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Abstract

Background: Clinical management of neuropathic pain, which is pain arising as a consequence of a lesion or a disease

affecting the somatosensory system, partly relies on the use of anticonvulsant drugs such as gabapentinoids. Therapeutic

action of gabapentinoids such as gabapentin and pregabalin, which act by the inhibition of calcium currents through inter-

action with the a2d-1 subunit of voltage-dependent calcium channels, is well documented. However, some aspects of the

downstream mechanisms are still to be uncovered. Using behavioral, genetic, and pharmacological approaches, we tested

whether opioid receptors are necessary for the antiallodynic action of acute and/or long-term pregabalin treatment in the

specific context of neuropathic pain.

Results: Using the cuff model of neuropathic pain in mice, we show that acute pregabalin administration at high dose has a

transitory antiallodynic action, while prolonged oral pregabalin treatment leads to sustained antiallodynic action, consistent

with clinical observations. We show that pregabalin remains fully effective in �-opioid receptor, in d-opioid receptor and in

k-opioid receptor deficient mice, either female or male, and its antiallodynic action is not affected by acute naloxone. Our

work also shows that long-term pregabalin treatment suppresses tumor necrosis factor-a overproduction induced by sciatic

nerve constriction in the lumbar dorsal root ganglia.

Conclusions: We demonstrate that neither acute nor long-term antiallodynic effect of pregabalin in a context of neuro-

pathic pain is mediated by the endogenous opioid system, which differs from opioid treatment of pain and antidepressant

treatment of neuropathic pain. Our data are also supportive of an impact of gabapentinoid treatment on the neuroimmune

aspect of neuropathic pain.
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Background

Neuropathic pain is defined as a direct consequence of a
lesion or disease affecting the somatosensory system.1

It can result from a wide range of conditions including
diabetes, nerve root compression, herpes zoster infection,
cancer, stroke, thus affecting millions of persons world-
wide. This complex syndrome involves maladaptive
changes in injured sensory neurons and along the
entire nociceptive pathway within the central nervous
system.2 The recommended pharmacotherapy for neuro-
pathic pain includes the use of anticonvulsant drugs,
such as the gabapentinoids, pregabalin, and gabapentin.3
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Strasbourg, Strasbourg, France

*These authors contributed equally.

Corresponding author:

Michel Barrot, Institut des Neurosciences Cellulaires et Intégratives, 5 rue
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Despite their structural similarity to the inhibitory
transmitter g-aminobutyric acid (GABA), neither gaba-
pentin nor pregabalin binds to GABAA or GABAB

receptors or interact with GABA uptake transporters.4,5

Their therapeutic effect is mediated through binding to
the a2d-1 subunit of voltage-dependent calcium channels
(VDCCs).6,7 The interaction between gabapentinoids
and the a2d-1 subunit inhibits calcium currents, thus
decreasing excitatory transmitter release.5 This subunit
also plays a role in trafficking VDCC complexes to cell
surface8 and in synaptogenesis, and these functions are
blocked by gabapentin.9

The opioid system is involved in the action of different
pain medications. This implication concerns on one hand
the direct analgesic action of opioids targeting the
�-opioid (MOP) receptor10 and on the other hand the
indirect requirement of opioid receptors for the action
of antidepressants against neuropathic pain.11–13

During the past decade, it has been preclinically and clin-
ically proposed that gabapentinoids and opioid drugs can
have a synergistic action in neuropathic pain.14–17

However, this does not mean that gabapentinoids require
the endogenous opioid system. A potential role of the
opioid system has been recently suggested in the central,
acute, analgesic effect of a high dose of pregabalin in the
tail flick test in naive mice,18 and in the antinociceptive
response induced by acute gabapentin in a model of acute
inflammatory pain, the orofacial formalin test in mice.19

On the contrary, previous pharmacological studies
reported no effect of opioid antagonists on gabapentinoid
action.20–22 For example, naloxone do not block acute
pregabalin action on abdominal constrictions in the lipo-
polysaccharide (LPS)-induced rectal hypersensitivity
model of visceral pain;21 and naloxone do not block
acute gabapentin action in the formalin test, a model of
inflammatory pain.22 However, these studies did not
really model the specific clinical use of gabapentinoids,
i.e. in a neuropathic pain context, and did not either
address the consequences of a long-term treatment.

