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INTRODUCTION

Although the prevalence of tuberculosis (TB) has been decreas-
ing,1 the incidence of nontuberculous mycobacteria (NTM) 
diseases is increasing both worldwide and in South Korea.2,3 
As NTM can be found in soil, dust, and water, including natu-
ral water sources such as lakes, rivers, and streams, as well as 

in municipal water sources,4 isolated NTM were initially con-
sidered to be merely contaminants and non-pathogenic. How-
ever, the incidence of diseases caused by NTM has increased, 
along with an increase in the number of case reports and case 
series from diverse countries and regions, showing pronounced 
differences in the distribution of NTM clinical isolates in dif-
ferent regions and countries.5

The exact cause of the observed increase in NTM diseases is 
not well-understood; however, increased elderly population, 
decreased immune function, and exposure to environmental 
mycobacteria have been reported to be possible causative fac-
tors.3,6 Since immune function becomes compromised with 
age, the incidence of NTM infections is higher in elderly peo-
ple than in younger populations.7 Immunocompromised indi-
viduals are also at high risk for NTM infections. The vast major-
ity (95%) of Acquired Immune Deficiency Syndrome (AIDS)-
related Mycobacterium avium complex (MAC) infections are 
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due to M. avium, not M. intracellulare, and M. avium infections 
typically occur when the CD4 cell count is below 0.05×109/L.8-10 
Therefore, compromised cellular immunity is likely to be a 
risk factor for infections due to M. avium but not due to M. in-
tracellulare.10 Although both M. avium and M. intracellulare 
are MAC species and aquatic organisms, their niches are dif-
ferent: M. avium tends to grow in aqueous suspensions, 
whereas M. intracellulare forms biofilms.11,12 Han, et al.10 
showed that in non-AIDS patients, M. intracellulare is more 
pathogenic, and M. intracellulare infections in women tends 
to increase with age beyond menopause (>50 years), regard-
less of any underlying disease. In addition, their study re-
vealed a high prevalence of M. intracellulare in men with lung 
cancer, implying that prior lung injury caused by cancer risk 
factors, such as smoking, predisposes lung tissues to attach-
ment by the microbe, subsequently leading to colonization and 
infection.

With this background in mind, our retrospective study was 
performed to determine longitudinal changes in the epidemi-
ology and distribution of NTM species over 13 years at a tertia-
ry care hospital located in the southwestern region of Gang-
won-do in South Korea.

MATERIALS AND METHODS

Data collection
From January 2007 to December 2019, relevant data were col-
lected through the laboratory information system at Wonju 
Severance Christian Hospital, and all data were decoded auto-
matically. Collected specimens were classified as pulmonary or 
extrapulmonary. If the same mycobacterial species was identi-
fied in several lower-respiratory specimens [i.e., sputum and 
bronchoalveolar lavage (BAL)] from the same patient during 
follow-up, only one of the initially isolated mycobacterial strains 
was included in the analyzed set of isolates.

Acid-fast bacillus staining and culturing for 
Mycobacterium identification
Specimens, with the exception of body fluids, were decontami-
nated using the N-acetyl-L-cysteine (NALC)–2% sodium hy-
droxide (NaOH) method. Decontaminated specimens were 
stained with auramine–rhodamine, and the results were con-
firmed by Ziehl–Neelsen staining. The presence of acid-fast ba-
cilli (AFB) in a specimen was defined as follows: trace, 1–2 AFB 
per 300× field; 1+, 1–9 AFB per 100× field; 2+, 1–9 AFB per 10× 
field; 3+, 1–9 AFB per 1× field; and 4+, more than 9 AFB per 1× 
field. The NALC–NaOH-pretreated specimens were then inoc-
ulated onto Ogawa solid medium (Shinyang Chemical, Seoul, 
South Korea). Beginning on September 1, 2008, liquid medium 
was also used [mycobacteria growth indicator tubes (MGITs); 
Becton Dickinson Diagnostic Systems, Sparks, MD, USA]. After 
June 2012, Ogawa medium (Union Lab, Seoul, South Korea), 

sourced from the Korean Institute of Tuberculosis (Osong, 
South Korea), was used. Inoculum maintained in Ogawa me-
dium was incubated at 37°C and 5% CO2 for 8 weeks, and in-
oculum maintained in MGITs was incubated in the BACTEC 
MGIT 960 system (BD Diagnostic Systems, Sparks, MD, USA) 
for 6 weeks. A 1 mL aliquot from each MGIT culture was tested, 
and those that tested positive were subjected to AFB staining 
for verification. Contaminated cultures were excluded.

