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A B S T R A C T   

With the emergence of the COVID-19 pandemic, early diagnosis of lung diseases has attracted 
growing attention. Generally, monitoring the breathing sound is the traditional means for 
assessing the status of a patient’s respiratory health through auscultation; for that a stethoscope is 
one of the clinical tools used by physicians for diagnosis of lung disease and anomalies. On the 
other hand, recent technological advances have made telehealth systems a practical and effective 
option for health status assessment and remote patient monitoring. The interest in telehealth 
solutions have further grown with the COVID-19 pandemic. These telehealth systems aim to 
provide increased safety and help to cope with the massive growth in healthcare demand. 
Particularly, employing acoustic sensors to collect breathing sound would enable real-time 
assessment and instantaneous detection of anomalies. However, existing work focuses on 
autonomous determination of respiratory rate which is not suitable for anomaly detection due to 
inability to deal with noisy data recording. This paper presents a novel approach for effective 
breathing sound analysis. We promote a new segmentation mechanism of the captured acoustic 
signals to identify breathing cycles in recorded sound signals. A scoring scheme is applied to 
qualify the segment based on the targeted respiratory illness by the overall breathing sound 
analysis. We demonstrate the effectiveness of our approach via experiments using published 
COPD datasets.   

1. Introduction 

Respiratory diseases are worrisome for medical providers and constitute a major cause of hospitalization. These illnesses can be 
fatal, especially for elders and people with weak immune systems. The COVID-19 pandemic has made respiratory illnesses a big 
concern, where we have witnessed the unfortunate loss of lives at a historic rate just due to the pandemic. According to the World 
Health Organization (WHO) global impact import (Forum of International Respiratory Societies, 2017), respiratory diseases are the 
leading causes of death and disability in the world. Chronic obtrusive pulmonary disease (COPD) is the most prevalent, with more than 
65 million people suffering from COPD each year and 3 million deaths, making it the third leading cause of fatality worldwide. Some 
other respiratory diseases of concern include Asthma, Pneumonia, acute respiratory tract infections, tuberculosis, lung cancer, 

* Corresponding author. 
E-mail address: lloyd.emokpae@lasarrus.com (L.E. Emokpae).  

Contents lists available at ScienceDirect 

Smart Health 

journal homepage: www.elsevier.com/locate/smhl 

https://doi.org/10.1016/j.smhl.2022.100329 
Received 27 April 2022; Received in revised form 21 July 2022; Accepted 29 September 2022   

mailto:lloyd.emokpae@lasarrus.com
www.sciencedirect.com/science/journal/23526483
https://www.elsevier.com/locate/smhl
https://doi.org/10.1016/j.smhl.2022.100329
https://doi.org/10.1016/j.smhl.2022.100329
http://crossmark.crossref.org/dialog/?doi=10.1016/j.smhl.2022.100329&domain=pdf
https://doi.org/10.1016/j.smhl.2022.100329


Smart Health 26 (2022) 100329

2

emphysema, Bronchiolitis, Alpha-1 and cystic fibrosis. Traditionally, some of these respiratory diseases can be diagnosed using 
stethoscopes for assessing breathing regularity or coughs (Turner & Bothamley, 2014). Such diagnostics opt to determine the fre-
quency of breathing and/or cough events over a given time interval to ascertain the presence of abnormal sounds such as wheezing, 
crackles, rhonchi, and others. Given the use of conventional stethoscopes, the diagnostics are often performed during in-person 
physician visits. 

With the rise in healthcare cost and stress on facilities caused by high demand, especially during the COVID-19 pandemic, tele-
health systems have become attractive options where patients can be monitored remotely without the need for visiting clinics and 
hospitals. A telehealth system consists of a set of sensors that are attached to the patient’s body; these sensors share their data, either 
raw or preprocessed, with remote healthcare providers to assess the patient conditions. The major advancements in wireless tech-
nologies and microelectronics have made these networked solutions quite effective and inspired automation in the diagnostic process, 
most notably for lung diseases (Gurung et al., 2011; Rao et al., 2019). This workflow is illustrated in Fig. 1, which depicts the use of a 
telehealth system for remote auscultation and monitoring of respiratory symptoms. Several algorithms have been proposed for 
automated processing of breathing sound recordings. Examples include LifeShirt (Grossman, 2004), Vitalojak (Smith & Woodcock, 
2008), and Pulmotrack (Vizel et al., 2010), and many others (Hall et al., 2020), where either digital signal processing (DSP) or machine 
learning techniques are employed to detect adventitious patterns (anomaly) in the collected acoustic measurements. In the context of 
respiratory illness, such anomaly detection is conducted at the level of breathing cycle. 

