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Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure

to traumatic events. Although psychotherapy reveals some therapeutic effectiveness,

clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported

to work well clinically against mental diseases in Asian countries, but the safety and

their mode of action are still unclear. In this study, we investigated the mechanisms

of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse

pharmacology approach combining clinical data to search for mechanisms of PTSD with

subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing

microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2)

by investigating the effect of FAEW and the antidepressant control drug fluoxetine

on the transcription factor NF-κB using reporter cell assays and western blotting; (3)

by performing molecular docking and literature data mining based on phytochemical

constituents of FAEW. The results suggest an involvement of inflammatory processes

mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro

and inhibited NF-κB activity and p65 protein expression. FAEW’s anti-inflammatory

compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated

for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin,

baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in

clinical trials, which might be the active ingredients for FAEW against PTSD.

Keywords: free and easy wanderer, inflammation, NF-κB, pharmacognosy, posttraumatic stress disorder

Abbreviations: FAEW, Free and Easy Wanderer; HPLC, high pressure liquid chromatography; IκK, inhibitor kappa B kinase;
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INTRODUCTION

During the past decades, the developments in science and
technology have drivenmedical research further toward “disease-
based” approaches, which may be critical for some chronical
mental diseases, since no significant morphological changes can
be observed, while patients are suffering for a long time. In
1977, a bio-psycho-social medical theory was postulated by the
psychiatrist George L. Engel at the University of Rochester
(White, 2005). He suggested holistic approaches to handle
medical issues, because health is a comprising status of physical,
mental and social well-being and not merely the absence of
diseases or infirmity, indicating the new direction to look for new
approaches from complementary medicine.

With a specific philosophical background and treatment
principles, traditional Chinese medicine (TCM) emphasizes the
balance of yin and yang to achieve harmony between body, mind
and soul. With thousands of years of clinical practice and written
documentation, TCM is especially well suited to treat difficult
and complex diseases. The success should be partly attributed to
diverse medicinal plants, which have been a valuable source of
therapeutic agents in the treatment of cancer, neurodegenerative
diseases and malaria (Houghton and Howes, 2005; Kong and
Tan, 2015; Khandelwal et al., 2016). The enormous structural
and chemical diversity of natural products are evolutionarily
optimized for serving different biological functions (Mishra
and Tiwari, 2011). In addition, the traditional knowledge on
plants and well documented ethno-pharmacological information
can be taken as reliable hints for further pharmacological
research.

Free and Easy Wanderer (FAEW), is a Chinese herb formula,
used in China for hundreds of years in the treatment of
mood disorders, and in vivo results proved to reverse anxiety-
like behavior and cognitive impairments after stress exposure
(Wang et al., 2009). To explain how herbal formulae work in
human body against mental diseases, some challenges should be
discussed:

(1) Mental diseases appear to us with dissociation symptoms and
loss of capabilities, such as the interruption of the normally
integrative functions of consciousness, memory, the identity,
or perception of the environment. There are no significant
pathology and morphological changes, which indicates that
it may be difficult to identify suitable cellular targets for
treatment. The current research mainly focuses on the
investigation between neural circuits on fear conditioning
and extinction (Rey et al., 2014), epigenetic changes on
the hypothalamus-pituitary (HPA) axis (Vukojevic et al.,
2014) and various genetic polymorphisms, e.g., FKBP5, 5-
HTTLPR, DRD2 (Kolassa et al., 2010; Walsh et al., 2014;
Wilker et al., 2014). Until now, no specific pathogenic
mechanism has been identified, although some progress was
achieved. To solve this problem, genomic analyses of clinical
patients may be one potential approach to gain insight into
the pathophysiology of such diseases.

(2) Chinese herbal formulae are poly-herbal preparations,
frequently consisting of dozens to hundreds of chemical

compounds, which might increase safety risks and hamper
the agreement on their clinical usage, especially in western
countries. To understand how they work in the human body,
the molecular mechanisms should be clarified and possible
active compounds have to be identified for further drug
development.

In this paper, we first analyzed microarray-based transcriptome-
wide mRNA expression profiles of patients suffering from
posttraumatic stress disorder (PTSD). Based on gene network
analyses and associated binding motifs of transcription factors
in gene promoters, we hypothesized that inflammatory process
may represent a major cause of PTSD. We investigated
the cytotoxicity of FAEW and compared its effect with the
antidepressant drug fluoxetine on inflammation by assessing
the activity of NF-κB and the protein expression of p65.
Furthermore, we identified the active compounds of FAEW by
molecular docking in silico. Finally, we compared our results
with reports in the literature and confirmed some pharmaceutical
activities of the compounds.

