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Abstract: Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the
hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative
capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum
of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased
differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit
enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen
species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we
provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-
related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of
mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater
understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets
for preventing, delaying, or even reversing aspects of this process.

Keywords: hematopoiesis; hematopoietic stem cell; aging; mitochondrial metabolism; stem cell
exhaustion; ROS; inflammation

1. Introduction

Aging is a time-dependent degenerative process that affects all living organisms. Since
the aging population is inexorably growing, there is an imminent need to develop new
therapeutic strategies for ameliorating the age-related changes and/or disorders, and first
among these is hematopoietic aging. The milestone review paper of Reference [1] has
categorized the cellular and molecular hallmarks of this type of aging, which include both
mitochondrial dysfunction and stem cell exhaustion, the two main topics of this review.

Mitochondria were described as contributing to aging and degeneration as early as
already in the 1920s, when the “rate of living hypothesis” proposed that metabolic rates
inversely correlate with organismal lifespan [2]. Many researchers have since described
the links between mitochondrial biology and aging [3–6]. Stem cell exhaustion refers
to an impaired functionality of stem cells, which cannot maintain in the tissue in which
they reside. In particular, aging of the hematopoietic system displays decreased immune
response, declining immuno-competence, increased autoimmunity, diminished stress
response, late-onset anemia, reduced regenerative capacity, and increased predisposition
to a spectrum of diseases, including myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML) [7–10].

Several distinct features characterize aged hematopoietic stem cells (HSCs) (Figure 1) [11].
For example, it has been shown that phenotypic HSCs in the bone marrow increase in
frequency with age, while losing their functionality. Multiple studies have demonstrated a
differentiation bias toward the myeloid lineage; the aged murine hematopoietic system is
impaired in supporting leukocyte numbers, erythropoiesis, and both B- and T-lymphoid

Int. J. Mol. Sci. 2021, 22, 11117. https://doi.org/10.3390/ijms222011117 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6702-9735
https://doi.org/10.3390/ijms222011117
https://doi.org/10.3390/ijms222011117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222011117
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222011117?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 11117 2 of 16

cells in peripheral blood, while the numbers of myeloid cells are increased [12]. These
myeloid-biased HSCs express high levels of CD150 (signaling lymphocyte activation
molecule, or SLAMF1) and CD41 (integrin alpha 2, or Itga2b) proteins, which have been
used to identify the HSC clonal subtypes responsible for hematopoietic aging [13,14]. As
expected, stemness decreases in aged HSCs, which show reduced in vivo repopulation
capacity, as determined by serial transplantation assays [15], along with a 3-fold lower
efficiency in bone marrow homing after transplantation (Figure 1) [16].
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term (LT) HSCs exhibit different distribution patterns of CDC42, Tubulin, and AcH4K16, 
which is believed to be caused by the elevated activity of CDC42, and is linked to age-
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peculiar properties. Flow cytometry analysis of the murine bone marrow shows an increase in the phenotypic HSCs
(defined as c-Kit+Sca-1+Lin−CD135−CD48−CD150+) in old (18 months old, bottom panel) mice (far left). The HSC pool
includes balanced HSC, which in equal proportion differentiate in myeloid and lymphoid lineage (yellow, left); with age,
the myeloid-biased differentiation prevails at the expense of lymphoid cells (left). The self-renewal capacity typical of
HSCs is reduced upon aging (middle). Cytoskeletal polarity detected by CDC42 localization is lost in old HSCs where
CDC42 expression is homogeneously distributed (right). Aged HSCs display the mitochondrial damage with the altered
metabolism (far right).

Another key feature of aged HSCs is the loss of cell polarity. Young and aged long-term
(LT) HSCs exhibit different distribution patterns of CDC42, Tubulin, and AcH4K16, which
is believed to be caused by the elevated activity of CDC42, and is linked to age-associated
changes in self-renewal and differentiation capacity [12]. Additionally, HSC aging results
from cumulative cellular and genomic damage, which leads to permanent cell-cycle arrest,
apoptosis, or senescence [15,17,18].