We note that in a telehealth system data is streamed; thus, it is necessary to analyze the collected data and apply anomaly detection 
in real-time (Ahmad et al., 2017). Automatic detection of breathing cycles in a noisy recording is challenging, not to mention the 
variability of the breathing pattern among individuals based on health conditions, activities, body composition, age, race, gender, etc. 
In essence, the effectiveness of a respiratory telehealth system is dependent on the recording conditions including the patient’s 
proximity to the microphone, sensor sensitivity and breathing intensity. The recorded sound waveforms are also affected by the 
ambient noise in case of contactless and body-attached sensors, respectively (Massaroni et al., 2019). Existing algorithms do not deal 
with the noise in real-time and rely on simple signal processing primitives (Cohen-McFarlane et al., 2019). In this paper we address the 
aforementioned issues and promote a novel automated data-driven segmentation (AUDAS) mechanism of recorded chest sound to 
detect breathing cycles in real-time. AUDAS strives to optimally partition the streamed data based on contextual information, spe-
cifically the respiratory illness that is being tracked. In other words, the quality of a segment is gauged in terms of the exhibited 
anomalous pattern. In this paper we use the International Conference on Biomedical Health and Informatics (ICBHI) database 
(Moussavi, 2006) for illustrating the utility of our segmentation mechanism and assessing its performance. The results show the 
outstanding performance of AUDAS. The main contribution of this paper is summarized as follow:  

- The development of a context aware acoustic signal segmentation mechanism for medical diagnostics. Our mechanism achieves 
accurate disease classification with real-time symptom detections.  

- The design of a lightweight classifier for the detection of breathing cycles and development of a scoring method to increase the 
efficiency of the segmentation using a learning approach.  

- Demonstrating the utility of our segmentation mechanism and assessing its performance using popular datasets. 

The paper is organized as follows. The next section discusses related work in the literature. Section 3 enumerates the challenges and 
provides an overview of the proposed solution. Section 4 describes AUDAS in detail. The validation results are reported in Section 5 
and the paper is concluded in Section 6. 

2. Related work 

The use of DSP techniques has been popular for conducting automated respiratory sound analysis (Moussavi, 2006). However, with 
the recent major advances in machine learning algorithms and the availability of cloud resources, data-driven methodologies have 
become the most attractive option, especially with their ability to personalize the analysis and conduct it in real-time (Kim et al., 
2021a; Srivastava et al., 2021). Anomaly detection based on streamed data has been attracting increased attention (Ahmad et al., 
2017); yet the focus has been on matching certain signal patterns, e.g., temporal patterns. In our case, the diagnostic process is not only 
based on breathing sounds (features) but also on the breathing rate; both of which vary, and hence signal segmentation would be 
necessary. Quite a few approaches, e.g. (Mukherjee et al., 2021),- (Ma et al., 2020), have been proposed to classify the lung sound and 

Table 1 
A comparative summary of the capabilities of AUDAS to those of published approaches.  

Features and Usage Automated Segmentation Lung Sound Classification Breathing Cycle Lung Function Assessment 

AUDAS ✓ ✓ ✓ ✓ 
Ahmad et al. (Ahmad et al., 2017)  ✓   
Mukherjee et al. (Mukherjee et al., 2021) ✓ ✓   
Rao et al. (Rao et al., 2018) ✓ ✓   
Demir et al. (Demir et al., 2020) ✓ ✓   
Fraiwan et al. (Fraiwan et al., 2021)    ✓ 
Hsiao et al. (Hsiao et al., 2020) ✓  ✓  
Jacome et al. (Jácome Cristina et al., 2019) ✓ ✓ ✓   

W. Lalouani et al.                                                                                                                                                                                                      



Smart Health 26 (2022) 100329

3

detect anomalies. AUDAS complements these approaches. Basically, in order to apply the lung sound classifier, the breathing cycle 
needs to be determined. Moreover, the breathing rate plays a major role in the diagnostics, and a lung sound classifier alone would not 
suffice (Nicolò et al., 2020). 

Segmenting a breathing sound signal is complicated by the background noise (Emokpae et al., 2021). Some work has focused on 
tackling the noise effect at the sensor level by factoring in other modality (Gupta et al., 2021). However, acoustics continue to be 
predominantly the most acceptable means for diagnosing respiratory illness and automating the analysis of collected sound signals is 
highly desired for the feasibility of the corresponding telehealth systems. The incorporation of breathing sound analysis is becoming 
more popular in telehealth systems both for monitoring illness symptoms and fitness during exercises (Gu et al., 2017)- (Oletic & Bilas, 
2016). However, the breathing cycle is assumed to be fixed in size despite variation among individuals. Such an assumption makes data 
segmentation quite simple, yet it is not practical and can lead to delayed response to alarming development, e.g., in the case of COPD. 