MATERIALS AND METHODS

Gene Expression Profiling and Network
Analysis of PTSD Patients
Gene expression profiling from PTSD patients were searched
from Pubmed, GEO dataset and Google Scholar database with
the key word “PTSD” and “gene expression profiling.” Among
all the results, only four were related to our analysis with
data available (Segman et al., 2005; Su et al., 2008; Neylan
et al., 2011; Tylee et al., 2015). Among the datasets we have
chosen for our study, three were derived from blood samples
(Segman et al., 2005; Neylan et al., 2011; Tylee et al., 2015),
and one was originated from post mortem collected brain
tissue biopsies (Su et al., 2008). To allow comparisons between
the four datasets, consistent fold-change ratios were calculated
between the control and PTSD groups. Gene symbols (or
IDs) and fold-change values were uploaded into the Ingenuity
Pathway Analysis (IPA) software (Jimenez-Marin et al., 2009)
to determine canonical signal transduction pathways, gene
functions and signaling networks predicted by dysregulated gene
expressions.

Binding Motif Search for Transcription
Profiles in Gene Promoter Sequences
Transcription factor binding site analyses were performed by the
Cistrome analysis software (Liu et al., 2011). Briefly, regulated
genes were input and BED formats, a tab-delimited text file
defining data lines displayed in an annotation track, were
retrieved with an upstream setting (promoter region) at 2 kb
(Karolchik et al., 2014). SeqPosmotif analyses were used to screen
for enriched motifs in given regions (http://cistrome.org). Using
SeqPos, we scanned all the motifs not only in Transfac, JASPAR,
UniPROBE (pbm), hPDI database, but also attempted to identify
de novomotifs usingMDscan algorithm. The output of genes was
ranked by−10×log(p-value).
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Chemicals and Extracts
The FAEW extract was prepared from commercial pills
(Xiaoyao wan) purchased from Wanxi Pharmaceutical
Company (Henan Province, China). They were dissolved
in H2O: MeOH: DCM in a ratio of 1: 4: 5 for 3 days. A
rotary evaporator was used to remove the solvents and
the final extracts were stored at −20◦C. Fluoxetine was
purchased from Sigma-Aldrich (Steinheim, Germany).
Tumor necrosis factor-α (TNF-α) was purchased from Sino
Biological Inc. (Peking, China). Quanti-Blue was purchased from
Invitrogen and prepared according to the instructions of the
manufacture.

Cell Cultures of T98G Brain Cells
T98G brain cells were obtained from the German Cancer
Research Center (DKFZ, Heidelberg, Germany). The original
source of this cell line is the American Type Culture
Collection (ATCC R© number: CRL-1690TM). T98G cells were
cultured under standard conditions (37◦C, 5% CO2) in DMEM
medium supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. Cells were passaged twice a week. All
experiments were performed with logarithmically growing cells.

Cell Viability Assay
Cell viability was evaluated by the resazurin assay. One hundred
microliters of cell suspensionwere sowed into 96-well plates 1 day
before the treatment with different concentrations of FAEW and
fluoxetine. After 72 h, 20 µl resazurin (Sigma-Aldrich, Germany)
0.01% w/v in ddH2O was added to each well and the plates were
incubated at 37◦C for 4 h. The fluorescence was measured with
an Infinite M200 Proplate Reader (Tecan, Crailsheim, Germany)
using an excitation wavelength of 544 nm and an emission
wavelength of 590 nm. The cytotoxic effect of the treatment was
determined as a percentage compared with the untreated cells
after reducing the background value caused by the medium.

NF-κB Reporter Assay
HEK293 cells stably expressing the HEK-Blue-Null vector and
secreted embryonic alkaline phosphatase (SEAP) reporter gene
on NF-κB promoter were purchased from Invitrogen. The cells
were cultured according to the recommendations from the
company and passaged twice per week. The cells were treated
with different concentrations of FAEW (60, 200, 600, and 2000
µg/ml) and fluoxetine (2, 6, and 20 µM) for 24, 48, or 72 h
followed by TNF-α induction for 3 h. MG-132 was used as a
positive control with treatment for only 1 h. The fluorescence

FIGURE 1 | The structures of 10 compounds isolated from FAEW.
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FIGURE 2 | The top 10 canonical pathways significantly affected by PTSD. (A) Blood-based gene-expression according to [15]; (B) Peripheral blood

mononuclear cell gene expression profiles according to [16]; (C) Monocyte gene expression profiles according to [13]; (D) Post mortem brain biopsy gene expression

profiles according to [14].
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FIGURE 3 | Top 10 diseases and functions significantly affected by PTSD. (A) Blood-based gene-expression according to [15]; (B) Peripheral blood

mononuclear cell gene expression profiles according to [16]; (C) Monocyte gene expression profiles according to [13]; (D) Post mortem brain biopsy gene expression

profiles according to [14].
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FIGURE 4 | Deregulated genes among PTSD patients. Red colored genes were up-regulated, green colored ones were down-regulated. The arrows indicted

effects of deregulated genes on other genes. Continuous lines show direct interactions, dotted lines indirect interactions. (A) Blood-based gene-expression according

to [15]; (B) Peripheral blood mononuclear cell gene expression profiles according to [16]; (C) Monocyte gene expression profiles according to [13]; (D) Post mortem

brain biopsy gene expression profiles according to [14].

was measured with an Infinite M200 Proplate Reader (Tecan,
Crailsheim, Germany) with a wavelength of 630 nm. Background
noise caused by the culture medium was subtracted from all
wells. The inhibition effect of FAEW and fluoxetine toward NF-
κB activity were calculated by comparison with untreated control
on the basis of TNF-α induction.