Gabapentinoids have also been proposed to act on
inflammatory mechanisms. Gabapentin may, for exam-
ple, decrease the expression of pro-inflammatory cyto-
kines;16,23,24 this action has been associated with an
upregulation of the anti-inflammatory cytokine interleu-
kin (IL)-10.24 Interestingly, experimental evidence
supports a role of glial and/or immune cells in the patho-
physiology of neuropathic pain, particularly through the
recruitment of cytokines.25 In sustained neuropathic
pain, some pro-inflammatory cytokines such as tumor
necrosis factor a (TNF-a) still display enhanced expres-
sion,26–29 and blocking TNF-a has been preclinically
postulated to relieve neuropathic pain symptoms.26,30

It is, however, not known whether the expression of
TNF-a is also targeted by pregabalin in a context of
neuropathic pain.

In the present study, we used both genetic and
pharmacological approaches to evaluate whether
opioid receptors are critical for the antiallodynic action
of acute and/or long-term pregabalin treatment. We
demonstrate that neither the acute nor the long-term
antiallodynic effect of pregabalin requires the endogen-
ous opioid system. We also show that long-term prega-
balin treatment inhibits the neuropathy-induced TNF-a
overproduction in dorsal root ganglia (DRG).

Methods

Animals

Experiments were performed using male C57BL/6J
mice (Charles River, L’Arbresle, France) with ages
between 8 and 10 weeks at surgery time, or with mice
lacking �-opioid (MOP), d-opioid (DOP), or k-opioid
(KOP) receptors and their littermate controls. The
generation of mice lacking MOP, DOP, or KOP
receptors has been previously described.31–33 All mice
were under a C57BL/6J background for over 10 gener-
ations. Heterozygote mice were bred in our animal
facilities (breeders were kindly provided by Pr Kieffer
and Pr Gavériaux-Ruff), genotyping of the litters was
done, and the experiments were conducted on adult
male and female wild type and knockout littermate
mice weighing 20–30 g. We used the same number of
males and females in each experimental group. As the
wild type animals have the same background and the
same behavior, they were pooled to form the control
groups. Mice were group housed two to five per cage
and kept under a 12 hr light/dark cycle with food and
water ad libitum. A total of 104 C57BL/6J mice, 43
MOP-related, 43 DOP-related, and 43 KOP-related
transgenic mice were used for the experiments. All ani-
mals received proper care in agreement with European
guidelines (EU 2010/63). At the end of the experi-
ments, mice were killed by cervical dislocation for
immunoblot experiments, or by CO2 inhalation (CO2
Euthanasia programmer 6.5 version, TEMSEGA,
Pessac, France) followed by cervical dislocation for
other experiments, according to the institutional ethical
guidelines. The animal facilities Chronobiotron
UMS3415 are registered for animal experimentation
under the Animal House Agreement A67-2018-38. All
protocols were approved by the ‘‘Comité d’Ethique en
Matière d’Expérimentation Animale de Strasbourg’’
(CREMEAS, CEEA35).

Model of neuropathic pain

Neuropathic pain was induced by cuffing the main
branch of the right sciatic nerve.34,35 Surgeries were per-
formed under ketamine (68mg/kg)/xylazine (10mg/kg)
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intraperitoneal (i.p.) anesthesia (Centravet, Tadden,
France). The common branch of the right sciatic nerve
was exposed and a cuff of PE-20 polyethylene tubing
(Harvard Apparatus, Les Ulis, France) of standardized
length (2mm) was unilaterally inserted around it (Cuff
group). The shaved skin was closed using suture. Sham-
operated mice underwent the same surgical procedure
without implantation of the cuff (Sham group).

Measure of mechanical allodynia

Mechanical allodynia was tested using von Frey hairs,
and results were expressed in grams. Tests were done
during the morning, starting at least 2 hr after lights
on. Mice were placed in clear Plexiglas boxes
(7 cm� 9 cm� 7 cm) on an elevated mesh screen.
Calibrated von Frey filaments (Bioseb, Vitrolles,
France) were applied to the plantar surface of each hind-
paw until they just bent, in a series of ascending forces up
to the mechanical threshold. Filaments were tested five
times per paw, and the paw withdrawal threshold (PWT)
was defined as the lower of two consecutive filaments for
which three or more withdrawals out of the five trials
were observed.35–37 The person who conducted the
tests was blinded to the treatments.

