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Homology modeling and epitope prediction of Der f 33

Feixiang Teng', Jinxia Sun’, Lili Yu', Qisong Li"' and Yubao Cui?

"Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
Department of Clinical Laboratory, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China

Abstract

Dermatophagoides farinae (Der f), one of the main species of house dust mites, produces more than 30 allergens. A recently
identified allergen belonging to the alpha-tubulin protein family, Der f 33, has not been characterized in detail. In this study,
we used bioinformatics tools to construct the secondary and tertiary structures and predict the B and T cell epitopes of Der f 33.
First, protein attribution, protein patterns, and physicochemical properties were predicted. Then, a reasonable tertiary structure
was constructed by homology modeling. In addition, six B cell epitopes (amino acid positions 34—45, 63-67, 103—108, 224230,
308-316, and 365—-377) and four T cell epitopes (positions 178—186, 241-249, 335-343, and 402—410) were predicted. These

results established a theoretical basis for further studies and eventual epitope-based vaccine design against Der f 33.
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Introduction

House dust mites (HDM), particularly Dermatophagoides
farinae (Der f) and Dermatophagoides pteronyssinus (Der p),
are responsible for sensitization of more than 50% of allergic
patients worldwide (1,2). Allergens from HDM (fecal material,
secretions, body degradation products, and lysates of car-
casses) can cause bronchial asthma, atopic dermatitis, and
rhinitis (3).

Allergen specific immunotherapy (SIT) is one of the
most effective treatments for allergic diseases (4). SIT can
be improved by using recombinant allergens, which contain
most of the IgE-binding epitopes of the source allergens and
are pure and better standardized compared to natural aller-
gen extracts (5). A number of recombinant dust mite aller-
gens have been cloned, expressed, and purified, including
Der f groups 1-3, 5-8, 10, 11, 13—18, 22, 24, and 33 aller-
gens (6,7). Allergen extracts of HDM have been used for
diagnosis and treatment of IgE-mediated allergic diseases.
However, these crude extracts include some inflammatory
molecules, such as kallikreins, ceramides, and endotoxins,
which could modify treatment outcomes and efficacy (8).
Thus, these extracts have some limitations in both their
safety and efficacy in SIT (5).

Some SIT approaches have shifted toward epitope-
based vaccine design (9,10). In this approach, a recombi-
nant allergen contains multiple B and T cell epitopes. Thus,
identifying the major B and T cell epitopes of allergens is
critical for effective immunotherapy of allergic diseases via
epitope-based vaccine preparation.
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To date, 36 groups of mite allergens have been listed
in the Allergen Nomenclature Database (www.allergen.
org). Der f 33 was identified in 2014 (GenBank accession
KMO010005), and it was characterized as having a molec-
ular weight of 52 kDa and belonging to the alpha-tubulin
protein family. Moreover, Der f 33 could react to the serum
of patients with mite allergy; the positive rate of skin prick
test to Der f 33 was 23.5% (4/17 patients). Also, it can
modulate the functions of dendritic cells (DCs) and induce
airway allergy (7). However, the major B and T cell antigen
epitopes of Der f 33 have not been reported.

In this study, we used bioinformatics to predict the
secondary and tertiary protein structures and identify the B
and T cell epitopes of Der f 33. These findings provide
theoretical support for mite allergen epitope-based vaccine
design.

Material and Methods

Sequence retrieval and analyses

Der f 33 amino acid sequence (Accession Number:
AlIO08861.1) was obtained from the International Union
of Immunological Societies (IUIS) nomenclature database
and the protein database of National Center for Biotech-
nology Information (NCBI). Family classification of Der f
33 was analyzed by Superfamily v1.75 (11) and InterPro
v56.0 (12). TMHMM server 2.0 (13) was used for pre-
dicting the transmembrane helices in Der f 33 proteins.
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Physicochemical analysis and secondary structure
prediction

Physicochemical analysis including molecular weight,
negatively charged residues, positively charged residues,
theoretical pl, aliphatic index, grand average of hydro-
pathicity (GRAVY), and instability index of Der f 33
was predicted by ProtParam (14). Characteristic patterns
and functional motifs of Der f 33 were checked by using
Prosite (15). Secondary structure of Der f 33 was pre-
dicted by Jpred 4.0 (16).

Tertiary structure prediction and evaluation

Homology modeling was used for constructing the
tertiary structure of Der f 33. BLASTP search was per-
formed against the Protein Data Bank (PDB) to find suitable
Der f 33 templates, which were based on the high score,
lower e-value, and maximum sequence identity. Tertiary
structure was constructed by MODELLER v9.16 (17),
which was imported to Chiron (18) to rectify unfavorable
clashes and improve the quality of stereochemistry.

Estimating the quality of tertiary structure is a vital
step. VERIFY_3D (19) was used to determine the com-
patibility of an atomic model (3D) with its own amino acid
sequence (1D) and compare the results to good struc-
tures. PROCHECK (20) was used to check the stereo-
chemical quality of Der f 33 structure. ERRAT (21) was
used to analyze the statistics of non-bonded interactions
between different atom types. ProSA (22) was used to
analyze the Z-score, which shows the degree of match
between the template protein and Der f 33. QMEAN (23) is
a composite scoring function, which was used to derive
both global (for the entire structure) and local (per residue)
error estimates based on one single model. Visualization
of tertiary structure was performed using UCSF Chimera
1.10.2 (24).