Western Blotting
T98G cells were treated with FAEW and fluoxetine for 24,
48, and 72 h, MG-132 for 1 h, followed by TNF-α induction
for 3 h. MG-132 was used as positive control drug. Nuclear
protein extracts were prepared according to the NE-PER
nuclear and cytoplasmic extraction reagent (Thermo Scientific,
USA) supplemented with EDTA-free Halt Protease Inhibitor
Cocktail (Thermo Scientific). Protein concentrations were
measured with Nano drop 1000 spectrophotometry (Thermo
Scientific). The densities of the protein bands were quantified by
FluorChemQ software (Biozym Scientific Company, Oldendorf,

Germany). Nuclear p65 levels were determined with an
anti-NF-κB monoclonal antibody (1:3000, Cell signaling).
Histone H3 protein levels served as the internal control,
using the anti-Histone H3 monoclonal antibody (1:3000, Cell
Signaling). The inhibition effects of FAEW and fluoxetine
toward p65 protein expression were calculated by comparison
with untreated TNF-α induction group after using the control
group without TNF-α for the quantification of western
blots.

Molecular Docking
The ligands were selected according to the compounds in the
FAEW extract identified by us using 2D-NMR- and HPLC-MS
techniques (Figure 1). Together with the anti-depressant drug
fluoxetine and MG-132, 12 ligands were evaluated for their
binding energies to different proteins of the NF-κB pathway
predicted in silico. PDB files of proteins were downloaded from
RCSB Protein Data Bank (http://www.rcsb.org/pdb/home/home.
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do). The defined residues were chosen from the previous work in
our laboratory (Kadioglu et al., 2016). The known inhibitor for
IκK, MG-132 (PubChem ID: 462382) was selected as a standard
to compare its binding modes with other compounds (Wang
et al., 2013). 3D structures of these compounds were downloaded
from PubChem, ChemSpider was used to convert mol files to pdb
file after checking absolute and relative configuration. Molecular

TABLE 1 | The most pronounced gene promoter binding motifs depending

on the integrative analysis of Galaxy/Cistrome.

ID Factor Hits Cutoff Zscore −10×log(p-value)

1 IKZF2|Ikzf2 33 8.733 −5.25 163.693

2 CAT8 21 8.035 −5.16 159.248

3 CCDC16 70 6.592 −5.09 155.157

4 HOXA1 285 5.666 −4.94 147.672

5 HOXD10|Hoxd10 175 7.493 −4.90 145.427

6 Meox1 235 6.41 −4.87 144.123

7 E2F1::TFDP1 569 4.626 −4.85 143.061

8 Sfpi1 179 6.952 −4.72 136.281

9 Mox1|MEOX1|CD200|NOX1 245 6.333 −4.66 133.664

10 CBFA2T2 233 4.945 −4.65 133.291

11 DAL81 72 4.577 −4.61 130.914

12 Etv1 137 6.035 −4.60 130.538

13 Hoxa1 267 5.713 −4.57 129.11

14 FOXP4 211 5.907 −4.55 128.263

15 Nkx1-1 104 6.226 −4.54 127.587

16 lhx6.1|LHX6 499 4.368 −4.43 122.535

17 MET4 340 5.212 −4.41 121.631

18 NF-κB |NFKB1 954 2.651 −4.39 120.777

19 ACE2 537 6.774 −4.25 114.451

20 Muscle TATA box 1242 1.144 −4.23 113.4

Bold values are possible transcriptional motif related to NF-κB shown in the networks

analysis.

docking was then carried out with Auto-Dock 4.2 (The Scripps
Research Institute, La Jolla, CA) following a protocol previously
reported by us (Qiaoli Zhao et al., 2013). VMD (Visual Molecular
Dynamics) was used for visualization of the binding modes
obtained from docking. The average of the lowest binding energy
of three runs was taken into account.

Statistical Analysis
T-test was used to calculate the significance with SPSS statistics
22, i.e., p-values between treatment groups and control group
of three independent experiments are shown (∗p < 0.05,
∗∗p < 0.01).

Literature Review
The PubMed database was searched with the corresponding
compound name as key word. Identified literature, which were
related to the pharmacological activities of the compound, was
classified into in vitro, in vivo or clinical trial reports to give
a retrospective summary of the current state of knowledge. To
search the published studies of the compounds from FAEW on
NF-κB, NF-κB and the corresponding compound name were
used as the key words.