Treatment procedures

The long-term treatment with pregabalin began two
weeks after the surgical procedure (cuff implantation or
sham surgery). Pregabalin (Lyrica�, Pfizer, Sandwich,
UK), 300, 100, 50, or 5 mg/mL, was delivered per os
through the drinking water with ad libitum access as
sole source of fluid. This anticonvulsant drug was dis-
solved in water with 0.02% saccharin to increase palat-
ability, and control mice were given a solution of 0.02%
saccharin in water (vehicle solution). For acute adminis-
tration, pregabalin was dissolved in 0.9% NaCl and
administered intraperitoneally (30mg/kg, 5mL/kg).
The injection of naloxone hydrochloride (Sigma–
Aldrich, St. Quentin Fallavier, France), a competitive
non selective MOP, DOP, and KOP receptors antagonist
at high dose, was performed 25 days after surgery, i.e.
after 11 days of pregabalin treatment; or 30min after the
acute administration of pregabalin. Naloxone hydro-
chloride was dissolved in 0.9% NaCl and administered
subcutaneously (s.c., 1mg/kg, 5mL/kg). Long-term
and acute treatment experiments were conducted on
independent sets of mice.

Immunoblot analysis

In a separate experiment, DRG were collected
from Sham-vehicle, Cuff-vehicle, and Cuff-pregabalin
(300 mg/mL) group after two weeks of oral treatment.

Mice were killed by cervical dislocation, the back was
dissected, and a midline incision was done in the
lumbar vertebrae to extract the L4, L5, and L6 DRG
ipsilateral to the surgery. The three DRG were pooled
per animal, quickly frozen, and stored at �80�C until
protein extraction.

Total proteins were extracted in 150 mL lysis buffer
(20mM Tris pH 7.5; 150mM NaCl; 10% glycerol; 1%
NP-40; Protease Inhibitors Cocktail, Roche), quanti-
tated with Bio-Rad Protein Assay Dye Reagent
Concentrate and stored in Laemmli buffer (2% sodium
dodecyl sulfate (SDS); 25% glycerol; 0.01% bromophe-
nol blue; 0.125M Tris pH 6.8); 10 mg of total protein
from individual animals was resolved by 12% SDS-poly-
acrylamide gel electrophoresis under reducing condi-
tions, and then transferred to polyvinylidene fluoride
(PVDF) membrane (Immobilon, transfer membranes,
Millipore, IPVH00010). The blots were incubated
for 1 h in blocking agent (ECL kit, Amersham
Biosciences), overnight with the antibodies specific for
either TNF-a (1:500, R&D Systems, AF-410-NA) or
b-tubulin (1:50,000, Abcam, ab108342), followed
by rabbit anti-goat horseradish peroxidase (HRP)-
conjugated secondary antibodies (1:12,000, Abcam,
ab97100) or goat anti-rabbit HRP-conjugated secondary
antibodies (1:10,000, Millipore, AP307P), respectively.
Blots were revealed by chemiluminescence (ECL Prime
Western Blotting Detection Reagent, Amersham
Biosciences, RPN 2232) using Hyperfilm substrates
(Amersham Biosciences, RPN 1674K). Relative protein
expression was determined using the densitometry tool
of Adobe Photoshop CS5 software. The bands were eval-
uated in grayscale, subtracting the background value,
and the TNF-a/b-tubulin ratio was calculated for each
sample.

Statistical analysis

Mechanical thresholds measured with the von Frey test
provide discrete values corresponding to filaments’
values, thus limiting the relevance of classical para-
metric multi-factor analysis of variance (ANOVA). An
ANOVA-type multiple-factor nonparametric method-
ology for longitudinal data, which can take into account
both within and between factors, has recently been devel-
oped38 as a package (nparLD) for R (version 3.2.1). We
used the nparLD function to analyze the effects of time,
side (left vs. right paw), sex (male vs. female), and of
treatment (e.g. surgery and/or drug dose). The asymp-
totic ANOVA-type statistic (ATS) is provided as
ATS(d.f.), with its adjusted degrees of freedom (d.f.) and
p value. Multiple comparisons between groups at a given
time point were performed with the two-sample
Wilcoxon test, with the corresponding Bonferroni
adjustment. The Wilcoxon test was also used for
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comparison of the mechanical sensitivity thresholds
between males and females. Immunoblotting experi-
ments were analyzed with the nonparametric Kruskal–
Wallis test, followed by multiple comparisons with the
Wilcoxon test. The significance level was set at p< 0.05.
Data were represented as mean� SEM.