Molecular identification of Mycobacterium
DNA purification protocols were medium-type specific. Sam-
ples from cultures maintained in Ogawa medium were obtained 
using an inoculation loop and suspended in 200 μL sterilized 
distilled water in a 1.5 mL microtube. This mixture was centri-
fuged at 13000×g for 3 min, and the supernatant was removed. 
In contrast, for cultures maintained in MGIT tubes, 1 mL sam-
ple was removed, placed in a 1.5 mL microtube, and centrifuged 
at 13000×g for 3 min. The supernatant was removed, and a 1 mL 
aliquot of distilled water was added to the pellet, vortexed thor-
oughly, and centrifuged again at 13000×g for 3 min. For both 
sample types, after the supernatant was removed, 100 μL ex-
traction buffer was added, and the sample was heated at 100°C 
for 20 min and centrifuged at 13000×g for 3 min.

For mycobacterial identification, extracted DNA was ana-
lyzed using Myco-ID (M&D Inc., Wonju, South Korea), which 
is based on restriction fragment length polymorphism.13 How-
ever, for samples collected after December 2, 2014, the AdvanS-
ure Mycobacteria GenoBlot Assay (LG Chem, Cheongju, South 
Korea) was used for mycobacterial identification. This assay 
can classify and identify Mycobacterium tuberculosis complex 
(MTBC) species, as well as 20 different NTM species. The re-
verse line blot hybridization assay was processed using an Ad-
vanSure hybridizer (LG Chem), and patterns in the line strips 
were subjected to automated analysis using AdvanSure Geno-
Line Scan (LG Chem).14 To distinguish M. abscessus and M. 
massiliense, the presence of the erythromycin ribosome meth-
yltransferase (erm) gene was confirmed using the ERM-plus 
real-time PCR kit (LG Chem; not a commercial product). MAC 
was defined as a group of mycobacteria comprising M. avium, 
M. intracellulare, and M. avium-intracellulare.

Statistical analysis
The statistical significance of the recovery rates of MTBC and 
NTM according to sex and age was analyzed using chi-square 
and Fisher’s exact tests. All probability values were two-sided, 
and p values less than 0.05 were considered statistically signifi-
cant. Statistical analyses were performed using IBM SPSS Sta-
tistics v. 25.0 (IBM Corp., Armonk, NY, USA).

Ethical approval
In accordance with government regulations, the need for ethi-
cal review by the Institutional Review Board (IRB) was waived, 
and the exemption was approved by the IRB of Wonju Sever-
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ance Christian Hospital (approval no. CR320013).

RESULTS

After excluding duplicates, a final set of 7674 mycobacterial 
isolates (from a total of 17996) was identified. The most com-
mon mycobacterial species were MTBC (61.1%), M. intracellu-
lare (19.7%), M. avium (7.1%), M. fortuitum complex (1.9%), M. 
abscessus (1.8%), M. gordonae (1.3%), M. kansasii (0.4%), M. 
chelonae (0.4%), and M. massiliense (0.3%). MAC accounted for 
69.3% of the NTM isolates (Table 1). 

The frequency of isolation of Mycobacterium species accord-
ing to specimen type was analyzed. M. gordonae (98.0%), M. 

massiliense (96.2%), and M. kansasii (93.9%) were mostly found 
in the sputum/BAL. MTBC (3.9%) and M. chelonae (3.4%) were 
commonly detected in the pleural fluid. M. chelonae (6.9%), M. 
fortuitum complex (6.2%), M. abscessus (3.7%), and MTBC (2.4%) 
were frequently observed in wounds. The isolation frequency 
of each species according to specimen type is shown in Table 2.