RESULTS

Canonical Pathways, Diseases and
Functions, and Networks
To identify the common pathways related to PTSD, the top
10 canonical pathways of each of the four datasets were
displayed by means of IPA analyses (Figure 2). In datasets 1
and 2, the gene profiles were involved with the cancer and
tumor pathway. In dataset 3, cellular pathways “change of
immune system” and “monocyte among the immune system”
were significantly related. In dataset 4, the main pathways
occurred in mitochondria, such as “mitochondrial dysfunction”
and “oxidative phosphorylation.” Figure 3 shows the top 10

FIGURE 5 | Detailed information of the NF-κB binding motif in gene promoter sequences.

Frontiers in Pharmacology | www.frontiersin.org 7 April 2017 | Volume 8 | Article 181

http://www.rcsb.org/pdb/home/home.do
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Hong et al. FAEW Inhibits NF-κB against PTSD

FIGURE 6 | Cytotoxicity of FAEW (A) and fluoxetine (B) as determined by the resazurin assay. Shown are mean values ± SD of three independent experiments.

FIGURE 7 | Inhibition of NF-κB activity by FAEW and fluoxetine in HEK293 reporter cells. (A) Concentration kinetics and (B) time kinetics shown are mean

values ± SD of three independent experiments. *p < 0.05, **p < 0.01. The inhibition effects of FAEW and fluoxetine toward NF-κB activity were calculated by

comparison with untreated TNF-α induction group.

diseases and functions related to the dysregulated genes. Cellular
dysfunctions, inflammation and free radical scavenging were
highly involved. Cardiovascular diseases, cancer, organismal
development and neurological diseases were also predicted by
the dysregulated genes. Network analyses were performed to
investigate the relationship between the dysregulated genes
(Figure 4). Among the four datasets, NF-κB played a central role
in all networks of dysregulated genes.

Analysis of Binding Motifs for Transcription
Factors in Gene Promoters
Integrative gene promoter analyses were performed to investigate
common binding motifs for transcription factors in the promoter
sequences of dysregulated genes among the datasets. Table 1
shows the top ranked transcription factors. Among them was the
NF-κB binding motif with a z-score of −4.39. Figure 5 shows
detailed information for NF-κB.

Cytotoxicity of FAEW
To identify the role of NF-κB in the acting model of FAEW,
firstly, resazurin assays in HEK293 cells were performed to
investigate, whether or not FAEW reveals cytotoxic effects.
As shown in Figure 6, FAEW was indeed not cytotoxic at
concentrations up to 2000 µg/ml. For comparison, fluoxetine
was non-toxic up to 6 µM and inhibited HEK293 cells at higher
concentrations.

Inhibition of NF-κB by FAEW
To investigate whether FAEW affects PTSD through NF-κB-
mediated inflammatory effects, NF-κB reporter cell assays were
performed. As shown in Figure 7, FAEW showed a dose-
dependent inhibition and significantly inhibited NF-κB activity
at higher concentrations. In addition, the inhibitory effect
strengthened in a time-dependent manner from 24 to 72
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FIGURE 8 | Inhibition of p65 expression by FAEW and fluoxetine in T98G brain cells. (A) Concentration kinetics and (B) time kinetics. Histone was used as

loading control. (C,D) show the quantification of western blots shown in (A,B), respectively. The inhibition effects of FAEW and fluoxetine toward p65 protein

expression were calculated by comparison with untreated TNF-α induction group after using the control group without TNF-α for the quantification of western blots.

Shown are mean values ± SD of three independent experiments. *p < 0.05, **p < 0.01.

TABLE 2 | Binding energies of molecular docking of chemical compounds of FAEW to proteins of the NF-κB pathway.

Ligand IκK-NEMO IκK p65-Rel A

Lowest binding

energy (kcal/mol)

pKi (µM) Lowest binding

energy (kcal/mol)

pKi (µM) Lowest binding

energy (kcal/mol)

pKi (nM)

Baicalin −3.79 ± 0.50 1690 ± 155.56 −5.97 ± 0.04 42.47 ± 2.43 −9.68 ± 0.09 79.88 ± 11.99

β-hydroxy-DHP −5.04 ± 0.05 203.52 ± 18.09 −5.87 ± 0.18 52.24 ± 14.46 −8.54 ± 0.04 553.70 ± 33.52

Isoliquiritin −3.59 ± 0.17 2390.00 ± 692.97 −7.04 ± 0.08 6.92 ± 0.98 −9.97 ± 0.22 61.00 ± 4.24

Isoliquiritin apioside −1.20 ± 0.12 132.78 ± 28.65 −6.90 ± 0.15 9.00 ± 2.28 −10.10 ± 0.74 56.59 ± 8.56

Liquiritin −4.12 ± 0.28 1155.00 ± 247.49 −6.10 ± 0.19 34.91 ± 11.08 −9.20 ± 0.04 180.31 ± 14.99

Ononin −3.82 ± 0.02 1600.00 ± 70.71 −7.33 ± 0.01 4.24 ± 0.07 −11.55 ± 0.08 3.43 ± 0.50

Oroxyloside −3.32 ± 0.08 3690.00 ± 551.54 −6.16 ± 0.04 30.84 ± 1.90 −9.41 ± 0.02 127.50 ± 4.95