Partitioning a signal into segments of different sizes based on the contextual features is quite challenging. Some prior studies 
considered such segmentation for modality other than acoustics. For example, Haddad, and Najafizadeh (Haddad & Najafizadeh, 
2019) factored in the spatial distribution of active cortical neurons in the temporal partitioning of the EEG signal into segments. 
Obviously, the contextual features for sound signals is different from EGG signals and other sensor modality. Work on segmentation of 
sound signals either considers simple statistical measures, e.g., covariance, (Paul and Shoukat Choudhury, 2015), or pursue a greedy 
approach with unbounded complexity with no notion of global optimality (Bosse et al., 2018). Some have mainly focused on collecting 
accurate training data to develop a segmentation classifier. For example, Kong et at (Kong et al., 2019). use time and frequency 
masking to detect specific sound patterns to overcome weakly labeled data. Meanwhile, Martín-Morató et al. (Martín-Morató et al., 
2021) and Fraiwan et al. (Fraiwan et al., 2021) assume fixed size segments and pursue crowdsourcing to determine the boundary of 
specific sound patterns. 

There have also been some published approaches that investigate dynamic window sizes for segmenting breathing cycles. Hsiao 
et al. (Hsiao et al., 2020) promote dynamic segmentation to detect inspiratory or expiratory sounds using the encoded spectrogram on 
an attention-based decoder. Although their approach achieves high segmentation accuracy, it involves a complicated architecture and 
does not suit real-time respiratory monitoring. Jacome et al. (Jácome Cristina et al., 2019) propose a model for breathing phase 
detection based on Faster R–CNN object detection system. However, these dynamic segmentation approaches are limited to detecting 
respiratory periods and cannot be applied to assess lung function status (Emokpae et al., 2022). For patients with COPD, being able to 
assess changes in lung function will enable early treatment intervention. Traditionally, these changes are typically captured by 
calculating both the forced expiratory volume in 1-s (FEV1) and the forced vital capacity (FVC) through gold-standard spirometry. 
Whereby the ratio of FEV1 to FVC can be used to diagnose if a patient has COPD (Pellegrino et al., 2005). In our recent publication 
(Emokpae et al., 2022), we show that we can leverage features of breathing cycles with normal and deep breaths to estimate lung 
function status. The proposed AUDAS approach enables automated segmentation of breathing features which can be used to compute 
FEV1 and FVC, for effective COPD diagnosis. Unlike prior work, AUDAS factors in the contextual features in the segmentation process 
to detect abnormal sounds and symptoms in order to optimize the selection of the segmentation option that better reflects the con-
ditions of the monitored individual. Please refer to Table 1 for a comparative summary of AUDAS to published approaches. 

3. Design goals and approach overview 

We are considering a telehealth system that consists of wearable sensors and is connected to remote facilities or caregivers through 

Fig. 1. Illustration of a telehealth system used for remote patient monitoring of respiratory illness symptoms.  
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wireless communication links. The sensor data is processed to assess the wellbeing of the monitored individual. Such processing is 
performed by a computationally capable server or using cloud resources. The paper further focuses on wearable acoustic sensors that 
are attached to the chest and provide sound recording to diagnose respiratory illness conditions. The balance of this section highlights 
the technical challenges associated with the automation of chest sound analysis, and how AUDAS tackles these challenges. 

3.1. Requirements and challenges 

Generally, telehealth data has streaming nature and is characterized by irregularity and correlation over time. Particularly these 
characteristics are quite influential for systems that utilize acoustic signals to assess lung conditions, where the breathing cycle and 
sound vary from one person to another and even for the same person based on activities and illness. Appropriate segmentation of the 
collected data is necessary to adapt to changes. These characteristics make the traditional anomaly detection algorithms unsuitable. 
Specifically, we are confronted with the following challenges:  

(1) The wearable sensors are geared for timely and continual assessment of patient’s conditions and generate streamed data at a 
high sampling rate; hence, it is important to employ data segmentation that enables performing diagnostics in real-time.  

(2) The collected data is inherently correlated, and distinct data streams provide different features (varying dimensionality); 
inappropriate data segmentation may prevent the learning mechanism from capturing important features and degrade the 
diagnosis accuracy.  

