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Abstract

The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts
differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome.
The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage
and environmental signals. We compared chloroplast structure, gene expression and genome copy number in
Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in
the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and
granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings
accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of
chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown
seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other
nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-
grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might
result from a decrease in template DNA.
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Introduction

Salt stress is a major abiotic stress that limits plant growth
and productivity worldwide [1]. Exposure of plants to high salt
concentrations results in primary salt stress, composed of
osmotic stress and ion toxicity, and secondary oxidative stress
[2]. Plants exposed to salt stress respond with global changes
in cellular activity, including physiological and molecular
changes, one of the main effects being stomatal closure.
Photosynthesis is one of the primary cellular activities affected
by salt stress [3]. The chloroplast is one of the primary
organelles affected by salt stress. This results in a decrease in
carbon-fixation rates, concomitant with reactive oxygen species
production. Although the chloroplast contains its own genome,
its coding capacity is rather limited (ca. 100–250 genes). Thus,
most chloroplast proteins are encoded by the nucleus, and are
post-translationally imported into the chloroplast. As a result,

most studies on the impact of salt stress on gene expression
are carried out on nucleus-encoded genes (reviewed by [4]).

Chloroplasts are highly structured plastids with a
characteristic extensive thylakoid-membrane network. Shoot
apical meristems are believed to contain proplastids, lacking
thylakoids and chlorophyll-binding proteins, which differentiate
into chloroplasts very early in the development of leaf primordia
[5–8]. It has been recently shown that shoot apex meristem
cells contain proplastids and chloroplasts at various
developmental stages [9]. The plastid genome is a circular
100–200 kb DNA molecule arranged in two regions of unique
sequences separated by two inverted repeats harboring, in
addition, ribosomal DNA genes [10]. Chloroplasts contain
multiple copies of genomic DNA. For example, it is estimated
that the diploid Arabidopsis cell contains approximately 560
copies of the plastid genome [11]. Genome copy number
increases with leaf development, and is reduced in mature
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chloroplasts or senescing leaves [12,13]. Chloroplast size and
number are also affected by environmental factors, such as
light intensity and the availability of water and minerals [14,15].
Unlike chloroplasts in true leaves that develop from
meristematic proplastids, cotyledon chloroplasts develop from
etioplasts that are present in the embryo, and are rapidly
converted to chloroplasts upon exposure to light [8]. Cotyledon
chloroplasts resemble the true chloroplasts of young leaves
containing a less extensive thylakoid-membrane system than
that of mature leaf chloroplasts [16].

In this study, we characterized the effects of salinity on
chloroplast morphology and on gene expression of chloroplast-
encoded genes in 2-week-old Arabidopsis seedlings that were
germinated and grown in the presence of 100 mM NaCl.
Seedlings developed in NaCl-containing medium developed
thicker leaves with smaller surface area. Chloroplasts
developed in the presence of salt were swollen, with less
developed granum structures and more starch accumulation
than chloroplasts in Arabidopsis seedlings grown without salt.
Steady-state transcript levels of plastid-encoded genes, as well
as of nuclear genes encoding chloroplast proteins, were lower
in salt-grown seedlings than in seedlings grown under non-
stressed conditions. Quantification of the chloroplast genome
showed that the number of plastid DNA copies per haploid
nuclear genome is reduced in salt-grown seedlings, suggesting
that the reduction in transcripts of chloroplast-encoded genes
may result from a reduction in template quantity.

Materials and Methods

Plant material and growth conditions
Arabidopsis thaliana (Col) seedlings were surface-sterilized

and cold-treated as previously described [17]. Seeds were
plated in Petri dishes containing 0.5% agar-solidified 0.5
strength MS salt mixture (Duchefa), and grown under 12/12 h
light/dark circadian regime as described previously [17]. Where
indicated, growth medium also included 100 mM NaCl. Unless
otherwise specified, 2-week-old seedlings were used for all
studies.

Chlorophyll assay
Leaf tissue was extracted overnight with 90% (v/v) acetone,

absorbance was measured at different wavelengths (661 and
644 nm) after the tissue had been bleached, and the
concentrations of chlorophyll a and b were calculated [18].