Results

Antiallodynic action of chronic oral
pregabalin: Dose response

The mechanical sensitivity of the C57BL/6J mice was
assessed using von Frey hairs. Although sham surgery
did not influence mechanical thresholds (Figure 1(a)
and (b)), cuff implantation induced an ipsilateral mech-
anical allodynia (Figure 1(a); surgery� time interaction,
ATS(2.9)¼ 3.9, p< 0.005 on postsurgery days 1–19). We
did not observe any change in the nociceptive threshold
of the left paw, contralateral to the cuff implantation; 19
days after surgery, we started treatment with different
doses of pregabalin (300, 100, 50, or 5 mg/mL) or with
vehicle solution (0.02% saccharin). Pregabalin treatment
at doses 100 and 300 mg/mL alleviated the cuff-
induced allodynia after about three days of treatment
(Figure 1(a); group� time interaction, ATS(13.9)¼ 2.8,
p< 0.001; multiple comparisons: ‘‘Cuff Vehicle’’
< ‘‘Cuff Pregabalin 100 mg/mL and Pregabalin
300 mg/mL’’ at p< 0.05 on postsurgery days 22–40).
A partial antiallodynic effect was also present with
the 50 mg/mL dose of pregabalin after eight days
of treatment (Figure 1(a); multiple comparisons:
‘‘Cuff Vehicle’’< ‘‘Cuff Pregabalin 50 mg/mL’’< ‘‘Sham
Vehicle’’ at p< 0.05 on postsurgery days 27–40).
Treatments at different doses did not affect the contra-
lateral nociceptive thresholds (Figure 1(a)). The 5 mg/mL
dose of pregabalin had no significant effect (Figure 1(a)).

Chronic oral treatment with pregabalin at 300 mg/mL
suppressed cuff-induced allodynia (Figure 1(a)), but it
did not affect mechanical thresholds of mice of the
Sham group (Figure 1(b)).

The drinking bottles were regularly weighed during
the experiment. Considering the volume of solution
drank by the mice per 24 h, the 5 mg/mL solution was
equivalent to 0.78� 0.05mg/kg/day, the 50 mg/mL solu-
tion was equivalent to 8.09� 0.38mg/kg/day, the 100 mg/
mL solution was equivalent to 15.64� 0.65mg/kg/day,
and the 300mg/mL solution was equivalent to 44.63�
1.39mg/kg/day (Figure 1(c)). These amounts were in
fact mostly taken over the 12 h night period, period
during which mice usually drink.

Body weights of mice treated chronically with differ-
ent doses of pregabalin or vehicle were also assessed
throughout the experiment. Cuff animals showed a dif-
ference in weight gain in the days following the surgery

compared to Sham animals. This difference persisted in
Cuff mice treated with vehicle or pregabalin at doses of 5
and 50 mg/mL. Pregabalin treatment at doses of 100 and
300 mg/mL, which relieved neuropathic allodynia,
reversed this deficit in weight gain (Figure 1(d); group-
� time interaction, ATS(11.2)¼ 6.2, p< 0.001; multiple
comparisons: ‘‘Cuff Vehicle, Pregabalin 5 mg/mL and
Pregabalin 50 mg/mL’’< ‘‘Sham Vehicle’’ at p< 0.05 on
postsurgery days 7–40, ‘‘Cuff Pregabalin 100 mg/mL and
Pregabalin 300 mg/mL’’< ‘‘Sham Vehicle’’ at p< 0.01 on
postsurgery days 7–19 and ‘‘Cuff Vehicle’’< ‘‘Cuff
Pregabalin 100 mg/mL and Pregabalin 300 mg/mL’’ at
p< 0.01 on postsurgery days 25–40).

Response to pregabalin: Male/female
comparison in wild-type mice

Mechanical sensitivity thresholds of female mice were
significantly lower than in males (baseline threshold
values of paws are equal to 4.67 g� 0.19 for males and
3.28 g� 0.13 for females, male vs. female: W¼ 79.5,
p< 0.001). Both male and female mice developed mech-
anical allodynia after cuff implantation and pregabalin
treatment suppressed the cuff-induced allodynia in both
sexes (Figure 2(a); Male mice: group� time interaction,
ATS(6.1)¼ 7.5, p< 0.001; multiple comparisons: ‘‘Cuff
Vehicle’’< ‘‘Sham Vehicle’’ at p< 0.05 on treatment
days 0–12 and ‘‘Cuff Vehicle’’< ‘‘Cuff Pregabalin
300 mg/mL’’ at p< 0.05 on treatment days 9–12;
Female mice: group� time interaction, ATS(5.9)¼ 5.1,
p< 0.001; multiple comparisons: ‘‘Cuff Vehicle’’<
‘‘Sham Vehicle’’ at p< 0.05 on treatment days 0–12
and ‘‘Cuff Vehicle’’< ‘‘Cuff Pregabalin 300 mg/mL’’ at
p< 0.05 on treatment days 9–12).