(3) Like traditional anomaly detection, the telehealth real-time data can be very noisy. The source of the noise includes sounds from 
other body organs, e.g., heart, or due to external noise from the environment. This is illustrated in Fig. 2, which shows a 
combination of breathing sounds with S1/S2 heart sounds collected by our wearable sensor used in breathing analysis 
(Emokpae et al., 2021). Ensuring accurate anomaly detection in presence of noise is necessary for accurate diagnosis. 

We argue that signal processing techniques for segmentation constitute a more deterministic way to distinguish the breathing 
cycles, yet they do not factor in the variability between the patients and the impact of significant noises within the data streaming. 
Data-driven approaches are more appropriate to deal with the aforementioned challenges, and cope with such variability. 

3.2. Approach overview 

Overall, the design goals of an anomaly detection mechanism for telehealth systems are: (i) enabling continual incorporation of 
streaming data transfer under constrained devices and network resources, (ii) providing timely reports to users (patients and pro-
viders) to avoid missing any alarming patient’s conditions, and (iii) striving to accurately reflect the status of the participant. To 
achieve these goals, AUDAS pursues extraction of contextual information to segment the collected data to meaningful records that 
provide the most evidence about the user status. The irregularity of the user’s activities and sensing capabilities constitute an 
important challenge. To illustrate, acoustic measurements of breathing could be irregular depending on the type of activities and the 
biomedical state of the participant. On the other hand, the sensors may be relocated according to the user movement, which creates 
variability even when there are no changes in the user’s health conditions. Extracting the most relevant set of samples is a very 
challenging problem and is subject to the data semantic. 

AUDAS pursues an adaptive data segmentation process that factors in the relevance to the underlying application. The collected 
data will be considered in batches; the batch size depends on the sampling rate, buffer size and communication link/protocol for the 
wearable device, e.g., acoustic sensor in case of lung function monitoring. For each batch, AUDAS strives to find the best segmentation. 

Fig. 2. Recording of lung and heart sounds taken from left thorax with our wearable sensors. It shows noise due to regular heart sounds that affect 
the analysis of breathing information. 
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The quality of a certain combination of segments is based on the utility of the individual segments with respect to the diagnostic 
objective. To assess the quality of a segment, AUDAS employs a machine learning (ML) model based on segment patterns that are being 
detected from the labeled data. In the case of respiratory diseases, the ML model considers distinct spectral features within annotated 
breathing cycles, coughs, wheezes, etc. The ML model will be initially trained offline and could further be adjusted over time. The data 
segment is used as an input (test data) to the ML and the classification confidence is used to assign a score for the segment. AUDAS 
employs a varying time window size to determine possible segments; each is scored through the trained ML model. Finally, all segment 
options within a batch are considered to determine the best combination that maximizes the average segment score. 

4. Detailed AUDAS design 

As pointed out earlier, existing schemes for automated respiratory disease diagnostics usually analyze the breathing sound to infer 
the rate and detect adventitious lung sounds, e.g., wheezing, crackles, etc. However, these schemes assume that the signal is already 
segmented accurately, and their objective is just to classify the sounds. Furthermore, they are sensitive to the background noise and 
quality of the recorded breathing sounds. In addition, the microphone position on the chest could vary due to motion and physical 
activities. AUDAS strives to overcome these issues and achieves a robust assessment of the patient’s chest conditions. As explained in 
the balance of this section, AUDAS slices the sound recording while factoring in the overall diagnostics goal of the telehealth system. 
The idea is to qualify the various segmentation options based on the importance of exhibited features to the goal of distinguishing the 
various sound patterns. A classifier is then applied to the individual segments to detect the symptoms of underlying disease in order to 
provide real-time diagnostics. 

4.1. Segmenting sound recording 

As pointed out in Section 2, traditional segmentation algorithms do not consider relevant contextual information in the process, and 
hence their performance is degraded in the presence of noise and variability in the sensor measurements. AUDAS overcomes such a 
shortcoming and applies a dynamic data stream segmentation strategy that factors in the correlation and the contextual significance of 
the collected data samples. Let σ denote the output of a classifier that is built offline in order to detect normal and abnormal sound 
patterns in the data as specified by the application, e.g., detecting wheezes. Such a classifier is used by AUDAS to distinguish relevant 
parts of the data and assess the quality of a segment. AUDAS selects a slicing window W of data points, reflecting samples of the 
acoustic signal. We regard such a set of data points as an m-dimensional feature vector xi = (xi,1, xi,2,…, xi,m). Unlike existing seg-
mentation schemes, the size of W in AUDAS is not fixed and varies based on the relevance of the features. 