Light and transmission electron microscopy
Tissue was fixed with 1% (w/v) glutaraldehyde in 50 mM

cacodylate buffer (pH 7.2) for 30 min at 4 °C, and washed for
10 min with ice cold 50 mM cacodylate buffer. Tissue was then
post-fixed with 1% (w/v) osmium tetroxide in the same buffer
for 1 h at 4 °C, followed by 10 min wash in ice-cold water. After
dehydration in a graded series of ethanol, the tissue was
embedded in Araldite. Semi-thin sections (1 µm thick) of fixed
material were stained with 2% (w/v) toluidine blue and
examined under a light microscope. Ultrathin sections were
stained with uranyl acetate and lead citrate and examined

using a FEI Tecnai 12 G2 TWIN transmission electron
microscope (Eindhoven, The Netherlands).

Assays of RNA and DNA levels
Relative steady-state transcript levels were assayed by

quantitative (q) RT-PCR as described previously [17,19–21].
RNA was isolated from seedlings using AurumTM Total RNA
Mini Kit (Bio-Rad) according to the manufacturer's instructions.
cDNA was synthesized from DNase-treated RNA with ABgene
Reverse-iTTM 1st Strand Synthesis Kit using random decamer
primers. Gene-specific primer sequences were designed by
Primer-Express software Vers. 2.0 (Applied Biosystems).
Where possible, one of the primers in each set was designed
at an exon–exon border to reduce possible amplification from
contaminating genomic DNA. All amplicon lengths were
between 75 and 90 bp. Primer sequences are presented in
Table S1 in File S1. Relative transcript levels were assayed by
real-time qRT-PCR analysis using the 7300 Real-Time PCR
System (Applied Biosystems), with 18S rRNA as the internal
standard.

Genomic DNA was prepared from seedlings essentially as
described previously [22]. Seedlings were homogenized in
DNA extraction buffer (0.2 M Tris-HCl pH 7.5, 0.25 M NaCl, 25
mM EDTA, 0.5% (w/v) SDS). Homogenates were centrifuged
for 5 min at 12,000 x g. The supernatant was removed to a new
microcentrifuge tube to which an equal volume of isopropanol
was added. Samples were incubated for 2 min at room
temperature and centrifuged 5 min at 12,000 x g. Pellets were
dried and resuspended in deionized water. DNA was quantified
by qPCR using DNA templates. Primers designed for nuclear
and plastid genes are listed in Table S2 in File S1. Relative
plastid copy number was calculated by comparing ratios
between plastid-encoded genes and the nuclear gene
WHIRLY1. Other conditions were as described previously
[17,19–21].

Each assay was performed in three biological replicates.

Results and Discussion

Salt stress affects leaf morphology
Seedlings germinated and grown in the presence of 0.1 M

NaCl were smaller than those grown under non-stress
conditions, with reduced size of all vegetative tissues (Figure
1). In addition, leaves and cotyledons of salt-grown seedlings
were thicker than those of seedlings grown in the absence of
salt (Figure 2A–E). Mesophyll cells were expanded in salt-
grown plants compared to non-stressed plants (Figure 2A,B).
On the other hand, chloroplast number per cell in the tissue
sections was only slightly increased in the salt-stressed
seedlings (Figure 2F).

Chloroplast ultrastructure
Comparison of chloroplast ultrastructure using electron

microscopy showed that the chloroplasts in leaves of salt-
treated seedlings were much less developed than those in
control-grown seedlings (Figure 3). Chloroplasts in the leaves
of salt-grown plants were larger in size, but their grana
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contained a markedly reduced number of thylakoid stacks
(Figure 3B). In addition, starch grains were observed in the
chloroplasts of the salt-grown plant leaves (Figure 3B).
Cotyledon chloroplasts are known to have a less developed
granum system than leaf chloroplasts (Figure 3C, [16]).
Cotyledon chloroplasts of salt-germinated plants were swollen

Figure 1.  Two-week-old seedlings germinated and grown
on agar-solidified medium with or without added
NaCl.  Surface-sterilized cold-treated seeds were sown on
0.5X MS, 0.5% sucrose and 0.5% agar containing 0 or 0.1 M
NaCl.
doi: 10.1371/journal.pone.0082548.g001

and their inner organization showed further deterioration
relative to controls (Figure 3D).