The proportion of male patients in this study was 57.7%. In the 
group aged 40–59 years, the proportion of NTM in samples 
from female patients was significantly greater than that in sam-
ples from male patients (p<0.001). However, in the group aged 
70–89 years, the recovery rate of NTM in samples from male 
patients was significantly greater than that in samples from fe-
male patients (p<0.001) (Table 3). 

Of the four NTM species with more than 100 isolates, M. in-
tracellulare, M. avium, and M. fortuitum complex were more 
frequently isolated from males, while M. abscessus was more fre-
quently isolated from females. For M. intracellulare, the number 
of isolates increased after 50 years of age: the proportion of total 
NTM was 46.3% (203/438) for patients in their 50–59 years, 45.6% 
(272/597) for patients aged 60–69 years, 53.4% (573/1074) for pa-
tients aged 70–79 years, and 54.6% (315/577) for patients aged 
80–89 years (Table 4).

The proportion of NTM among all mycobacteria showed an 
upward trend over the 13-year study period and increased from 
17.0% in 2007 to 57.5% in 2019 (Fig. 1). Moreover, in patients 
aged over 70 years, the proportion of M. intracellulare isolates 
among all mycobacterial isolates continuously increased from 
13.9% (11/79) in 2007 to 37.4% (175/468) in 2019 (Fig. 2). 

DISCUSSION

There are several factors that need to be considered when esti-
mating and comparing the prevalence of NTM pulmonary dis-
ease (NTM-PD). Unlike TB, which is a notifiable disease in most 
regions due to management policies, NTM-PD is not a notifi-
able disease. Its diagnosis depends on the integration of clini-
cal, radiological, and microbiological findings, as summarized 
in the American Thoracic Society/Infectious Diseases Society 
of America 2007 criteria, which have become the accepted defi-
nition for this disease.15 In the genus Mycobacterium, there are 
more than 200 species and 13 subspecies.16 Many NTM species 
show similar phenotypic characteristics17 and high DNA homol-
ogy18; therefore, they have been sorted into groups or complexes, 
each consisting of two to seven species, although some species 
remain ungrouped. The prevalence of NTM-PD and the pro-
portions of different NTM species may vary based on the fol-
lowing: country,3 study period,19 and methods employed for 
isolation20,21 and identification.19 The AdvanSure Mycobacteria 
GenoBlot assay (LG Chem) used in this study has been report-
ed to be comparable to the GenoType Mycobacterium CM/AS 
assay (Hain Life-science, Nehren, Germany) in terms of perfor-
mance and may be useful as a routine method for NTM identi-

Table 1. Number and Proportion (%) of Mycobacterial Isolates

Mycobacterium species
Isolates 
(n=7674)

Isolates/
total

Isolates 
among 
NTM

Mycobacterium tuberculosis complex 4690  61.1 
Mycobacterium avium complex* 2067  26.9  69.3 

Mycobacterium avium* 546  7.1  18.3 
Mycobacterium intracellulare* 1509  19.7  50.6 
Mycobacterium avium-intracellulare 12  0.2  0.4 

Mycobacterium fortuitum complex* 145  1.9  4.9 
Mycobacterium abscessus* 135  1.8  4.5 
Mycobacterium gordonae* 99  1.3  3.3 
Mycobacterium kansasii* 33  0.4  1.1 
Mycobacterium chelonae* 29  0.4  1.0 
Mycobacterium massiliense 26  0.3  0.9 
Mycobacterium terrae complex* 24  0.3  0.8 
Mycobacterium lentiflavum/ 
  M. genavense*