Chronic oral pregabalin treatment
in opioid receptor deficient mice

The MOP, DOP, or KOP receptors-deficient mice dis-
played baselines for mechanical sensitivity that were
similar to the wild-type littermates (Figure 2(b)). We
controlled in our facilities that morphine has no more
action in MOP-deficient mice.36 Two weeks after sur-
gery, we started the oral treatment with either pregabalin
(300 mg/mL) or vehicle (0.02% saccharin) solutions.
Pregabalin treatment alleviated cuff-induced allodynia
in wild-type mice (Figure 2(b); group� time interaction,
ATS(6.9)¼ 13.1, p< 0.001; multiple comparisons: ‘‘Cuff
Vehicle’’< ‘‘Cuff Pregabalin’’ at p< 0.05 on treatment
days 9–12). The same antiallodynic effect was also pre-
sent in MOP receptors (Figure 2(c); group� time inter-
action, ATS(5.2)¼ 10.4, p< 0.001; multiple comparisons:
‘‘Cuff Vehicle’’< ‘‘Cuff Pregabalin’’ at p< 0.05 on
treatment days 9–12), DOP receptors (Figure 2(c);
group� time interaction, ATS(7.1)¼ 8.8, p< 0.001;

4 Molecular Pain 0(0)



multiple comparisons: ‘‘Cuff Vehicle’’< ‘‘Cuff
Pregabalin’’ at p< 0.05 on treatment days 9–12), and
KOP receptors-deficient mice (Figure 2(c); group� time
interaction, ATS(5.5)¼ 8.4, p< 0.001; multiple

comparisons: ‘‘Cuff Vehicle’’< ‘‘Cuff Pregabalin’’ at
p< 0.05 on treatment days 9–12). Thus, pregabalin sup-
pressed cuff-induced allodynia independently of the pres-
ence or no of the opioid receptors.
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Figure 1. Chronic pregabalin treatment. (a) Two weeks after unilateral cuff insertion around the right sciatic nerve, chronic oral

treatment with pregabalin started and lasted three weeks. The animals (n¼ 5 per each group) freely drink pregabalin (5, 50, 100, or

300 mg/mL) with 0.02% saccharin, or vehicle composed of 0.02% saccharin in water, as sole source of fluid. Mechanical PWTwere evaluated

at indicated time points using von Frey filaments. Vehicle treatment did not affect mechanical sensitivity of either Sham or Cuff mice.

Pregabalin treatment was ineffective at dose 5 mg/mL, partially effective at dose 50mg/mL, and reversed the cuff-induced allodynia at doses

100 and 300 mg/mL. (b) Pregabalin treatment at dose 300 mg/mL had no effect per se on sham-operated mice. (c) Histogram showing the

equivalence between mg/mL and mg/kg/day of the different doses. (d) Time course of changes in the body weight of the animals throughout

the experiment. Data are expressed as mean� SEM.
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Naloxone effect on long lasting pregabalin treatment

We tested the consequence of an acute injection of the
opioid receptor antagonist naloxone (1mg/kg, s.c.) on
the antiallodynic action of pregabalin in C57BL/6
J male mice. After 10 days of oral treatment with prega-
balin or vehicle (Figure 3(a); group� time interaction,
ATS(11.1)¼ 9.3, p< 0.001; multiple comparisons: ‘‘Cuff
Vehicle’’< ‘‘Cuff Pregabalin’’ at p< 0.005 on postsur-
gery days 19 to 24 and ‘‘Cuff Pregabalin’’¼ (‘‘Sham
Pregabalin’’ or ‘‘Sham Vehicle’’) at p¼ 1.0 on postsur-
gery days 22 and 24), acute injection of naloxone did not
suppress the antiallodynic effect of chronic pregabalin
treatment (Figure 3(c)). We also observed that naloxone

per se had no effect in mice with Sham surgery or in mice
that received vehicle alone (Figure 3(b)).

Transitory relief of neuropathic allodynia
by acute pregabalin

In wild-type mice, an acute injection of pregabalin at a
high dose (30mg/kg, i.p.) had a transitory antiallodynic
effect in Cuff mice, without affecting Sham animals
(Figure 4; group� time interaction, ATS(2.7)¼ 12.3,
p< 0.001; multiple comparisons: ‘‘Cuff Pregabalin’’¼
‘‘Sham Pregabalin’’ at p> 0.7 on post-administration
time 60min and ‘‘Cuff Pregabalin’’< ‘‘Sham
Pregabalin’’ at p< 0.001 on post-administration time
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Figure 2. Effect of chronic oral pregabalin in opioid receptor deficient mice. Pregabalin treatment (300 mg/mL i.e 44.63 mg/kg/day in the

drinking water, with 0.02% saccharin) or control treatment (0.02% saccharin) started two weeks following surgery and lasted 12 days.