Although historically DNA damage was thought to be the main cause of HSC ag-
ing, many new findings have defined an increasing number of biological processes that
intrinsically change with age in HSCs. These include epigenetics, chromatin architecture,
autophagy, proteostasis, and metabolic changes [19].

Since aged HSCs generally exhibit enhanced mitochondrial oxidative phosphorylation
(OXPHOS) and increased production of reactive oxygen species (ROS), it has often been
proposed that mitochondria play a direct role in compromising HSC functions [20,21]. Here, we
explore multiple aspects of the impact of the mitochondria on HSC aging. Several mechanisms
have been reported to contribute to aging, such as mitochondrial ROS production, alteration
in mitochondrial metabolism, and mitochondrial quality control pathways (Figure 2).
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of the electron transport chain (ETC) leads to oxygen hypersensitivity and premature aging of HSCs (pink). The mitochon-
drial unfolded protein response system (mtUPR) is affected by the aged-related loss of SIRT7, leading to accumulation of 
unfolded protein and mitochondrial stress (green). Accumulation of mtROS activates the NOD-, LRR-, and pyrin domain-
containing 3 (NLRP3) inflammasome, which triggers the release of inflammatory cytokines, such as IL-1β and IL-18 (or-
ange). Mitochondrial dysfunctions include accumulation of mtDNA mutations in aged HSCs (blue). 
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Figure 2. Mitochondrial contribution to aging. Aging process shows dysregulation of several pathway involving the
direct contribution of mitochondria. Mitochondrial reactive oxygen species (mtROS) accumulate after the impairment
of the major antioxidant defense systems, consist of Superoxide dismutase 2 (SOD2) and Catalase, caused by the aged-
related loss of FOXO3 and SIRT3 (grey). AKT/mTOR signaling is a key regulator of mitochondrial metabolism and, upon
aging, its imbalance causes mtROS accumulation, mitochondrial biogenesis, and an altered metabolism. Inhibition of
complex II of the electron transport chain (ETC) leads to oxygen hypersensitivity and premature aging of HSCs (pink).
The mitochondrial unfolded protein response system (mtUPR) is affected by the aged-related loss of SIRT7, leading to
accumulation of unfolded protein and mitochondrial stress (green). Accumulation of mtROS activates the NOD-, LRR-, and
pyrin domain-containing 3 (NLRP3) inflammasome, which triggers the release of inflammatory cytokines, such as IL-1β
and IL-18 (orange). Mitochondrial dysfunctions include accumulation of mtDNA mutations in aged HSCs (blue).

2. Mitochondrial ROS

Since the frequency of HSCs with low levels of ROS decreases with age, ROS gen-
eration/accumulation can be considered a distinctive characteristic of aging [22]. Proper
levels of ROS are important mediators of various signal transduction pathways. However,
increased levels of ROS affect HSCs’s lifespan [20], self-renewal [23,24], and differentia-
tion [25,26]. ROS contribute to HSC aging and senescence, and excessive ROS generation
induces apoptotic cell death in HSCs [20,23,27,28]. Increase in ROS levels in adult HSC
have similarities with the aging phenotypes, such as myeloid lineage skewing and defective
long-term repopulation activity [29,30]. On the other hand, very low levels of intracellular
ROS in HSCs are essential to maintaining HSCs quiescence [22]. Mitochondria produce
around 90% of cellular ROS, and the impairment of mitochondrial function, for example, by
the loss of the Polycomb repressor BMI1, causes a major increase in intracellular ROS [31].
Aging of mitochondria leads to an overload of ROS, which further damage the mitochon-
dria, resulting in perpetual cell cycling [32]. Evidence for this has come from studies of
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the effects of FOXO transcription factors, key players in the oxidative stress response, on
HSC fitness. Genetic variation within the FOXO3 gene is associated with human longevity
and aging phenotypes [33]. Mice carrying triple conditional deletions of FOXO1, FOXO3a,
and FOXO4 genes in the adult hematopoietic system exhibited myeloid lineage expansion,
lymphoid developmental abnormalities, and a decreased long-term repopulation ability
in vivo while increased ROS levels [30]. Another study from Dr. Tosho Suda’s group also
demonstrated that FOXO3a-deleted HSCs can neither maintain quiescence nor support
long-term reconstitution of hematopoiesis in vivo [34]. FOXO3a deficiency increased levels
of ROS and downregulated several cyclin-dependent kinases inhibitors, resulting in the exit
of HSCs from quiescence. This boosted sensitivity to cell-cycle-specific myelotoxic injury,
and loss of self-renewal capacity during aging [34]. FOXO3a knockout HSCs also showed
lower expression of mitochondrial Superoxide dismutase 2 (SOD2) and Catalase, two FOXO
targets involved in ROS detoxification [35,36]. Further, FOXO3 has been shown to be crucial
for the regulation of mitochondrial respiration in HSCs, which, under disrupted conditions,
generate more ROS [29]. This strengthens the hypothesis that FOXO3a deficiency causes
HSCs cell cycle abnormalities via mitochondrial ROS dysregulation.

