-depth research because in this situation three interconnected dispersed systems
are present: the droplets from the source phase through the membrane (in the area of
the walls of the permeation module), the nanoparticles transporting from the membrane
and the droplets of the receiving phase that cross the membrane (in the central part of
the permeator). The surface of the droplets in the source phase or in the receiving phase
depends on the flow rate that we impose and must be followed by video means. Although
the increase in flow rates favors transport, this must be limited due to the appearance of
decanol–aqueous phase emulsions.

4. Conclusions

The permeation module with n-decanol membrane, undecenoic acid carriers, unde-
cylenyl alcohol and convection promoters of iron oxides/silver and iron oxides magnetic
nanoparticles allows the verification of the characteristics of silver and lead ion transport
by varying the flow of source and receiving phases, pH adjustment of the receiving phase
and stirring regime with magnetic nanoparticles.

Under the conditions of the optimized experimental results (pH = 7 of the source
phase, pH = 1 of the receiving phase, the flow rate of 30 mL/min for the source phase and
9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) sepa-
ration efficiencies of silver ions of over 90% were obtained for the transport of undecenoic
acid and about 80% for undecylenyl alcohol.

In the case of the considered carriers, undecylenic acid and 10–undecylenyl alcohol,
the use of iron oxide nanoparticles is more effective than the use of silver and iron oxide
nanoparticles, most likely due to the effect of the alkylene group.

The separation of silver and lead ions in the studied system leads to separation factors
between 6 and 9, under the specified hydrodynamic conditions the most efficient system
being n–decanol–10–undecylenic acid–iron oxide nanoparticles.
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