Mechanical allodynia was tested using von Frey hairs. (a) The mechanical sensitivity threshold (PWT) of female mice is lower than that of

male mice. However, both sexes developed mechanical allodynia similarly and pregabalin was effective in reversing the cuff-induced

allodynia in both male and female mice. Males and females were then pooled in each experimental group. (b) Chronic pregabalin treatment

abolishes the ipsilateral cuff-induced allodynia in wild type mice, as well as in MOP, DOP, or KOP receptors-deficient mice (c). (Data are

pooled from three independents experiments, each final group includes the same number of male and female mice, *p< 0.05 as compared

with Sham-operated control group drinking vehicle). Data are expressed as mean� SEM.
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0, 30, and 120min). The same transitory effect was also
present in MOP receptors (Figure 4; group� time inter-
action, ATS(1,.6)¼ 11.1, p< 0.001; multiple comparisons:
‘‘Cuff Pregabalin’’¼ ‘‘Sham Pregabalin’’ at p¼ 1.0 on
post-administration time 60min and ‘‘Cuff Pregabalin’’
< ‘‘Sham Pregabalin’’ at p< 0.01 on post-administration

time 0, 30, and 120min), DOP receptors (Figure 4;
group� time interaction, ATS(2.2)¼ 12.7, p< 0.001;
multiple comparisons: ‘‘Cuff Pregabalin’’¼ ‘‘Sham
Pregabalin’’ at p> 0.7 on post-administration time
60min and ‘‘Cuff Pregabalin’’< ‘‘Sham Pregabalin’’ at
p< 0.01 on post-administration time 0, 30, and 120min),
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Figure 3. Acute opioid receptor antagonist in chronic pregabalin treatment. (a) Two weeks after unilateral cuff insertion, the oral

treatment with pregabalin, or vehicle control started. Mechanical threshold of hindpaw withdrawal (PWT) was evaluated using von Frey

filaments. Pregabalin treatment suppressed the cuff-induced alloynia. (b, c) After at least 10 days of pregabalin (300 mg/mL i.e 44.63 mg/kg/

day, 0.02% saccharin) or vehicle treatment, the animals received an injection of the opioid receptor antagonist naloxone (1 mg/kg, s.c.) or

the control saline solution. Mechanical threshold for hindpaw withdrawal was measured before 30 and 120 minutes after injection. No

effect of naloxone or saline was seen in Sham mice or in pregabalin-treated neuropathic animals (n¼ 9–10, *p< 0.005 compared to the

Sham-operated control group). Data are expressed as mean� SEM.
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and KOP receptors-deficient mice (Figure 4; group-
� time interaction, ATS(2.3)¼ 10.5, p< 0.001; multiple
comparisons: ‘‘Cuff Pregabalin’’¼ ‘‘Sham Pregabalin’’
at p> 0.6 on post-administration time 60min and
‘‘Cuff Pregabalin’’< ‘‘Sham Pregabalin’’ at p< 0.01
on post-administration time 0, 30, and 120min). These
transitory antiallodynic effects disappeared 120min after
injection of pregabalin.

Naloxone effect on acute pregabalin treatment

Naloxone (1mg/kg) did not suppress the transitory anti-
allodynic action of acute pregabalin administration
(Figure 5(a); group interaction, ATS(1.0)¼ 181.7,
p< 0.001; multiple comparisons: ‘‘Cuff Saline’’< ‘‘Sham
Saline’’ at p< 0.001 for acute saline administration and at
p< 0.005 for acute naloxone administration) (Figure 5(b),
acute saline; group� time interaction, ATS(1.0)¼ 12.7,
p< 0.001; multiple comparisons: ‘‘Cuff Pregabalin’’
< ‘‘Sham Pregabalin’’ at p< 0.001 preinjection and
‘‘Cuff Pregabalin’’¼ ‘‘Sham Pregabalin’’ at p> 0.5 post-
injection; Acute Naloxone; group� time interaction,
ATS(1.0)¼ 13.7, p< 0.001; multiple comparisons: ‘‘Cuff
Pregabalin’’< ‘‘Sham Pregabalin’’ at p< 0.001 preinjec-
tion and ‘‘Cuff Pregabalin’’¼ ‘‘Sham Pregabalin’’ at
p> 0.8 postinjection).

Long-term pregabalin has an anti-TNF-� action

Using Western blot, we observed increased levels of the
membrane-bound form of TNF-a (mTNF-a) in the

lumbar DRG of C57BL/6J Cuff mice at four weeks post-
injury. The long-term treatment with pregabalin reversed
this increase in mTNF-a. (Figure 6; H(2.0)¼ 16.2,
p< 0.001; multiple comparisons: ‘‘Cuff
Vehicle’’> (‘‘Cuff Pregabalin’’ or ‘‘Sham Vehicle’’) at
p< 0.005).