18  0.2  0.6 

Mycobacterium szulgai* 5  0.1  0.2 
Mycobacterium flavescens* 4  0.1  0.1 
Mycobacterium celatum* 4  0.1  0.1 
Mycobacterium mucogenicum 4  0.1  0.1 
Mycobacterium scrofulaceum* 4  0.1  0.1 
Mycobacterium nonchromogenicum 4  0.1  0.1 
Mycobacterium aubagnense 3  0.04  0.1 
Mycobacterium phocaicum 3  0.04  0.1 
Mycobacterium mucilaginosus 2  0.03  0.1 
Mycobacterium malmoense* 1  0.01  0.03 
Mycobacterium austroafricanum 1  0.01  0.03 
Mycobacterium gastri* 1  0.01  0.03
Mycobacterium phlei 1  0.01  0.03 
Mycobacterium vaccae* 1  0.01  0.03 
Mycobacterium species 370  4.8  12.4 
NTM, nontuberculous mycobacteria.
Data are presented as n and %.
*Species that could be identified using the AdvanSure Mycobacteria GenoB-
lot Assay (LG Chem.).
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Table 2. Number and Proportion (%) of Mycobacterium Isolates according to Specimen Type

Mycobacterium 
species

Pulmonary system Extrapulmonary
Other†

n=89 
(1.2)

Sputum/BAL 
n=6873 
(89.6)

Pleural F 
n=240 
(3.1)

Wound* 
n=186 
(2.4)

Catheter 
n=118 
(1.5)

Urine 
n=54 
(0.7)

Peritoneal F 
n=44 
(0.6)

CSF
n=37 
(0.5)

Synovial F
n=18 
(0.2)

Pericardial F 
n=15 
(0.2)

M. tuberculosis complex 4124 (87.9) 182 (3.9) 111 (2.4) 86 (1.8) 43 (0.9) 22 (0.5) 31 (0.7) 8 (0.2) 13 (0.3) 70 (1.5)
M. avium complex 1920 (92.9) 34 (1.6) 41 (2.0) 26 (1.3) 9 (0.4) 14 (0.7) 5 (0.2) 6 (0.3) 1 (0) 11 (0.5)

M. avium 537 (98.4) 2 (0.4) 4 (0.7) 1 (0.2) 0 (0) 1 (0.2) 0 (0) 1 (0.2) 0 (0) 0 (0)
M. intracellulare 1372 (90.9) 31 (2.1) 37 (2.5) 25 (1.7) 9 (0.6) 13 (0.9) 5 (0.3) 5 (0.3) 1 (0.1) 11 (0.7)
M. avium-intracellulare 11 (91.7) 1 (8.3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

M. fortuitum complex 131 (90.3) 0 (0) 9 (6.2) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.7) 0 (0) 4 (2.8)
M. abscessus 126 (93.3) 2 (1.5) 5 (3.7) 0 (0) 0 (0) 1 (0.7) 0 (0) 1 (0.7) 0 (0) 0 (0)
M. gordonae 97 (98.0) 0 (0) 1 (1.0) 1 (1.0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. kansasii 31 (93.9) 0 (0) 1 (3.0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3.0) 0 (0) 0 (0)
M. chelonae 26 (89.7) 1 (3.4) 2 (6.9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. massiliense 25 (96.2) 0 (0) 1 (3.8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. terrae complex 21 (87.5) 0 (0) 3 (12.5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. lentiflavum/M. genavense 18 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. szulgai 5 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. flavescens 0 (0) 1 (25.0) 0 (0) 2 (50.0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (25.0)
M. celatum 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. mucogenicum 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. scrofulaceum 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. nonchromogenicum 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. aubagnense 3 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. phocaicum 3 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. mucilaginosus 2 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. malmoense 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100)
M. austroafricanum 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. gastri 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. phlei 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. vaccae 0 (0) 0 (0) 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
M. species 322 (87.0) 20 (5.4) 11 (3.0) 3 (0.8) 2 (0.5) 7 (1.9) 1 (0.3) 1 (0.3) 1 (0.3) 2 (0.5)
BAL, bronchoalveolar lavage; F, fluid; CSF, cerebrospinal fluid.
Data are presented as n (%).
*This included abscess and deep wound aspirations, which are regarded as dirty wounds, †This included organ biopsy, gastrointestinal fluid, drain fluid, other 
fluid, blood, surgical specimens, and stool samples.