Mitochondrial ROS levels and the related signaling pathways, thus, represent a major
player in regulating the long-term self-renewal, activation, proliferation, differentiation, and
aging of HSCs. Similar roles could also be played by extrinsic factors and the surrounding
microenvironment (see Box 1), which can have a direct impact on ROS levels and the
signaling pathways regulating HSCs homeostasis [10].

ROS are produced as by-products of mitochondrial respiration; their production is
increased, and they are accumulated when mitochondrial respiration is altered. The major
ROS source is the mitochondrial electron transport Chain (ETC), which is widely targeted
by mitochondrial DNA (mtDNA) mutations [37], as described in detail in the following
dedicated paragraphs.

Box 1. Bone Marrow Microenvironment.

Upon aging, drastic changes to the bone marrow microenvironment may serve as an extrinsic
factor that promotes HSC aging. These changes include higher levels of several niche-derived
soluble factors, such as the pro-inflammatory CC-chemokine ligand 5 (CCL5), osteopontin, and
CXCL12 [38–40], as well as niche anatomical remodeling [41,42]. Pro-inflammatory cytokines
increase with age in the bone marrow microenvironment of both mice and humans, driving myeloid
differentiation [43]. In aged-related myeloid malignancies, such as myeloid proliferative neoplasms
and chronic myeloid leukemia, serum interleukine (IL)-1β and IL6 levels are elevated [44,45]. Further
studies will clarify whether inflammation is the cause or the consequence of HSC aging. Anatomical
and functional remodeling of the HSC niche accelerates myeloid-lineage cell expansion during aging.
Maryanovich et al. demonstrated that bone marrow vasculature and its associated stromal cells are
remodeled in elder mice, and that this is associated with progressive deterioration of the sympathetic
nervous system (SNS). SNS neuropathy is an early driver of niche aging, and loss of SNS by surgical
denervation or genetic deletion of neurotransmitter-targeting β3 adrenergic receptors induces the
remodeling of the HSC niche and leads to premature aging-like changes in HSCs [46]. Another
study also suggested that, during normal aging, increased β2 adrenergic receptors activity promotes
IL6-dependent myeloid differentiation and subsequent premature HSC aging [47].