Discussion

In the present work, we studied the role of opioid recep-
tors in both the long-term and the acute transitory anti-
allodynic action of systemic pregabalin in a model of
neuropathic pain. In both cases, we show that the
endogenous opioid system is not necessary for this
action. We also show that a long-term pregabalin treat-
ment suppresses the DRG TNF-a overexpression that
accompanies neuropathic pain.

Clinically, first line pharmacological treatments to
relieve neuropathic pain include anticonvulsants and
antidepressants. Gabapentinoid anticonvulsants, which
target the VDCCs a2d-1 subunit, have proved to be
effective in a number of neuropathic pain conditions.3,39

Similarly to many reports in various animal
models,6,20,40,41 we showed that pregabalin has a short-
term transitory antiallodynic action after an acute
administration; however, this effect cannot be considered
as representative of the main clinical therapeutic effect
since the mechanical allodynia reappears within 2 h fol-
lowing the injection. Interestingly, the benefit of prega-
balin treatment is sustained after three days of oral
administration, which is in agreement with other results

Acute 
Saline

Time (min)

0 60

Sal Sal

Time (min)

0 60

Sal Nal

Time (min)

0 60

P
W

T
 (

g)

Prega Sal

Time (min)

0 60

Prega Nal

* *

P
W

T
 (

g)

0
1
2
3
4
5
6
7

Sham, Saline (n=8)
Cuff, Saline (n=7)

* *

Sham, Saline (n=7)
Cuff, Saline (n=7)

0
1
2
3
4
5
6
7

* *
0
1
2
3
4
5
6
7

Sham, Pregabalin (n=8)
Cuff, Pregabalin (n=7)

0
1
2
3
4
5
6
7

Sham, Pregabalin (n=8)
Cuff, Pregabalin (n=7)

Acute 
Naloxone

Acute 
Saline

Acute 
Naloxone

(a) (b)

Figure 5. Acute opioid receptor antagonist in acute pregabalin treatment. Two weeks after unilateral cuff surgery, mice received an

injection of pregabalin (30 mg/kg, i.p.) or saline control; 30 min later, they received an injection of the opioid receptor antagonist naloxone

(1 mg/kg, s.c.) or control saline solution. Mechanical threshold for the right hindpaw (PWT) was measured before the first injection and

30 min after the second injection. (a) Naloxone and saline had no effect in Sham mice and in Cuff mice that received control treatment

(n¼ 7–8, *p< 0.005 compared to the Sham-operated control group). (b) Naloxone and saline had no effect in Sham mice and in Cuff mice

that received pregabalin treatment (30 mg/kg, i.p.) (n¼ 7–8, *p< 0.005 compared to the Sham-operated control group). Data are

expressed as mean� SEM.
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obtained with systemic delivery of another gabapenti-
noid, gabapentin,20,42 or in other neuropathic pain
models.24,43 This sustained action may more likely be
representative of the clinical use and action of gabapen-
tinoids in neuropathic pain.44,45

Critical aspects of mechanism(s) by which gabapenti-
noids alleviate neuropathic pain is (are) now well
described. Gabapentinoids inhibit calcium currents
through direct interaction with the a2d-1 subunit, thus
decreasing excitatory transmitter release and spinal sen-
sitization.8,46 This target subunit is upregulated in the
dorsal horn of the spinal cord and in DRG neurons in
several models of neuropathic pain and this increase
in a2d-1 correlates with the onset of allodynia.47

Furthermore, experiments performed in transgenic mice
overexpressing the a2d-1 subunit showed enhanced cal-
cium currents recorded in DRG neurons, as well as noci-
ceptive behavior characterized by hyperalgesia in the
absence of nerve damage.48 In contrast, a2d-1 deficient
mice display reduced DRG calcium currents, have lower
baseline mechanical sensitivity, and show delayed mech-
anical hypersensitivity after partial sciatic nerve liga-
tion.49 In DRG neurons, a2d-1 upregulation recruits
mitochondrial Ca2þ to prolong intracellular Ca2þ signals
evoked by depolarization.50 This mechanism may con-
tribute to the aberrant neurotransmission observed in
neuropathic pain. Pregabalin antiallodynic effect is asso-
ciated with decreased trafficking of the a2d-1 subunit to
presynaptic terminals of DRG neurons;8,46 and within
the dorsal horn, gabapentinoids also decrease the amp-
litude of excitatory postsynaptic currents.51