Table 3. Number and Proportion (%) of MTBC and NTM Isolates according to Age and Sex of Patients 

Age (yr)
MTBC isolates NTM isolates

Total p value*
Female Male Subtotal Female Male Subtotal

0–9 4 (23.5) 13 (76.5) 17 (81.0) 0 (0) 4 (100) 4 (19.0) 21 (0.3)   0.546
10–19 31 (36.5) 54 (63.5) 85 (89.5) 2 (20.0) 8 (80.0) 10 (10.5) 95 (1.2)   0.486
20–29 109 (46.4) 126 (53.6) 235 (93.3) 6 (35.3) 11 (64.7) 17 (6.7) 252 (3.3)   0.375
30–39 149 (44.9) 183 (55.1) 332 (85.1) 32 (55.2) 26 (44.8) 58 (14.9) 390 (5.1)   0.147
40–49 148 (31.8) 317 (68.2) 465 (74.6) 92 (58.2) 66 (41.8) 158 (25.4) 623 (8.1) <0.001
50–59 158 (22.9) 533 (77.1) 691 (61.2) 225 (51.4) 213 (48.6) 438 (38.8) 1129 (14.7) <0.001
60–69 252 (34.9) 470 (65.1) 722 (54.7) 233 (39.0) 364 (61.0) 597 (45.3) 1319 (17.2)   0.122
70–79 625 (47.9) 680 (52.1) 1305 (54.9) 410 (38.2) 664 (61.8) 1074 (45.1) 2379 (31.0) <0.001
80–89 444 (59.4) 304 (40.6) 748 (56.5) 241 (41.8) 336 (58.2) 577 (43.5) 1325 (17.3) <0.001
≥90 55 (61.1) 35 (38.9) 90 (63.8) 29 (56.9) 22 (43.1) 51 (36.2) 141 (1.8)   0.621
Total 1975 (42.1) 2715 (57.9) 4690 (61.1) 1270 (42.6) 1714 (57.4) 2984 (38.9) 7674 (100)

MTBC, Mycobacterium tuberculosis complex; NTM, nontuberculous mycobacteria.
Data are presented as n (%).
*p value indicates significant difference between the number of female and male patients in each age group.
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fication in clinical settings, especially in locations where MAC is 
the main cause of NTM infection.22 The NTM species most 
commonly isolated worldwide belong to the MAC, comprising 
34%–61% of isolates, depending on the continent, with the high-
est proportions reported in North America and Oceania.23 A na-
tionwide survey in Japan showed that the distribution of the 
two major MAC species, M. avium and M. intracellulare, fol-
lowed a clear gradient from the northern to southern regions.24 
The relative ratio of M. avium to M. intracellulare (M. avium/M. 

intracellulare) in different parts of the world, in decreasing or-
der, is North America (9.8)>South America (4.9)> Asia (2.8)>Eu-
rope (1.5)>South Africa (0.27)>Australia (0.25).5 In Korea, the 
prevalence of M. avium was high mainly in the capital city of 
Seoul,2,25-27 whereas the prevalence of M. intracellulare was high 
in southern cities, such as Busan, Yangsan, and Ulsan.28,29 Am-
bient temperature, heavy rainfall, flooding, and drought are 
likely to influence the prevalence of environmental microor-
ganisms.30 Although NTM are found in soil and water, the fac-

Table 4. Number and Proportion (%) of Four Mycobacterium Species according to Age and Sex of Patients

Age (yr)
Mycobacterium 
intracellulare

Mycobacterium 
avium

Mycobacterium fortuitum 
complex

Mycobacterium 
abscessus

Female Male Subtotal Female Male Subtotal Female Male Subtotal Female Male Subtotal
0–9 0 (0) 2 (100) 2 (0.1) 0 (0) 1 (100) 1 (0.2) 0 (0) 1 (100) 1 (0.7) 0 (0) 0 (0) 0 (0)