Prediction of B cell epitopes

ABCpred (25), BCPreds (26), BcePred (27), and Bio-
informatics Predicted Antigenic Peptides (BPAP) system (28)
were used for predicting B cell epitopes of Der f 33.
ABCpred predicted B cell epitopes in antigen sequences,
using an artificial neural network. BCPreds selected AAP
method (26), BCPred (29), and FBCPred (30) to predict B
cell epitopes. BcePred and BPAP system predicted B cell
epitopes using the same physicochemical properties, such
as hydrophilicity, flexibility/mobility, accessibility, polarity,
exposed surface, and turns.

Prediction of T cell epitopes

T cell epitopes were predicted by identifying the bind-
ing of peptides to MHC molecules with NetMHCII 2.2 (31)
and NetMHCllIpan-3.1 (32).

NetMHCII 2.2 uses artificial neuron networks to predict
binding of epitope peptides to HLA-DQ alleles in regions
of HLA-DQA10101-DQB10501, HLA-DQA10102-DQB10602,
HLA-DQA10301-DQB10302, HLA-DQA10401-DQB 10402,
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HLA-DQA10501-DQB10201, and HLA-DQA10501-DQB
10301.

NetMHCllpan-3.1 was used for HLA-DR-based epi-
tope prediction in regions of HLA-DR DRB101, HLA-
DRB301, HLA-DRB401, and HLA-DRB501.

In the 2 programs, high binding peptides have an IC50
value below 50 nM. The ultimate T cell epitopes were
obtained by combining the results of the HLA-DR alleles
epitopes and HLA-DQ alleles epitopes.

Results

Amino acid sequence analysis

The ProtParam results showed that the complete
amino acid sequence of Der f 33 comprises 461 amino
acids and has a molecular weight of 51.6 kDa. The
number of negatively charged residues (Asp+ Glu) and
positively charged residues (Arg + Lys) were 62 and 42,
respectively. The theoretical pl and aliphatic index of Der f 33
were 5.04 and 79.11, respectively. The GRAVY and in-
stability index were —0.286 and 43.23, respectively.

The results of InterPro v56.0 and Superfamily v1.75
showed that Der f 33 belonged to the alpha-tubulin protein
family (InterPro No. IPR002452) and tubulin protein super-
family (InterPro No. IPR000217). Prosite analysis of Der p 33
revealed that it contained a TUBULIN pattern (PS00227,
149-155, GGGTGSG). The computed results of TMHMM
Server 2.0 showed that Der f 33 has no transmembrane
helices, and the protein sequences are all located outside
of the membrane.

Tertiary structure construction and analysis

As the homology modeling template, Cytotoxic Dolasta-
tin 10 Analogues (PDB accession No.: 4X20) have a high
sequence identity (82%), lower e-value (0.0) and a high
score (761) with Der f 33.

The Ramachandran plot of tertiary structure showed
that 86.3% amino acid residues of Der f 33 were within
the most favored regions, 12.3% of residues were in the
additional allowed region, 0.5% residues in the generously
allowed regions, and 1.0% residues in the disallowed
region. The application of the ERRAT program showed
that the overall quality factor is 85.34. VERIFY 3D pro-
gram revealed that 88.72% of the residues had an
averaged 3D-1D score >0.2. As indicated by the ProSa
server, the Z-scores of Der f 33 and 4X20 are —8.89 and
—8.68, respectively. The QMEAN Z-score of Der f 33 was
-0.927 and Q value was 0.692 (Table 1). The tertiary
structure of Der f 33 is shown in Figure 1.

In the secondary structure of Der f 33, the percentages
of overall amino acids located in a-helices, p-sheets, and
random coils are 33.41% (14 domains), 9.98% (9 domains),
and 56.61%, respectively. The tertiary structure of
Der f 33 also contain a-helices, -sheets, and random
coils, and the amino acid numbers of these three ele-
ments are slightly different from the secondary structures.
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Table 1. Parameters of Der f 33 tertiary structure.
Protein/Structural assessment methods Ramachandran plot (%) ERRAT VERIFY 3D Z-score Q value
Der f 33
PROCHECK analysis 86.3% core 85.337 88.72%
12.3% allow
0.5% generously
1.0% disallowed
ProSa -8.89
QMEAN -0.927 0.692
4X20
PROCHECK analysis 83.6% core 83.72 89.28%
14.8% allow
1.0% generously
0.6% disallowed
ProSa —-8.68
QMEAN -1.11 0.652

Core: most favored regions; allow: additional allowed regions; generously: generously allowed regions; disallowed: disallowed regions.

Figure 1. B and T cell epitopes on tertiary structure of Der f 33. A-1 and A-2, Tertiary structure of Der f 33. B-1 and B-2, B cell epitopes
on tertiary structure of Der f 33. C-7 and C-2, T cell epitopes on tertiary structure of Der f 33.