In addition to these actions, two studies suggested
that gabapentinoids may also recruit the endogenous
opioid system,18,19 which is well known for playing
a crucial role in the control of nociception and
pain.10,11,52 Indeed, the opioid antagonist naloxone

reversed the acute antinociceptive activity of a high
dose of pregabalin in naive mice.18 Another study also
showed an effect of naltrexone on the acute action of
gabapentin in a model of orofacial inflammatory
pain.19 These recent data differ from previous studies
on gabapentinoid drugs, which mostly reported nalox-
one to be ineffective in blocking gabapentinoid-induced
analgesia in different pain models.20–22 However, most of
these studies were not done in models of neuropathic
pain, which is the clinical pain condition for which gaba-
pentinoids have legal authorization for prescription in
various countries. Beside pharmacological approach,
the present study used genetic deletion of opioid recep-
tors for the first time, which further clarifies the involve-
ment of the opioid system in both acute and chronic
antiallodynic action of pregabalin in neuropathic pain.
We demonstrate that neither acute nor long-term anti-
allodynic effect of pregabalin requires the presence of
opioid receptors. Both our results and previous stu-
dies20–22 refute the involvement of the opioid system in
the antiallodynic action of pregabalin in neuropathic
pain, which does not exclude a possible involvement of
these receptors in gabapentinoid action on other types of
pain.

The opioid system via MOP, DOP, and KOP recep-
tors plays a crucial role in the inhibitory controls of
pain10,52,53 and also participates in the therapeutic
action of various pain killers. Thus, MOP receptors are
the primary molecular target for the analgesic action of
opioids such as morphine, codeine, fentanyl, or trama-
dol.10,54,55 Indirectly, the opioid system is also necessary
for the antiallodynic action of tricyclic antidepressant
drugs, which requires DOP receptors, but not MOP or
KOP receptors.11,36,56 Our results strengthen the idea
that antidepressant and anticonvulsant treatments allevi-
ate neuropathic pain through independent mechanisms.
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Figure 6. Long-term pregabalin displays an anti-TNF-a action on lumbar dorsal root ganglia of neuropathic mice. (a) Representative
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These mechanistic differences may be in favor of com-
bination pharmacotherapy for the management of
neuropathic pain using both gabapentinoids and anti-
depressants,57,58 although the benefit of such a com-
bination is still controversial,3,59 or using both
gabapentinoids and opioid drugs.14–17

In the last decade, there has been an increasing
number of studies which now provide compelling evi-
dence that neuropathic pain pathogenesis is not simply
confined to changes in the activity of neuronal systems,
but that it also involves interactions between neurons,
immune cells, and glial cells, including the involvement
of inflammatory cytokines and chemokines.25,60 Indeed,
peripheral nerve injury recruits the immune system at
various anatomical locations, including the lesion site,
DRG, spinal cord, and supraspinal sites associated
with pain pathways.25 Pro-inflammatory cytokines pro-
duced after nerve injury could participate to the initi-
ation and maintenance of neuropathic pain. Among
these cytokines, TNF-a has the ability to also favor pro-
duction of other cytokines.28 The direct anti-TNF-a
drugs infliximab and etanercept are clinically used to
treat autoimmune diseases,61 and these drugs have been
shown to have some action on neuropathic pain symp-
toms both in animal models and in humans.26,30,62–64

In particular, infliximab and etanercept can relieve
neuropathic allodynia in the model of neuropathic pain
used for the present study.26 Our results show that preg-
abalin can display an indirect anti-TNF-a action, as seen
on DRG from mice with neuropathic pain. This result is
in agreement with previous reports on gabapentin sug-
gesting an indirect action of this drug on cytokines.16,24

Thus, it has been proposed that gabapentin could upre-
gulate the expression of the anti-inflammatory cytokine
IL-10 in the spinal cord, leading to the inhibition of the
expression of pro-inflammatory cytokines, TNF-a, but
also IL-1b and IL-6.16,24

Conclusions

This study demonstrates that none of the three opioid
receptors is necessary for the antiallodynic action of
acute or chronic pregabalin in a neuropathic pain
context. Moreover, long-term pregabalin treatment
decreases TNF-a in DRG. Further studies will be
needed to elucidate the mechanism by which the direct
action of pregabalin on the neuronal VDCCs a2d-1 sub-
unit may downregulate DRG TNF-a expression, which
is mostly produced by non-neuronal cells. While the
direct action of pregabalin on its target provides an
explanation for acute pregabalin action at high dose,
the sustained effect of prolonged treatment suggests the
involvement of other downstream mechanisms the eluci-
dation of which may provide new candidates for
pharmacological targeting.
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