3. Mitochondrial Metabolism

Despite the high preference of mitochondria for glycolysis, recent studies have also
highlighted the importance of mitochondrial respiration to HSC for proliferation and
maintenance [48–50]. We have recently shown that HSCs have a relatively high number of
mitochondria, which are not completely inactive [51]. Indeed, mitochondrial membrane
potential (∆Ψmt) is high in HSCs, although ATP production or intracellular ROS levels
are low [52,53]. The higher complex II: complex V ratio gives rise to high ∆Ψmt in HSCs
due to limited coupling of the electron transport chain (ETC), which supports the idea
that mitochondrial complex II is pivotal for both HSC maintenance and the prevention
of the aging process [53]. Indeed, inhibition of complex II reduces the in vitro colony-
replating capacity of HSCs [53], and genetic mutation of mev-1, a subunit of the succinate
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dehydrogenase cytochrome b enzyme, which is a component of complex II, leads to oxygen
hypersensitivity and premature aging of HSCs [54]. Studies of C. elegans uncovered that the
mutated or silenced components of ETC or the ATP synthase can markedly extend [55–57]
or reduce lifespan [58]. Although these varying experimental results must eventually be
resolved, it is clear that imbalances in ETC activity are closely linked to the overall survival
of the organism. Interestingly, a recent paper showed that ∆Ψmt is a source of heterogeneity
in old HSCs, with a prevalent fraction of low ∆Ψmt in aged HSCs. Enhancement of ∆Ψmt by
mitoquinol (Mito-Q), a mitochondrial-targeted coenzyme-Q10 [59], successfully increased
∆Ψmt of old HSCs and ameliorated or prevented onset of aging phenotypes [60].

HSCs are mainly dormant but can become highly active on demand, either to maintain
hematopoietic homeostasis by replenishing matured/immature hematopoietic cells, or to
respond to situations of emergency, such as infection or blood loss [61]. This shift requires
a metabolic switch from glycolysis to mitochondrial oxidative phosphorylation, which is
precisely regulated by various signaling pathways. The mammalian TOR (mTOR) pathway
is a key regulator of cellular and mitochondrial metabolism. mTOR directly controls
the mitochondrial oxidative function through a YY1–PGC-1α (peroxisome proliferator-
activated receptor gamma coactivator 1-alpha) transcriptional complex [62]. Defects of
Tuberous sclerosis complex subunit 1 (TSC1), the major negative regulator for mTOR [63], lead
to increased mitochondrion biogenesis and accumulation of ROS. Blockade of ROS activity
in vivo restores these HSC defects, demonstrating that the TSC-mTOR pathway controls
the quiescence and on-demand functions of HSCs by repressing ROS production [64,65].

HSCs exhibit low AKT/mTOR activity, but, upon stress, upregulation of this path-
way drives dormant HSCs toward activation [64,66]. Interestingly, the dysregulation of
AKT/mTOR signaling correlates with the aging process in HSCs [67]. Experimental evi-
dence has shown that mTOR activation is involved in HSC aging, as well as that rapamycin
treatment restores HSC potential and prolongs the lifespan of mice [68]. mTOR activity
is higher in HSCs from elder mice than younger mice, and mTOR activation, through
conditional deletion of TSC1 in the HSCs of young mice, mimics the phenotype of HSCs
from aged mice; similarly, in older mice, rapamycin restores the self-renewal capacity of
HSCs and, importantly, correlates with increased life span [68].

ASXL1 is frequently mutated in age-related clonal hematopoiesis. Its mutation ac-
tivates the AKT/mTOR pathway, causing aberrant cell cycle progression in the HSC
compartment and provoking HSC dysfunction. This is associated with mitochondrial
activation, elevated ROS levels, and increased DNA damage, leading to age-associated
phenotypes, such as myeloid-biased differentiation, hypocellular bone marrow, and in-
creased frequency, of phenotypic LT-HSCs. Inhibition of the AKT/mTOR pathway can
partially rescue these phenotypes, suggesting its involvement in the enhanced aging of the
hematopoietic system [69].

A similar phenotype is observed in wild-type p53-induced phosphatase 1 (WIP1),
which is highly expressed in HSCs but decreases with age. WIP1-deficient (WIP1−/−)
mice exhibit multiple aging-like phenotypes in HSCs, including declines in reconstitution
ability and HSC expansion. Mechanistically, their impaired regenerative capacity is due to
a p53-mediated differentiation defect, whereas increasing numbers of WIP1−/− HSCs are
associated with mTOR-mediated cell cycle progression of HSCs [70]. Notably, experimental
results have shown that aged HSCs have higher mTOR [71] activity levels, as well as that
its inhibitor rapamycin can restore the self-renewal of aged HSCs, an effect which can be
translated to human HSCs [72].