Fluoxetine (R) −4.35 ± 0.05 652.97 ± 54.98 −5.61 ± 0.06 77.65 ± 8.25 −7.35 ± 0.07 4093.33 ± 475.01

Fluoxetine (S) −4.14 ± 0.05 928.59 ± 79.41 −5.90 ± 0.03 47.15 ± 2.48 −7.63 ± 0.03 2543.33 ± 123.42

Albiflorin −5.05 ± 0.30 211.37 ± 52.00 −6.63 ± 0.16 14.23 ± 3.77 −10.66 ± 0.50 23.85 ± 3.12

Paeonflorin −4.41 ± 0.04 591.13 ± 29.66 −7.83 ± 0.21 2.09 ± 0.27 −11.25 ± 0.03 5.45 ± 0.07

Pentagalloyl-β-D-glucose −0.67 ± 0.01 320580.00 ± 150.00 −2.39 ± 0.49 19090.00 ± 3490.00 −6.09 ± 0.21 35.50 ± 1.27

MG-132 −3.50 ± 0.63 47053.00 ± 1090.00 −7.75 ± 0.35 2.31 ± 0.33 −9.07 ± 0.29 172.10 ± 27.01

IκK, IκB kinase; IκK, NEMO. NF-κB essential modulator; NF-κB, nuclear factor kappa; light, chain-enhancer of activated B cells.

h, reaching the similar inhibitory level caused by MG-132.
Fluoxetine revealed the same trend as FAEW.

Inhibition of P65 Expression by FAEW
To further confirm the inhibition of NF-κB, western blot assays
were performed to investigate the role of FAEW on p65 protein
expression in T98G brain cells. According to the cytotoxic

assays in Figure 8, three non-cytotoxic concentrations (200, 40,
and 8 µg/ml) were selected. As shown in Figures 8A,C, with
treatment for 24 h, both FAEW and fluoxetine inhibited p65
expression in a dose-dependent manner. Fixed concentrations
of 200 µg/ml FAEW or 20 µM fluoxetine inhibited p65
expression in a time-dependent manner from 24 to 72 h
(Figures 8B,D).
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TABLE 3 | Hydrogen bonds and amino acid residues identified by molecular docking of chemical compounds of FAEW to proteins of the NF-κB pathway.

Protein Ligand Residues making

H bonds

Residues involved in hydrophobic interactions

IκK Baicalin Thr23, Val29, Ala42, Lys44, Met65, Met96, Glu97, Tyr98, Cys99, Asp103, Val152, Ile165,

Asp166, Leu167

β-hydroxy-DHP Lys44 Thr23, Val29, Ala42, Lys44, Met96, Glu97, Ile165, Asp166, Leu167

Isoliquiritin Cys99, Lys147 Leu21, Thr23, Gly24, Val29, Ala42, Glu97, Tyr98, Cys99, Lys147, Glu149, Ile165, Asp166,

Gly184

Isoliquiritin apioside Lys44, Cys99 Thr23, Gly24, Val29, Ala42, Lys44, Met96, Glu97, Tyr98, Cys99, Lys147, Glu149, Ile165,

Asp166, Leu167, Gly184

Liquiritin Lys147 Leu21, Thr23, Gly24, Ala42, Glu97, Cys99, Lys147, Glu149, Val152, Ile165, Asp166

Ononin Cys99, Lys147 Leu21, Gly22, Thr23, Val29, Ala42, Val74, Met96, Glu97, Tyr98, Cys99, Lys147, Val152,

Ile165, Thr185

Oroxyloside Cys99 Thr23, Val29, Ala42, Lys44, Met65, Met96, Glu97, Tyr98, Cys99, Asp103, Glu149,

Val152, Ile165, Asp166, Leu167

Fluoxetine (R) Gly24, Val29, Ala42, Lys44, Met65, Met96, Tyr98, Ile165, Asp166, Leu167

Fluoxetine (S) Gly24, Val29, Lys44, Met96, Tyr98, Cys99, Ile165, Asp166, Leu167

Albiflorin Cys99 Gly22, Val29, Lys44, Met 65, Val74, Met96, Glu97, Tyr98, Cys99, Asp103, Glu149,

Asn150, Ile165, Asp166, Leu167

Paeoniflorin Gly22, Val29, Lys44, Met65, Val74, Met96, Glu97, Tyr98, Cys99, Asp103, Glu149,

Asn150, Ile165, Asp166, Leu167

Pentagalloyl-β-D-glucose Glu100 Leu21, Gly22, Thr23, Val29, Ala42, Lys44, Glu61, Met65, Val73, Val74, Ala76, Leu94,

Met96, Tyr98, Cys99, Glu100, Gly102, Asp103, Glu149, Asn150, Ile151, Val152, Ile165,

Asp166, Leu167

MG-132 Leu21, Thr23, Val29, Ala42, Met65, Val73, Val74, Met96, Glu97, Tyr98, Asp103, Val152,

Ile164, Ile165, Asp166, Leu167

p65-RelA Baicalin DA18, Lys122 DT8, DT9, DT10, DA18, DG19, DT20, DC21, Lys122, Arg124