The percentages of overall amino acids of tertiary struc-
ture located in a-helices, B-sheets, and random coils are
43.17% (17 domains), 14.32% (12 domains), and 42.51%,
respectively (Table 2, Figure 2).

B cell epitope prediction

Combining the results of four programs, six antigenic
epitope peptides (amino acid positions 34-45, 63-67,
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103-108, 224-230, 308-316, and 365-377) were pre-
dicted (Table 3, Figures 1 and 2).

T cell epitope prediction

NetMHCllpan 3.1 and NetMHCII 2.2 were used for
predicting T cell antigenic epitopes. Combining the results
of the two programs, the consensus results were for four
predicted T cell epitopes (amino acids positions 178-186,
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Table 2. Secondary and tertiary structure elements of Der f 33.

Structure a-helices (%) B-sheets (%) Random coils (%)
Secondary structure 33.41 (14 domains) 9.98 (9 domains) 56.61
Tertiary structure 43.17 (17 domains) 14.32 (12 domains) 42.51

B1

Der £33 MRECISLHVGQAGVQIGNACWELYCLEHEIQPDGQLSPVKSTTTLSSSETISNDSESTFF 60

B B3
Der £33 NETGNGREVPRSIYVDLEPTVVDEVRTGEYRRLFHPEQLITGKEDAANNYARGHYTEGKT 120

T1
Der £33 LIEPVMRRIAKLAEQCSGLQGFLIFHSFGGGTGSGEFSSLLMERLSVEYGKKSKLEEA 180

T1 B4
Der £33 |APAISTAVVEPYNSILTTHNTLEHSDCSEMVDNEAIYDICRRNILNIERPSYMNLNRLIGQ 240

T2
Der £33 |IVSSITASLRFDGALNVDLTEFQTNLVPYPRIHFPLVSYAPIVSSEKAYHEQFTVPEITG 300

B5 I3
Der £33 TCFEPSNQMVKCNTRNGKYMACCLLYRGDVVPKDVNAATAATIKAKSTIQFVQWCPTGFKI 360

B6 T4
Der £33 GINYRPPTVVPSGDLAKVQRAVCLLSNTTAISEAWSRLNHKFDLMYSKRAFVHWYVGEGM 420

Der f33 EEGEFSEAREDLAALEKDYEEVAAEYNADDDDYDDRDGEEF 461

Figure 2. Secondary structure elements for Der f 33. The a-helices are underlined, -sheets are shown in gray highlight, random coils in
unlabeled sequence, and epitopes are within a box.

241-249, 335-343, and 402-410) (Table 3, Figures 1

Table 3. Predicted B and T cell epitopes of Der f 33.

Peptide Type of epitope Position Sequence

P1 B 34-45 GQLSPVKSTTTL
P2 B 63-67 TGNGR

P3 B 103-108 KEDAAN

P4 B 224-230 LNIERPS

P5 B 308-316 QMVKCNTRN
P6 B 365-377 RPPTVVPSGDLAK
P7 T 178-186 IYPAPAIST

P8 T 241-249 IVSSITASL

P9 T 335-343 VNAAIAAIK
P10 T 402410 FDLMYSKRA

Bold letters represent the hydrophobic amino acid residues.

Thus, molecular characterization and identification of

and 2). epitopes of HDM allergens will promote a better under-
standing of immune response and promote an effective
Discussion epitope-based vaccine design.

To better understand the structure and function of

HDM are important sources of inhalant and contact
allergens that can cause a variety of allergic diseases (3).
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Der f 33, we first analyzed the basic sequence properties.
The bioinformatics analyses showed that Der f 33 is a
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hydrophilic (GRAVY) and unstable (instability index) protein,
which has no transmembrane helices, and the protein
sequences are all located outside of membrane.

Homology modeling built a target structure based on
the comparison with the data extracted from homologous
sequences with suitable templates (33). A total 98.6%
amino acid residues of Der f 33 were in favored and
allowed regions, showing that the distribution of the amino
acid is reasonable. The VERIFY 3D and ERRAT results
showed that the tertiary structure of Der f 33 was good and
had high resolution. The ProSa results showed that there
was a high tertiary structure matching degree between
Der f 33 protein and the template protein. The standard
deviation value of QMEAN Z-score was less than 1,
showing that the Der f 33 protein model variation rate was
low, the overall folding and local structure both had high
accuracy rate, and stereochemistry was reasonable. In
addition, the Q value was between 0 and 1, showing that
the predicted model of Der f 33 was reliable and could be
adopted for this study.

The secondary and tertiary structure of Der f 33 both
contain three elements (a-helices, p-sheets, and random
coils); the amino acid percentages of these three elements
in the tertiary structure differed slightly from the secondary
structure. This phenomenon may be due to different
methods of prediction for the secondary and tertiary
structures.

Hydrophobicity, fragment flexibility/mobility, surface acces-
sibility, polarity, exposed surface, and turns are important
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