Recent advances have demonstrated that epigenetic, transcriptional, and post-transcriptional
mechanisms also control the quiescence of HSCs, which are maintained in a paused state
that allows for rapid activation [73]. Mitochondrial activity modifies the epigenetic state of
cells affecting their aging process [74]. Citric acid, generated by the tricarboxylic acid (TCA)
cycle in the mitochondria, modulates histone acetylation and gene expression through its
conversion to acetyl-CoA [74]. Mitochondrial fatty acid oxidation (FAO) also generates
acetyl-CoA for histone modification in HSCs [75].
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Sirtuins are a family of protein deacetylases, which regulate the mitochondrial metabolic
checkpoint in stem cells, and they are key regulators of stem cell aging [21,76]. SIRT3 plays
a critical role in the mitochondria, where it deacetylates two critical lysine residues on
SOD2 to promote the antioxidative activity. Brown and colleagues have demonstrated
that SIRT3 is highly enriched in HSCs, as well as is suppressed with aging [77]. Although
SIRT3 has no effect on HSCs maintenance or tissue homeostasis at a young age under
homeostatic conditions, it is essential under stress or in old age. Indeed, SIRT3 loss induces
HSC quiescence and compromises regenerative capacity in old mice [77].

SIRT1 is a key regulator of HSCs self-renewal and lineage specification under home-
ostasis. Interestingly, Ghaffari’s group has shown that loss of SIRT1 causes anemia and
myeloid expansion at the expense of the lymphoid compartment, overlapping features
with aged HSCs. SIRT1 plays a role in HSCs homeostasis by targeting FOXO3, a longevity
transcription factor and mitochondrial ROS regulator [78].

Another key regulator of metabolism is nicotinamide adenine dinucleotide (NAD+).
Decreased levels of NAD+ are associated with cancer, metabolic disorders, and physiolog-
ical and accelerated aging processes [79–81]. Supplementation of nicotinamide riboside
(NR), a NAD+ precursor, significantly improved lifespan and health span in model of aged-
related disease, such as ataxia–telangiectasia mutation (ATM), thanks to the improvement
of both DNA damage repair and mitophagy [71,82]. Murine models of ATM loss show
defects in DNA damage repair associated with mitochondrial dysfunction [83] and loss of
hematopoietic stem cell (HSC) potential [23]. NR treatment caused significant alterations
in lineage commitment of HSCs with enhanced lymphoid potential [84].

4. Mitochondrial Quality Control

Increased evidence indicates that mitochondrial integrity is disrupted during ag-
ing, and this contributes to the pathogenesis of age-related disorders in humans [3,85].
Mitochondria have evolved multiple mechanisms to guarantee mitochondrial quality. For
instance, mitochondrial chaperones and proteases prevent the accumulation of misfolded
and aggregated proteins by monitoring proteostasis through the mitochondrial unfolded
protein stress response (mtUPR) [86], a mechanism that has been shown to be critical
for longevity in mammals [87,88]. The mtUPR is a cellular protective program that en-
sures proteostasis in the mitochondria and is activated by mitochondrial protein folding
stress [89]. mtUPR has recently emerged as a regulatory mechanism for adult stem cell
maintenance [21,90–92]. This protective program is dysregulated during physiological
aging, which contributes to the functional deterioration of stem cells, tissue degenera-
tion, and shortened organismal lifespan [21,91]. SIRT7 is an NAD+-dependent H3K18Ac
(acetylated lysine 18 of histone H3) deacetylase originally studied for its role in cancer
cells [93]. Mohrin et al. have shown that SIRT7 represses the expression of mitochondrial
ribosomal proteins in order to regulate mtUPR and reduce mitochondrial protein folding
stress [21]. SIRT7 ablation leads to loss of quiescence and aging phenotypes in HSCs,
including reduced regenerative capacity and the myeloid-biased differentiation [21].