β-hydroxy-DHP DG19 DT8, DT9,DT10, DA18, DG19, DT20, DC21

Isoliquiritin DA18, DG19 DC7, DT8, DT9, DT10, DA18, DG19, DT20, DC21, Lys123

Isoliquiritin apioside DA18 DT8, DT10, DA18, DG19, DC21

Liquiritin DG19 DT8, DT9, DA18, DG19, DT20, DC21, Lys123

Ononin DG19 DC7, DT8, DT9, DT10, DA18, DG19, DT20, DC21, Lys445

Oroxyloside DG19, Lys122,

Arg124

DT8, DT9, DT10, DG19, DT20, DC21, Lys122, Lys123, Arg124

Fluoxetine (R) DA18, DG19 DC7, DT8, DT9, DT10, DA18, DG19, DT20, DC21

Fluoxetine (S) DG19 DC7, DT8, DT9,DT10, DG19, DT20, DC21

Albiflorin DG19 DC7, DT8, DT9, DT10, DA18, DG19, DT20, DC21, Arg124

Paeoniflorin DG19 DC7,DT8, DT9, DT10, DA18, DG19, DC21, DC22, Arg124

Pentagalloyl-β-D-glucose DG19 DC7, DC8, DT9, DG19, DT20, DC21, DC22, Lys123, Arg124

MG-132 DG19 DA6, DC7, DT8, DT9, DT10, DA18, DG19, DT20, DC21, DC22, Lys123

Molecular Docking of Compounds from
FAEW to the Proteins of the NF-κB Pathway
In order to explore possible interactions of compounds known
to be in FAEW with the proteins of the NF-κB pathway, in silico
molecular docking analysis were performed with 10 compounds
(shown in Figure 1) in the remedy to IκK-NEMO, IκK and p65-
RelA. As shown in Tables 2, 3, paeoniflorin and ononin bound
to IκK and p65-RelA with low binding energies, which were
comparable to the binding of MG-132. In addition, isoliquiritin
apioside, albiflorin, baicalin, isoliquiritin, liquiritin and oroxyside
mainly bound to p65-RelA through DNA and ATP binding sites
(Figures 9, 10). The control fluoxetine (S) bound to p65-RelA
with high affinity.

Literature Review on the Pharmacological
Activity of the Compounds from FAEW
To further characterize the therapeutic potential of the candidate
compounds investigated by molecular docking, we performed
a literature review of the current research on the isolated
compounds of FAEW. As shown in Table 4, paeoniflorin,
albiflorin and baicalin were reported to act in vitro against
inflammation and oxidative stress, and to be effective in
vivo against depression, and Parkinson’s disease. Furthermore,
clinical trials were carried out among herbal formulae in
inflammation-related diseases, such as Japanese traditional recipe
Shakuyakukanzoto, and the Chinese herbal formula Xiongshao
capsule. In vivo studies on isoliquiritin and liquiritin showed their
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FIGURE 9 | Visualization of molecular docking of chemical compounds isolated from FAEW to IκK.

activity against depression and cognitive-related diseases, for
instance, Parkinson’s disease. As shown in Table 5, paeoniflorin,
baicalin and liquiritin have been reported in many in vitro
and in vivo studies to reduce inflammatory processes realted
to numerous diseases through inhibiting NF-κB, which implies
their role as constituents of FAEW acting against inflammatory
reactions related to PTSD.

DISCUSSION

Posttraumatic stress disorder (PTSD) is a delayed and lasting
psychological stress disorder after traumatic events. It was
initially diagnosed among veterans of the Vietnam War.
Subsequent studies indicated that victims of disasters were also
potentially suffering from PTSD (Cavanagh et al., 2014). It has
been calculated that life time prevalence of PTSD in adults
is 7.8%, while women have higher risk than men (20.4 vs.
8.2%) despite experiencing fewer traumas (Kessler et al., 2005;
Ditlevsen and Elklit, 2012). Pre-trauma factors, such as lower
socioeconomic status, parental neglect and poor social support
increase the risk (Hong and Efferth, 2015). In addition, more
and more studies reported the correlation between PTSD and
other physiological diseases, such as diabetes (Agyemang et al.,
2012), cancer (Abbey et al., 2015) and cardiovascular diseases

(Boscarino, 2008), or psychiatric diseases, such as depression
and anxiety (Farr et al., 2014). In our studies, we analyzed
the microarray-based transcriptome-wide mRNA expression
profiling of patients with PTSD. As shown in the present
investigation, the top 10 pathways and functions, dysregulated
genes of PTSD patients were related to oxidative stress and
inflammatory response, and involved with a wide array of
psychological or physiological diseases, whichmight be taken as a
general hint for common pathogenic factors between PTSD and
metabolic syndrome, cardiovascular diseases, cancer, as well as
psychological diseases, e.g., depression, suicidality and anxiety,
implying that a holistic way to investigate PTSD might be one
approach to achieve multiple-targets.