Varying the window size comes at a cost of computational complexity. Assuming that the measurements are disseminated from the 

Fig. 3. Flowchart description of the proposed AUDAS algorithm for segmenting chest sound recordings.  
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wearable system to the server in batches of size Ω data points. Dynamic segmentation in AUDAS is a combinatorial problem that can be 
mapped to the problem of partitioning a set into k subsets, which has a runtime complexity of O(2Ω). Such a partitioning problem is 
known to be NP-Hard. To mitigate the complexity, we consider the cross-correlation among different segments and formulate the 
problem as dynamic programming to determine the most rewarding non-overlapping partitions, where rewarding here implies 
relevance to the sound pattern detection process and the overall objective of accurate anomaly detection. Given the objective function 
MaxPart which returns the maximum reward decomposition D = (r1, …, rn), the segmentation optimization is defined by the following 
recursive function: 

MaxPart
(
ri, rj

)
=max

{
rwd

(
ri, rj

)
+MaxPart(ri + 1, ri), rwd

(
ri + 1, rj

)}
(1)  

where ri, and rj are the current sample, and the sample at the beginning of the last considered segment, respectively, MaxPart(ri, rj) is 
the maximum reward decomposition from sample ri to W, and rwd is the confidence score of the ML classifier, which will be explained 
in the next subsection. Dynamic programming can reduce the runtime complexity to O(n2) where n is the maximum number of possible 
samples; yet such complexity continues to be high for large batches. 

To limit the complexity, AUDAS exploits the semantics of a window size with respect to the application. For example, in the context 
of respiratory diseases, the breathing cycle reflects the window that is considered, where the breathing sound and frequency are used 
by the classifier to detect anomalies. Hence, AUDAS employs a lower and upper bounds, denoted by WL, and WH, for the window size. It 
has been noted in (Nuckowska et al., 2019) that an inspiration and expiration cycle can take as much as 5 s and as small as 2 s. In 
addition, AUDAS considers the sampling frequency of the acoustic signal in order to avoid processing irrelevant segments, where a step 
size δ is used to align the window size boundaries with the data points. The segmentation heuristic goes as follows. A data point 
corresponding to WL is considered as a segment and fed to the classifier to obtain the corresponding σ. The window size is iteratively 
extended by δ and the associated σ is calculated, accordingly. Such a gradual increase of window size, i.e., growing it by δ, seizes when 
reaching WH. Fig. 3 provides a summary of steps for AUDAS. As captured by the inner loop in the figure, AUDAS considers all feasible 
window sizes in the range [WL, WH]. 

While Eq. (1) considers every data point as the possible start of a window, by considering WL to be the least window size, AUDAS 
reduces the number of combinations by a factor of WL. Consequently, the runtime complexity of the segmentation process becomes 

O
((

n
WL

)2
)

. The outer loop in Fig. 3 reflects the start of a new segment, assuming minimum spacing, i.e., at i.WL, where i = 1, 2, … ,

⌈(Ω.δ)/WL⌉. Overall, the number of possible segments, ν, that AUDAS considers are WH − WL
δ

⌊
Ω.δ
WL

⌋
+

Ω.δ−
⌊

Ω.δ
WL

⌋
WL

δ , where WH − WL
δ reflects the 

number of iterations in the inner loop and the term (Ω.δ − ⌊(Ω.δ) /WL ⌋ W L )/δ captures the case the block size is not a multiple of WL. 

4.2. Best segmentation option 

As explained in the previous subsection, AUDAS explores the various segmentation options within a batch and associates a score for 
each of the considered segments. Basically, segments are ranked based on their utility for the application. To capture the feature 
relevance, AUDAS employs a ML model that is to be trained offline. As shown in Fig. 3, the model will be consulted for each possible 
segment. The model is to generate a score, σ, that reflects the feature relevance. In AUDAS, σ is taken to be the probabilistic confidence 
of the output of the ML classifier. This fits scenarios where the classifier maps the segment to one a discrete set of classes with 
probabilistic ranges for each segment. The score in this case reflects how closely the features of the segment match those of the picked 
class, and hence a higher confidence implies better segment score. To illustrate, we can apply Support vector machines (SVM), and use 
the probabilistic score for each class, or alternatively capture the result of a softmax function at the output of a neural network to 
associate a confidence level of the classification. In other words, if the telehealth system is monitoring the heart or lung of a patient, the 
relevance of the features provided by a segment for assessing the conditions of such an organ is the ranking criterion. As shown in 
Fig. 3, the model will be consulted for each possible segment. The question that remains is how to pick the best set of segments. Two 
clear requirements can be pointed out: (i) the picked segments should not overlap, and (ii) the set of segments should cover the entire 
data batch. 