Stem cells exhibit high levels of autophagy as part of their physiological state [94].
Autophagic activity is necessary for the self-renewal and differentiation capacities of stem
cells, particularly HSCs [95]. Autophagy is closely linked with health and longevity, and
impaired levels of autophagy in aged HSCs leads to the accumulation of mitochondria,
which in turn induces metabolic stress [96,97]. Lysosomal sequestration of mitochondrial
enhances the regenerative capacity of HSCs [98]. Overall, autophagy declines in aged stem
cells, contributing to loss of quiescence, senescence, and, ultimately, degeneration [99].

Deregulation of other compensatory mitochondrial protective programs, such as
mitophagy and mitochondrial dynamics, also affect stem cell maintenance highlighting
the importance of mitochondrial integrity [95–97,100–102]. Indeed, mitochondria are
dynamic organelles existing in large tubular and highly dynamic networks that constantly
undergo fission and fusion processes, thereby leading to the dilution of non-functional
mitochondria [103]. The effects of mitophagy and mitochondrial fusion/fission process
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on health and lifespan has been particularly demonstrated by using the model organisms
C. elegans and D. melanogaster. For instance, the overexpression of the mitochondrial fission
protein dynamin-related protein 1 (DRP1) increased the healthy lifespan in flies [104]. The
importance of mitochondrial fission on drosophila lifespan was further demonstrated by the
observation that lifespan extension caused by the overexpression of p62 was abrogated in
DRP1 mutant flies [105]. Lifespan extension in flies was also observed after overexpression
of mitophagy key proteins, such as PARKIN and PINK1 [106,107]. These findings are
consistent with studies in C. elegans, where mitophagy has been shown to contribute to
lifespan regulation [108,109].

5. Inflammation

The natural aging process is associated with activation of the innate immune system,
which results in a low-grade chronic pro-inflammatory status, even in the absence of overt
diseases [43,110]. Aged-related inflammation (inflammaging) is due to the systemic over-
abundance of pro-inflammatory cytokines, such as IL-1, tumor necrosis factor (TNF), and
IL-6 [111,112]. Several studies focused on HSCs have shown that inflammatory signaling
induces the differentiation of the myeloid progenitor cells required to withstand harmful
stimuli [112–114]. Specifically, IFN-α and IFN-γ activate HSCs entry into the cell cycle
and boost the myeloid-biased differentiation of HSCs [115,116], as well as IL-1β, which
promotes myeloid lineage biased differentiation of HSCs [117].

Notably, this cytokine network, termed the senescence-associated secretory phenotype
(SASP) [118], may be initiated by senescent cells producing IL-1α in the bone marrow
microenvironment (Box 1) [119]. HSCs do not solely show mitochondrial defects; for
example, CD4+ T cells from elderly people display an elevated number of dysfunctional
mitochondria engulfed into autophagosomes compared to cells from young people, sug-
gesting the presence of a defective mitochondrial turnover. These defective mitochondria
may be the source of inflammatory stimuli and contribute to the impairment of immune
defenses in the elderly [120,121].

Aged HSCs exhibit increased NF-κB activity mediated by RAD21/cohesion, which
enhances sensitivity to inflammatory stimuli, higher production of IL-6, and myeloid-
biased hematopoietic differentiation [122]. Recently, the Wang group has shown that
systemic level of TNF-α, a well-known biomarker of inflammation, increases with age
and induces the expression of IL27Ra in HSCs via ERK-ETS1 signaling [123]. The chronic
inflammatory process associated with aging leads to dysfunctional differentiation of stem
cells, loss of self-renewal capacity, and further promotion of HSC aging [124].