Increasing evidence indicated an involvement of immune
system in fear- and anxiety-based disorders. Recent studies
suggested that inflammation is associated with increased basal
ganglia glutamate in patients in depression (Haroon et al.,
2016). Furthermore, inflammasome signaling affects anxiety-
and depressive-like behavior and gut microbiome composition,
and suggesting that the gut microbiota-inflammasome-brain
axis could be novel therapeutic targets for psychiatric disorders
(Wong et al., 2016). In our studies, network analyses revealed
that NF-κB was activated in both the peripheral and central
nervous system. In addition, promoter binding motif search
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FIGURE 10 | Visualization of molecular docking of chemical compounds isolated from FAEW to p65-RelA.

of genes revealed that NF-κB was among the most important
transcription factors. These results indicated that NF-κB may
be an important immunological component of inflammatory
processes in PTSD. Therefore, we hypothesized a link between
the therapeutic effect of FAEW on PTSD, and NF-κB as relevant
underlying mechanism.

Free and EasyWanderer (FAEW) is a poly-herbal preparation,
which is widely used in Chinese clinics for the treatment
of depression, premenstrual dysphoric disorder, climacteric
syndrome, and Parkinson’s disease induced by antipsychotic
drugs. An in vivo study indicated that FAEW ameliorated
PTSD-like behavior and cognitive impairments in stressed rats
(Wang et al., 2009). Subsequent clinical studies also reported
good efficacy, safety, and tolerability in post-stroke depression
patients (Li et al., 2008). In our studies, we observed that
FAEW had a wide safety range and showed a dose and time-
dependent inhibition of NF-κB activity in HEK293 cells as well
as of protein expression of NF-κB in T98G brain cells. Hence,
FAEW might exert anti-anxiety effects through NF-κB-mediated
anti-inflammatory process. Among a panel of 10 compounds,
paeoniflorin, isoliquiritin, isoliquiritin apioside, and ononin

exerted high affinity to IκK and p65-RelA. Albiflorin, baicalin,
liquiritin, and oroxyloside were predicted to strongly bind to
p65-RelA. Apart from lipophilic interactions, which widely occur
among the interactions between lipophilic groups of molecules
and the nonpolar side-chains of residues, such as Ile, Leu, Val,
and Phe, hydrogen bonds are the main interaction force to
promote molecules bind to proteins. For example, paeoniflorin
exerted strong affinity with IκK and p65 through multiple
hydrogen bonds involving the OH groups of its glucose moiety.
The hemiacetal OH-group in the core (position 5) and the
3′- and 4′-OH of paeoniflorin were predicted to bind to IκK
residues Thr23, Cys99 and Glu 97, respectively. In the interaction
of the same compound with p65, the 5-OH and the glucose
OH groups in positions 3′, 4′, and 6′ bound to the p65
residues DT9, DC22, DT8, and DC21, respectively. Besides,
p65 residue DG19 donates a hydrogen bond to the benzoate
carbonyl of paeoniflorin. The same type of interactions for
the other compounds from FAEW can be applied to explain
their activities toward NFκB, such as ononin, isoliquiritin.
Furthermore, paeoniflorin, albiflorin, baicalin, isoliquiritin, and
liquiritin were reported to be active against depression and
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TABLE 4 | Literature review on the pharmacological activity of the compounds from FAEW.

Compounds Pharmacological activity

In vitro In vivo Clinical trial

Paeoniflorin Anti-inflammation and oxidative stress

(Dong et al., 2015); neuroprotection (Mao

et al., 2012); apoptosis (Yang et al., 2016a)

Parkinson’s disease (Gu et al., 2016); depression

(Huang et al., 2015); neuropathic pain (Zhou et al.,

2016a); non-alcoholic steatohepatitis (Ma et al., 2016)

Rheumatoid arthritis (Chen et al., 2013); muscle

cramps and abdominal pains (Sadakane et al.,

2015); restenosis after percutaneous coronary

intervention (Shang et al., 2011)

Albiflorin Oxidative stress (Suh et al., 2013);

neuroprotection (Kim et al., 2009)

Anti-depression (Song et al., 2015); Parkinson’s

disease (Ho et al., 2015); neuropathic pain (Zhou et al.,

2016a; Zhang et al., 2016b)

Muscle cramps and abdominal pains

(Sadakane et al., 2015)

Baicalin Inflammation (Min et al., 2015); apoptosis

(Li et al., 2015b); oxidative stress (Zheng

et al., 2014)

Alcoholic liver injury (Wang et al., 2016b);

depression/anxiety (Zhang et al., 2016a); renal damage

(Zhang et al., 2016d); memory impairment (Wang et al.,

2016c)

Ulcerative colitis (Yu et al., 2015)

Isoliquiritin Anti-allergic activity (Kaur et al., 2009) Depression (Wang et al., 2008); antifungal activity (Luo

et al., 2016)

Depression (Su et al., 2014)

Liquiritin Neuroprotection (Teng et al., 2014) Cognitive deficits (Jia et al., 2016); Parkinson’s disease

(Huang et al., 2016); depression (Farahani et al., 2015);

focal cerebral ischemia (Sun et al., 2010)

Melisma (Amer and Metwalli, 2000)

β-hydroxy-DHP Apoptosis (Rafi et al., 2002)

Isoliquiritin apioside Anti-genotoxic (Kaur et al., 2009)

Oroxyloside Colitis (Wang et al., 2016d); inflammation-related

diseases (Fong et al., 2015)

TABLE 5 | Literature review of the effect of chemical constituents of FAEW against NF-κB.