While quite a few selection criteria could be considered, AUDAS favors maximizing the average segment score as an objective of the 
segment set selection optimization. The rationale is that the entire data batch can be covered by sets of different cardinality. Maxi-
mizing the average score implies the incorporation of the fewest and most indicative segments. To illustrate, let us compare two sets X 
and Y with scores {0.75, 0.70, 0.80} and {1., 0.40, 0.30, 0.70}, respectively. While Y yields the best total score, it includes segments 
with low scores. The segments in set X, on the other hand, have consistently high scores. The average score for X and Y is 0.75 and 0.6, 
respectively, which makes X preferable. We note that the variance will not be a better metric than average score since it may yield a set 
of segments with consistently low scores. 

The segment selection optimization is also a combinatorial problem; yet the two aforementioned requirements, specifically non- 
overlap and coverage, enable pursuing an efficient solution. AUDAS models the segments as vertices in a graph and captures adja-
cency (consecutiveness in time) among segments using edges. The weight of an outbound edge of a vertex reflects the score (σ) of the 
corresponding segment. By using such a graph model, the selection optimization becomes finding the best (least average cost) path 
from the beginning of the batch to its end. Numerous algorithms can be employed to solve such a shortest path in a graph problem with 
runtime complexity of Θ(E + ν logν), where ν is the number of segments and E is the number of edges in the graph (Sniedovich, 2006). 
Fig. 4 explains the segment selection process through an example where two segmentation options are considered. The example shown 
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in Fig. 4 is mainly for illustration purposes, in practice the number of segments created with AUDAS will be larger. In the figure, a link 
exists between each pair of consecutive segments, e.g., ξ1 and ξ2. The presence of multiple outgoing links implies multiple segment 
sequences, and hence multiple segmentation options for the data batch. Furthermore, the links from segment ξ′

4 to ξ5 and to ξ′

5 in the 
graph reflect adjacency as ξ′

4 ends at 30, where both ξ′

5 and ξ5 start. Clearly the number of possible segmentations depends on WH, WL 
and σ. AUDAS strives to provide a general solution to determine the most rewarding segmentation for accurate diagnosis of respiratory 
diseases. 

5. Validation experiments 

To validate the effectiveness of AUDAS, we consider a case study of detecting acute symptoms that are indicative of possible COPD 
exacerbations. In this section, we provide the details of the study and present the obtained results. 

5.1. COPD detection classifier 

Data Collection: We used a dataset of lung diseases collected from real patients. The dataset, namely, ICBHI (Rocha et al., 2019), 
contains labeled respiratory diseases including: COPD, Bronchiectasis, Asthma, upper and lower respiratory tract infection, Pneu-
monia, Bronchiolitis. The dataset also includes respiratory sounds, with categorized acute symptoms such as Crackle, Wheeze, Both 
(Crackle & Wheeze), and Normal. The data is for 128 patients (64 with COPD) and 920 audio recordings, for a total of 5.5 h with 
sampling frequency that vary between 4 and 44.1 kHz. The data has been segmented according to the breathing cycle. In practice, such 
segmentation is not provided in the telehealth system and typically involves further investigation by a specialty provider, e.g., pul-
monologist or respiratory therapist. Although technique of signal processing can be used for that purpose, the variability of the signal 
prevents such techniques from converging to the most useful segmentation for anomaly detection. For training, we carefully selected 9 
subjects (patients) to assess the quality of the overall segmentation. The selection criterion is based on the balance between COPD 
patient and normal subjects while considering all their respective annotated segments. The remaining subjects are further separated 
into two sets; one is used for the breathing/non-breathing classification and the other is used for COPD diagnosis. Within each category 
we have used cross validation to provide the final results for the classifiers. Such a split of the dataset mitigates the effect of any overlap 
between the training and test. To assess the effectiveness of AUDAS in handling noisy data, we augment the training dataset with 
incoherent segments that correspond to incorrect cycles of crackles and wheezes. 

Feature Extraction: It has been shown that spectral features enable the distinction among cough sounds (Pramono et al., 2016). We 
leverage such a finding to distinguish among indicative and inconclusive breathing sound segments. The following is the list of features 
used in the experiment: the energy peak of the signal envelope, the zero-crossing rate, the phase power ratio, the spectral centroid, 
skewness, roll-off, spread factor, bandwidth, kurtosis, spectral flatness. In addition, we have used the mean and standard deviation of 
the Mel-frequency Cepstral Coefficients (MFCC) and the Crest Factor. The overall dataset has been normalized. An SVM classifier is 
employed to score the segment options. The classifier is based on an RBF kernel where γ = 2 and C = 1.The scores are computed like 
indicated in eq. (1). 