The relevance of mitochondria to the pro-inflammatory response has been largely stud-
ied as a source of damage-associated molecular patterns (DAMPs) during cell death [125].
Mitochondrial DAMPs include mtDNA, cytochrome c, ROS, and ATP, which, when re-
leased in the cytosol, are recognized by the cell as a red flag of danger and trigger apoptosis
or necrosis [125]. Besides pro-apoptotic signals, mitochondria DAMPs are also potent
immunostimulators. The exposure to mtDNA triggers a variety of innate immune re-
sponses due to its bacterial origin [126], and the modulation of ROS signaling causes the
activation of the principal component of innate immunity, the NOD-, LRR-, and pyrin
domain-containing 3 (NLRP3) inflammasome [127,128].

The use of specific mitochondria ROS scavenger, the mito-TEMPO, inhibit the NLRP3
inflammasome activation, reducing the up-regulation of IL-1β and IL-18 induced by
lipopolysaccharide (LPS) [127,129]. Luo et al. recently demonstrated that mitochondrial
stress activates the NLRP3 inflammasome in HSCs as part of the key role played by mi-
tochondria in the inflammation process during aging [130]. ROS are a metabolic danger
signal and activate an innate immune sensor, the NLRP3 inflammasome. Once triggered,
the NLRP3 inflammasome induces pro-inflammatory cytokine secretion and/or caspase
1-dependent cell death [131]. NLRP3 is highly expressed and studied in myeloid cells; how-
ever, it is also expressed and functions in HSCs [130]. NLRP3 is a substrate of SIRT2, which
inhibits NLRP3 activity through deacetylation [132]. The reduced expression of SIRT2 in
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aged HSCs enhances the activity of the NLRP3 inflammasome, which increases susceptibil-
ity to mitochondrial stress-induced stem cell deterioration. Interestingly, the overexpression
of SIRT3 or SIRT7 (described above) reduces caspase 1 activity and improves the function of
aged HSCs [130], tightening the link between mitochondria and inflammation.

Finally, patients with high levels of circulating mtDNA (described in the next section)
show higher concentrations of IL-6, TNF-a, RANTES, and IL-1 [133].

6. Mitochondrial DNA Mutations

The human mtDNA genome encodes 13 genes, 22 tRNAs, and 2 rRNAs [134]. These
13 genes encode for core subunits of the electron transport chain (ETC) complexes and
the ATP synthase. During aging, mtDNA accumulates mutation, causing dysfunction
of mitochondria and the respiratory chain [135]. Several papers proposed that mtDNA
mutations play a key role in aging [3,136,137]. mtDNA has a much higher mutation rate
than nuclear DNA [138,139]. Indeed, the mtDNA spatial proximity to the site of ETC-
mediated ROS production make it particularly susceptible to ROS damage. In addition,
differently from the nuclear DNA, mtDNA cannot be organized in highly compacted
structures by histones, enhancing the probability of coping errors introduced during
replication [140]. Interestingly, it has been reported that the aged population has a higher
mtDNA copy number in blood [141,142] and exhibits mtDNA heteroplasmy, i.e., the
presence of more than one type of organelle genome [143,144]. Of note, individual mtDNA
mutations were found in centenarians [145]. One example is represented by A5178C
mutation in MT-ND2 gene, which encodes the NADH dehydrogenase 2, a subunit of ETC
complex I. This mutation confers protection on mitochondria against oxidative damage
contribute to longevity [146].

Conplastic mice strains are a suitable model system for the study of specific mtDNA
variations and their influence on ROS and ATP levels upon aging [147]. In this paper, con-
plastic mouse strains C57BL/6Ntac-mtAKR/J (mtAKR), C57BL/6Ntac-mt129S1SvlmJ (mt129S1),
C57BL/6Ntac-mtNOD/LTJ (mtNOD), and the background strain C57BL/6Ntac (B6Ntac) were
used to investigated their hematopoietic changes during aging. The three mouse strains
harbor specific polymorphisms in the mtDNA affecting complex I, III, and IV of respiratory
chain [148]. The presence of mtDNA polymorphisms in these subunits of the respiratory
chain decreased intracellular ROS levels and lymphocyte counts during aging [148].