Since thylakoid membranes harbor chlorophyll, we
determined chlorophyll content in seedlings grown under
control and saline conditions. Chlorophyll content in salt-grown
seedlings was approximately 40% of that in seedlings grown in
the absence of NaCl (Figure 4), with a similar degree of
reduction for chlorophyll a and b (Figure 4). This was in
agreement with the reduction in granum and thylakoid
membranes, which harbor the components of the
photosynthetic light reactions, including chlorophyll, in salt-
grown seedlings (Figure 3B and D). Reduced chlorophyll
content has been measured in Arabidopsis [23] and mung
bean [24] seedlings germinated and grown in the presence of
salt. Reduced chlorophyll content has also been found in
Arabidopsis seedlings exposed to salt stress [25–27].

In our experimental protocol, NaCl was present throughout
all stages of seed germination and seedling development. The
results may therefore reflect both plastid/chloroplast duplication
and chloroplast development. The number of chloroplasts per
mesophyll cell seemed to be only slightly affected by NaCl
(Figure 2), suggesting that neither proplastid duplication nor
transformation of proplastids to chloroplasts is affected.
Proplastids are present mainly in meristem tissues [6,8,28,29].
Moreover, the proplastid–chloroplast transition already occurs
in the meristem [9].

Our results agree with previous studies showing that
chloroplast structure is affected by abiotic stresses, for
example swollen chloroplasts in NaCl-treated plants [30] and in
those under moderate heat stress (Arabidopsis) [31].
Chloroplast structure is impaired in plants exposed to chilling
injury [32] and osmotic stress [33]. Impaired chloroplast
development has also been observed in plants grown in iron-
free or zinc-deficient media [14,34], or in the presence of
cadmium [35].

Transcript levels of chloroplastic and nuclear genes
To evaluate the effect of NaCl on transcript levels, we

determined the steady-state levels of representative plastid-
and nucleus-encoded genes using qRT-PCR. Whereas there is
a wealth of studies on the expression of nuclear genes under
salt stress, only a handful have studied the effect of salt stress
on steady-state transcript levels of plastid-encoded genes.
Transcript levels of plastid-encoded genes in salt-stressed
seedlings were approximately half of those in non-stressed
seedlings (Figure 5A). Both genes involved in plastid
translational mechanisms (encoding chloroplast-encoded rRNA
and tRNA), and protein-encoding genes were equally affected.
As a control, we assayed the steady-state transcript levels of
nuclear-encoded genes whose protein products are localized in
chloroplasts (Figure 5B). Expression of genes encoding
proteins involved in photosynthesis, such as light harvesting
(LHCA4) and CO2 fixation (RBSC1A and RCA), was also
markedly reduced in salt-grown seedlings (Figure 5B). To
confirm that the decrease in RNA observed in Figure 5A,B was
specific and did not result from global damage to the seedling's
transcription ability by the salt treatment, we also assayed
nuclear genes whose expression is not altered or induced by
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Figure 2.  Sections of leaves and cotyledons of control and salt-treated seedlings.  Two-week-old seedlings, germinated and
grown as in Figure 1, were fixed and embedded as described in Materials and Methods. Semi-thin (1 µm) sections were stained with
2% toluidine blue and examined under a light microscope. (A) 1st leaf of control plant. (B) 1st leaf of salt-grown plant. (C) Cotyledon
of control plant. (D) Cotyledon of salt-grown plant. m, mesophyll cells. (E and F) Leaf thickness and chloroplast count per cell,
respectively, in semi-thin sections of 1st leaves and cotyledons of control (gray bars) and salt-grown (black bars) seedlings. Data
shown are average ± SE.
doi: 10.1371/journal.pone.0082548.g002
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exposure to salt. Figure 5C shows that the expression of APT1
was not affected by salt, whereas transcript levels of RD26 and
RD29B encoding salt-modulated transcription factors [36,37]
were markedly induced in the salt-grown plants. These results
suggest that salt-stress inhibition of photosynthesis-related
genes encoded by both plastid and nuclear genomes is
specific, and does not seem to result from a global decrease in
transcriptional activity in the plant cell.