Disease Classifier: For this, we construct a mel-spectrogram for COPD. As the measurements are of contact-based sensors, the 
energy of the signal is concentrated in different frequency bands. Thus, we applied signal transformations to keep 75 percent of the 
energy for each spectrogram. To detect COPD symptoms in each of the AUDAS-generated segments, we employ convolutional neural 
network (CNN) architecture. The CNN contains four convolutional layers with kernel size 3 × 3. The convolutional layers contain 
respectively 64, 32,28, 64 neurons. We then introduce a nonlinear layer using Relu for activation, while the last layer applies a Softmax 
function with two outputs. We use max-pooling layers in between the convolution layers. The classifier architecture is depicted in 
Fig. 5. 

Fig. 4. Illustrating the modeling of the various segmentation options as a graph to enable the selection of the best set of segments.  
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5.2. Metrics and results 

First, we validate the performance of the scoring of individual segments. Fig. 6 shows the performance of the underlying SVM 
classifier for detecting valid segment and discriminating crackles, wheezes and normal sounds from invalid ones. The performance is 
reported in terms of accuracy, precision, recall and F1 score. The plot reflects scores for actual breathing segments in the dataset and 
the incoherent ones. The classifier performance for incoherent segments is marked as “NonBreath” in the figure. The results in Fig. 6 
demonstrate the effectiveness of AUDAS in detecting breathing cycles, with performance exceeding 90% for all metrics. We have also 
assessed the utility of the segments generated by AUDAS in respiratory disease diagnosis, specifically COPD. Fig. 7 reports the per-
formance of the CNN architecture employed to detect COPD. As seen in the figure, the CNN-based COPD classifier achieves outstanding 
results in terms of accuracy, precision, recall and F1-score. We later compare AUDAS with fixed segmentation. 

Next, we evaluate the effectiveness of AUDAS’ dynamic adjustment of the window size. The performance is assessed in terms of the 
accuracy of the generated segments relative to the ground truth (annotated segments in the dataset). The performance is also compared 
to segmentation using fixed window settings with various window sizes. Basically, we use the annotated segments as an input to the 
CNN classifier and note the COPD detection accuracy. We then do the same for segments generated by AUDAS and the fixed window 
(static) approach. The latter simply reflects running our CNN model against fixed size segments. Fig. 8 reports the COPD classification 
accuracy relative to that achieved using the annotated segments, where a value of one implies that the real-time segmentation is 
perfectly matching reality. We note that for this figure, we have resampled the sound signals so that the segmentation is based only on 
4 KHz sampling rate. Such a step is motivated by the fact that the dataset is based on mixed sampling rates. The largest window size in 
the experiment is 5 s, which corresponds to the largest inspiration and expiration cycle as is pointed out in (Nuckowska et al., 2019). 
Hence, the largest window size in figure (5 sec.) corresponds to 20,000 samples. Fig. 8 show that AUDAS significantly outperforms the 
version of the COPD classifier that uses fixed window sizes. The results show diminished relative accuracy for increased window sizes. 
This is attributed to the fact that actual segment sizes vary and could be much smaller than the fixed window; consequently, the 
segmentation accuracy degrades. Yet with respiratory illness the breathing cycle length is irregular and the dynamic approach of 
AUDAS is deemed more appropriate as confirmed by the results. For normal conditions AUDAS is found to produce relatively stable 
segment sizes. 

As explained in Section 4, AUDAS employs dynamic programming in order to provide the most insightful approximation while 
considering the least execution time. To assess the divergence from the exact segmentation and the effectiveness of our objective 
function over many segments, we tracked the accumulated error trends, measured using mean absolute error (MAE), for the static 
(fixed size) segmentation and that of AUDIS. Based on the results in Fig. 9, AUDAS achieves the best MAE due the irregularity of the 
segmentation and inability to static segmentation to capture such variability. 

Fig. 10 demonstrates the performance of AUDAS in terms of anomaly detection accuracy while varying the signal to noise ratio 
(SNR). To study the impact of the noise, we have considered recordings with − 50 to 15 dB of SNR range. We partitioned the data 
according to the SNR for each segment, and then measured the accuracy on the COPD detection for each segment. The figure shows the 
observed accuracy for the different SNR ranges. Clearly, AUDAS achieves a major gain in accuracy relative to fixed-size segmentation. 