Although somatic mtDNA mutations accumulate in multiple tissues with age [136],
its causal role in tissue aging remains to be clarified [149]. The direct effects of mtDNA
mutations have been studied through the analysis of a mouse model carrying a proofreading-
defective mitochondrial DNA polymerase (POLGAD257A) [150]. The consequent accumu-
lation of mtDNA mutations led to premature aging of the mice, which showed hair loss,
weight loss, osteoporosis, anemia, and myeloid lineage skewing with lymphopenia [150–154].
Accumulating mtDNA point mutations destabilized ETC complexes I, III, and IV, leading
to respiratory chain deficiency [155]. The POLGAD257A did not show an increase in ROS
production [156], but an antioxidant treatment has separately been shown to rescue ery-
throid differentiation in embryos [151,152]. Chen et al. showed that POLGAD257A mutant
animals develop an age-dependent, macrocytic anemia with abnormal erythroid matu-
ration and megaloblastic changes, as well as profound defects, in lymphopoiesis. These
abnormalities phenocopy patients with myelodysplastic syndrome (MDS) and refractory
anemia, suggesting that abnormalities of mitochondrial function can be involved in the
pathogenesis of the diseases [157].

In humans, POLG (DNA Polymerase Subunit Gamma) mutations were not linked to
symptoms of premature aging, even though they are one of the most frequent causes of
mitochondrial disease [158]. Mice carrying a defect in mitochondrial genome maintenance
exonuclease 1 (MGME1) showed mtDNA replication defects and developed a severe
multisystemic mitochondrial disorder [159] without signs of premature aging [160]. All
things considered, mitochondrial dysfunctions caused by accumulating mtDNA mutations
has been shown to cause multiple hematopoietic defects that are typically seen in the
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elderly, but mtDNA mutations alone may not be responsible for the phenotype associated
with aging HSCs [161–163].

Dr. Sankaran’s group has recently presented a new fascinating tool for the studying of
mtDNA mutation. They developed a high-throughput platform for measuring mtDNA
mutation heteroplasmy, along with accessible chromatin states, in thousands of single
cells [164,165]. Performing clonal tracing in human hematopoiesis in vivo has the potential
to resolve the clonal heterogeneity within malignancies and the aging process.

7. Conclusions and Future Perspective

With a better understanding of the mechanisms of HSC aging, researchers will be
able to explore new opportunities to prevent, delay, or even reverse aspects of this process.
In this review, we summarize accumulating evidence that support the concept that mito-
chondrial stress is one of the main drivers of stem cell deterioration with age. Targeting
mitochondrial protective pathways could, therefore, allow us to protect stem cells from
aging, with important therapeutic implications.

Since the studies of HSC aging have been performed, for the most part, in mouse
models, it is crucial to determine whether these findings can be translated to humans.
Increasing evidence has revealed a phenomenon termed age-related clonal hematopoiesis
(ARCH), describing a clonal expansion of blood cells derived from mutated HSCs in
aged humans [166]. Single-cell sequencing of sorted cell populations is able to identify
even subclonal mutation inside the stem cell pool, revealing the high complexity of this
process [167]. It would be of great interest to determine whether the mitochondria plays a
role in the development of human clonal hematopoiesis.

Finally, a better understanding of the molecular properties of the clonal subclass of
myeloid-biased HSCs may provide insights into the onset of clinically age-dependent
hematological disorders/malignancies derived from stem cells. ARCH can be a precursor
to MDS, and MDS is associated with age with a median age at diagnosis of 65–70 years.
AML is an aggressive hematological disorder mainly affecting people of advancing age,
and 30% of patients with AML are 75 years or older [168]. Notably, we recently revealed a
mitochondrial ROS senescence pathway triggered by Nucleophosmin 1 mutant (NPM1c),
PML, and TP53, which plays a crucial role in actinomycin D-based therapies in AML [169].
This supports the idea of mitochondria as potential therapeutic target.
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