Chloroplast genome copy number
The observed reduction in steady-state levels of chloroplast-

encoded gene transcripts (Figure 5A) might result from a
change in the synthesis or degradation of chloroplast RNA, or
from a decrease in the copy number of the plastid genome in
cells of salt-grown plants. Plastid copy number is known to
change in response to developmental changes and

environmental signals [14,15]. To determine changes in plastid
copy number, we used qPCR (real-time PCR) using DNA
templates to compare the template copy ratios between plastid-
encoded genes and a single-copy nuclear gene (WHIRLY 1).
Figure 6 shows that the ratio of chloroplast-to-nuclear genome
copy numbers was reduced by about 40% in salt-grown
seedlings. As expected, the ratio of nuclear genes encoding
chloroplast photosynthetic proteins to the nuclear reference
gene was not altered (Figure 6, black bars). Our results
suggest that a reduction in genome copy number might be one
of the reasons for the decrease in transcript levels of
chloroplast-encoded genes. Although chloroplast gene
expression is not correlated with genome copy number when
comparing different stages of embryogenesis, or cotyledons
and leaves of different ages [38,39], these parameters are
correlated when looking at leaves of the same age and
developmental stage [40]. The molecular mechanism resulting

Figure 3.  Electron micrographs of chloroplasts from 1st leaves and cotyledons of control and salt-grown
seedlings.  Biological samples were as described in Figure 2. Ultrathin sections were prepared, stained with uranyl acetate and
lead citrate, and examined by transmission electron microscopy. Shown are representative photographs for chloroplasts from (A) 1st

leaf of control plant; (B) 1st leaf of salt-grown plant; (C) cotyledon of control plant; (D) cotyledon of salt-grown plant. g, grana; t,
thylakoid; s, starch grain.
doi: 10.1371/journal.pone.0082548.g003
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in reduction of chloroplast genome copy number is still to be
determined. It was suggested that chloroplast copy number
decreases with leaf age due to a lower ratio between the rates
replication of plastid chromosomes to chloroplast division
[41-44]. On the other hand, the reduction in chloroplast
genome copy number in dark grown maize seedlings
transferred to light resulted from rapid DNA degradation [45].

Conclusions

We show that Arabidopsis seedlings developing under salt-
stress conditions are impaired in chloroplast development, and
show reduced chloroplast genome copy number, and reduced
levels of transcripts of chloroplast-encoded genes and nuclear
genes encoding proteins involved in photosynthesis.

Figure 4.  Chlorophyll content of control and salt-grown Arabidopsis seedlings.  Shoots of 2-week-old Arabidopsis seedlings
germinated and grown in agar-based medium in the absence (gray bars) or presence (black bars) of 0.1 M NaCl were harvested.
Chlorophyll content was assayed as described in Materials and Methods. Data shown are average ± SE.
doi: 10.1371/journal.pone.0082548.g004
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Figure 5.  Expression of chloroplast- and nucleus-encoded genes in control and salt-grown seedlings.  RNA was prepared
from 2-week-old seedlings grown as in Figure 1. cDNA was prepared and the indicated transcript levels were determined by qRT-
PCR as described in Materials and Methods using cytosolic 18S rRNA as an internal reference. Steady-state levels of each gene
transcript in control grown seedlings were defined as 1. (A) Chloroplast-encoded genes. (B and C) Nucleus-encoded genes. Data
shown are average ± SE.
doi: 10.1371/journal.pone.0082548.g005
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Figure 6.  Relative gene copy number in control and salt-grown seedlings.  DNA was prepared from 2-week-old seedlings
grown as in Figure 1, and used directly for gene-dose analyses by qPCR as described in Materials and Methods. The signal
obtained for each gene in control grown seedlings was defined as 1. Gray bars, chloroplast-encoded genes; black bars, nucleus-
encoded genes. Data shown are average ± SE.
doi: 10.1371/journal.pone.0082548.g006
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