Fig. 5. Illustrating the design of the employed CNN classifier for COPD diagnosis.  

Fig. 6. Assessment metric for the scoring function of AUDAS.  
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Such a gain scales when the SNR increases, given the positive impact of the signal quality (features) on the diagnostics. As expected, a 
high SNR enables AUDAS to match the accuracy to the annotated data. 

We again note that AUDAS enables not only the detection of diseases but also the extraction of acute symptoms. The latter can be 
used to assess severity and track progression. Published approaches for detecting lung diseases, e.g., (Fraiwan et al., 2021), do not have 
such capability as strong as AUDAS. We have conducted additional experiments to highlight such an advantage. Fig. 11 studies the 
performance of AUDAS in terms of accurate detection of abnormal chest sounds detection. The results in the figure assess the 
detectability of abnormal sound patterns, e.g., wheezes, crackles, etc., for AUDAS in comparison with the approach of Fraiwan et al. 
(Fraiwan et al., 2021). The underlying classifier used in such an approach is based on VGG16 (a CNN that is 16 layers deep) and 
assumes fixed window sizes. The results of AUDAS in that figure are based on feeding the generated (dynamic) segments to the 
classifier of (Kim et al., 2021b). We partitioned the data according to AUDAS segmentation algorithm and compared the detection of 
symptoms using (Kim et al., 2021b). As indicated by the figure the dynamic segmentation has improved the detectability of abnormal 
chest sounds. As illustrated in Fig. 11, AUDAS achieves a major gain in accuracy relative to fixed-size segmentation. The effectiveness 

Fig. 7. COPD Detection based on segments generated by AUDAS.  

Fig. 8. The effect of window size on the segmentation accuracy.  

Fig. 9. AUDAS′ dynamic setting of the window size minimizes the segmentation error.  
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of AUDAS in detecting lung diseases and abnormal symptoms (sounds) is achieved due to its context aware segmentation. 
To assess the suitability of AUDAS for real-time processing of streamed sound data, we have used an Arduino platform that is 

clocked at 16 MHz. The detection of normal/abnormal using AUDAS is estimated to be 0.3 s. We note that more capable embedded 
platforms, e.g., Arduino DUE, could achieve more than 5 times reduction in execution time. Prior work, e.g., (Nuckowska et al., 2019), 
has pointed out that an inspiration and expiration cycle takes as much as 5 s and as little as 2 s. Hence, AUDAS can robustly meet the 
timing constraint, i.e., complete processing one cycle before the end of the next cycle. In other words, AUDAS can be applied in 
real-time. The whole algorithm including the CNN-based disease diagnosis took about 26.84s using Arduino; we note, however, that 
the CNN classifier is to be executed on the cloud and hence its execution can be expedited massively. To compare the computational 
overhead with competing dynamic segmentation schemes, we have implemented the approach of (Fraiwan et al., 2021), which also 
employs a CNN model. We have assessed the computational complexity in terms of the number of parameters, where our CNN model 
for COPD detection is found to involve 34,542 parameters compared to 191,042 parameters for the baseline approach; in other words, 
the complexity of AUDAS is approximating 5 times less. 

6. Conclusions and future work 

The COVID-19 pandemic has brought respiratory illness to the spotlight and highlighted the importance of telehealth systems. 
Analyzing the lung sound and monitoring the breathing rate are the conventional means for detecting and tracking symptoms of 
respiratory diseases. Automating such a process in a telehealth system requires attaching acoustic sensors to the patient’s chest and 
recognizing the breathing cycles within the lung sound signal. However, determining the breathing cycles in real-time is complicated 
by the fact that they vary over time depending on the patient’s conditions and activities. This paper has presented, AUDAS, a novel 
context-aware segmentation mechanism. AUDAS applies a scoring scheme to qualify the segment based on the targeted respiratory 
illness. To overcome the variability of the breathing rate, AUDAS pursues a dynamic window size to detect segment boundary and 
applies a dynamic programming method to determine the best segmentation of a lung sound recording. We have demonstrated the 
effectiveness of AUDAS via experiments using a published COPD dataset. In the future, we plan to study the applicability of AUDAS to 
other sensor modalities and investigate the possibility of using disease-based classification to fine tune the segment boundary 
recognition module within AUDAS. In addition, we envisage to adapt our segmentation algorithm to personalized diagnostics, e.g., 
personalize the window size. 

Fig. 10. The effect of SNR on COPD detection accuracy for AUDAS as compared to annotated (ground truth) and fixed segmentation sizes.  

Fig. 11. The effect of the segmentation on the accurate detection of abnormal chest sound.  
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