Compounds Pharmacological activity on NF-κB

In vitro In vivo

Paeoniflorin Parkinson’s disease (Liu et al., 2016a); immunomodulation (Zhai et al.,

2016); Alzheimer’s disease (Liu et al., 2015); apoptosis (Dong et al., 2015);

morphine tolerance (Jiang et al., 2015); anti-inflammation and

immunomodulation (Gan et al., 2014); sepsis (Zhang et al., 2014b); obesity

(Kong et al., 2013); cardiac remodeling (Zhou et al., 2013)

Renal function (Liu et al., 2016c); non-alcoholic steatohepatitis(Ma

et al., 2016); cardiac dysfunction (Zhai and Guo, 2016); vascular

dementia (Zhang et al., 2015b); Alzheimer’s Disease (Zhang et al.,

2015a); arthritis (Yi, 2014) ; hepatitis (Chen et al., 2015); colitis (Zhang

et al., 2014a); learning dysfunction and brain damage (Guo et al.,

2012); lung injury (Zhou et al., 2011)

Baicalin Myofibroblast differentiation (Shin et al., 2016); atherosclerosis (Wang et al.,

2016a); haemophilus parasuis infection (Fu et al., 2016); mastitis (Guo et al.,

2013); apoptosis (Yang et al., 2016b)

Asthma (Liu et al., 2016b); periodontitis (Sun et al., 2016); allergic

diseases (Zhou et al., 2016b); arthritis (Wang et al., 2014); brain edema

(Zhou et al., 2014); lung injury (Ding et al., 2016); liver injury (Wan et al.,

2008); ischemic stroke (Singh and Chopra, 2014); cerebral ischemia

(Tu et al., 2011)

Isoliquiritin Inflammatory responses (Kim et al., 2008)

Liquiritin Endothelial dysfunction (Zhang et al., 2013) Myocardial fibrosis (Zhang et al., 2016c); acute Lung Injury (Tao et al.,

2016)

Oroxyloside Colitis (Wang et al., 2016d)

Parkinson’s disease in in vivo studies and clinical trials, and
paeoniflorin, baicalin and liquiritin were reported to inhibit
NF-κB in vitro and in vivo. These data demonstrate that FAEW
is constituted by a wide array of diverse anti-depressant natural

drugs with strong anti-inflammatory activity. Importantly, some
compounds have been indeed demonstrated to pass the blood-
brain barrier and reach brain tissue, e.g., albiflorin, paeoniflorin,
liquiritin, which may might explain the effect of FAEW in
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the central nervous system (Li et al., 2015a). In addition,
it is also quite interesting to observe that some compounds
were used to treat colitis in vivo and in clinic studies, which
might imply their participation in the balance of the gut
microbiota-inflammasome-brain axis (Yu et al., 2015; Wang
et al., 2016d).

Fluoxetine first emerged in the 1970s as selective serotonin
uptake inhibitor for the treatment of depression due to its safer
profile, fewer side effects, and greater tolerability than former
drugs (Wilde and Benfield, 1998). Subsequent studies indicated
that it also reveals strong anti-inflammatory properties, and
its effect on NF-κB was recognized recently (Mackay et al.,
2009; Cui et al., 2016). In addition to depression, clinical
studies demonstrated that fluoxetine also significantly improved
symptom clusters of PTSD (Martenyi and Soldatenkova, 2006).
Therefore, in our study, fluoxetine was selected as standard
control drug, and it was proved that fluoxetine decreased NF-κB
levels, which contributes to the explanation of its effects in the
treatment of PTSD.

Different from Western medicine with one drug- one target
action model, TCM pursues a multi-target model in different
organs and tissues of the body and achieved a lot in the
application of acupuncture worldwide. Although Chinese herb
formulae are still a matter of discussion, their clinical effects
in Asian countries have a high reputation. In our studies, we
observed that, with diverse active compounds, FAEW exerted
strong anti-inflammatory effects toward NF-κB, which were
comparable to the antidepressant drug, fluoxetine. It is safe

and approachable for the treatment of inflammation-related
diseases. A limitation of this investigation represents the lack
of in vivo PTSD models to validate the effect of FAEW in
more detail and investigate possible clinical effects. The literature
review provided us some hints for the future studies, to
confirm and investigate the activity of different components
of FAEW. Future studies will focus on the performance
of in vivo validation and clinical trials to further evaluate
the therapeutic potential of FAEW to treat PTSD-related
diseases.
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