10–19 1 (11.1) 8 (88.9) 9 (0.6) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) 1 (0.7) 0 (0) 0 (0) 0 (0)
20–29 4 (50.0) 4 (50.0) 8 (0.5) 2 (50.0) 2 (50.0) 4 (0.7) 0 (0) 1 (100) 1 (0.7) 0 (0) 2 (100) 2 (1.5)
30–39 14 (48.3) 15 (51.7) 29 (1.9) 9 (75.0) 3 (25.0) 12 (2.2) 3 (60.0) 2 (40.0) 5 (3.4) 3 (100) 0 (0) 3 (2.2)
40–49 38 (52.8) 34 (47.2) 72 (4.8) 31 (77.5) 9 (22.5) 40 (7.3) 3 (37.5) 5 (62.5) 8 (5.5) 8 (100) 0 (0) 8 (5.9)
50–59 101 (49.8) 102 (50.2) 203 (13.5) 68 (68.7) 31 (31.3) 99 (18.1) 2 (22.2) 7 (77.8) 9 (6.2) 20 (64.5) 11 (35.5) 31 (23.0)
60–69 119 (43.8) 153 (56.3) 272 (18.0) 57 (42.9) 76 (57.1) 133 (24.4) 11 (27.5) 29 (72.5) 40 (27.6) 11 (40.7) 16 (59.3) 27 (20.0)
70–79 229 (40.0) 344 (60.0) 573 (38.0) 67 (41.1) 96 (58.9) 163 (29.9) 22 (40.7) 32 (59.3) 54 (37.2) 21 (50.0) 21 (50.0) 42 (31.1)
80–89 149 (47.3) 166 (52.7) 315 (20.9) 26 (31.3) 57 (68.7) 83 (15.2) 5 (19.2) 21 (80.8) 26 (17.9) 8 (38.1) 13 (61.9) 21 (15.6)

≥90 13 (50.0) 13 (50.0) 26 (1.7) 7 (63.6) 4 (36.4) 11 (2.0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 1 (0.7)
Total 668 (44.3) 841 (55.7) 1509 (100) 267 (48.9) 279 (51.1) 546 (100) 47 (32.4) 98 (67.6) 145 (100) 71 (52.6) 64 (47.4) 135 (100)

Data are presented as n (%).
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tors that influence their transmission from the environment to 
humans are largely unknown.6 The environmental reservoirs 
reported to be predominantly associated with M. avium are 
water and soil, while those associated with M. intracellulare 
include dust and soil.6 M. intracellulare infection was shown to 
be more common in agricultural regions and was associated 
with shallow soil,31 and there was no significant association be-
tween the incidence of M. intracellulare and temperature or 
rainfall.32 Shallow soil depth, which is associated with poor crop 
yields, as well as the process of “deep ripping” to improve yields, 
have been hypothesized to result in aerosolization of mycobac-
teria from the soil.32 However, there may be other aspects of soil 
quality or other yet unknown environmental factors that favor 
M. intracellulare growth in these regions.

Han, et al.10 reported that M. intracellulare was frequently 
isolated from postmenopausal women with estrogen deficien-
cy. However, in the present study, both M. intracellulare and 
M. avium were frequently isolated in men over 60 years of age. 
M. intracellulare was isolated from extrapulmonary specimens, 
such as wounds (7%), whereas M. avium was isolated only from 
respiratory specimens. In addition, 50% of NTM isolates from 
synovial fluid were M. intracellulare. Although the exact rea-
son for the geographic diversity in distribution of mycobacterial 
species is unknown, the degree of human exposure to certain 
endemic NTM species is considered to be the most important 
factor. We postulated that, depending on environmental factors 
such as occupation, residence, or participation in activities as-
sociated with water and/or soil, a deficiency in cellular immuni-
ty may be a risk factor for infection when exposed to M. avium. 
Underlying lung disease or prior lung injury resulting from 
bronchiectasis and smoking may be a risk factor for M. intra-
cellulare infection.

Further research is needed to identify the major exposure 
routes and environmental sources of NTM infections. This in-
formation would then enable the design of effective control 
strategies for diseases associated with NTM.
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