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Plasma microRNA and metabolic 
changes associated with pediatric 
acute respiratory distress 
syndrome: a prospective cohort 
study
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Anis Karimpour‑Fard2, Peter M. Mourani3,4, Todd C. Carpenter3,6, Eva S. Nozik1,3,6 & 
Carmen C. Sucharov5,6*

Acute respiratory distress syndrome is a heterogeneous pathophysiological process responsible 
for significant morbidity and mortality in pediatric intensive care patients. Diagnosis is defined by 
clinical characteristics that identify the syndrome after development. Subphenotyping patients at 
risk of progression to ARDS could provide the opportunity for therapeutic intervention. microRNAs, 
non‑coding RNAs stable in circulation, are a promising biomarker candidate. We conducted a single‑
center prospective cohort study to evaluate random forest classification of microarray‑quantified 
circulating microRNAs in critically ill pediatric patients. We additionally selected a sub‑cohort for 
parallel metabolomics profiling as a pilot study for concurrent use of miRNAs and metabolites as 
circulating biomarkers. In 35 patients (n = 21 acute respiratory distress, n = 14 control) 15 microRNAs 
were differentially expressed. Unsupervised random forest classification accurately grouped ARDS and 
control patients with an area under the curve of 0.762, which was improved to 0.839 when subset to 
only patients with bacterial infection. Nine metabolites were differentially abundant between acute 
respiratory distress and control patients (n = 4, both groups) and abundance was highly correlated with 
miRNA expression. Random forest classification of microRNAs differentiated critically ill pediatric 
patients who developed acute respiratory distress relative to those who do not. The differential 
expression of microRNAs and metabolites provides a strong foundation for further work to validate 
their use as a prognostic biomarker.
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ARDS  Acute respiratory distress syndrome
PARDS  Pediatric acute respiratory distress syndrome
miRNAs  MicroRNAs
PICU  Pediatric Intensive Care Unit
PELOD  Pediatric Logistic Organ Dysfunction
RFC  Random forest classification
ROC  Receive operating curve
AUC   Area under the curve
LRTI  Lower respiratory tract infections

OPEN

1Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of 
Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. 2Department of 
Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. 3Division of Pediatric Critical 
Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. 4Section of 
Pediatric Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s 
Research Institute, Little Rock, AR, USA. 5Division of Cardiology, Department of Medicine, University of Colorado, 
Anschutz Medical Campus, 12700 E 19th Ave B139, Aurora, CO 80045, USA. 6These authors contributed equally: 
Todd C. Carpenter, Eva S. Nozik and Carmen C. Sucharov. *email: Kika.sucharov@cuanschutz.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15476-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14560  | https://doi.org/10.1038/s41598-022-15476-0

www.nature.com/scientificreports/

Acute respiratory distress syndrome (ARDS) is a complex, rapidly progressing, and often fatal condition affect-
ing about 10% of critically ill adults, with an estimated mortality ranging from 30 to 40%1. While the incidence 
of ARDS in pediatric populations is lower than in adults, comprising 1–3% of all Pediatric ICU admissions, the 
mortality of pediatric ARDS (PARDS) remains high at 17–33%2,3. ARDS has a complex pathophysiology resulting 
from diverse etiologies such as bacterial and viral lung infections, sepsis, and trauma. ARDS remains defined by 
clinical criteria which do not account for this heterogeneity. Current definitions of both adult and pediatric ARDS 
focus on clinical features such as chest radiograph findings, oxygenation, and mean airway pressure  parameters4. 
However, emerging evidence suggests there is considerable biological and genetic heterogeneity of the ARDS 
disease process, with distinct subphenotypes of patients that have different disease risk and response to thera-
pies. This new information drives the need for a more personalized approach to diagnosis and  management5.

A targeted approach to subphenotyping ARDS will require improved biomarkers to identify patients at risk 
of poor outcomes. microRNAs (miRNAs) are small, single-stranded, noncoding RNAs that regulate a wide array 
of cellular processes via mRNA degradation or translational  repression6. Next-generation sequencing studies in 
humans and animal models have uncovered a large number of miRNAs dysregulated with  ARDS7. In preclinical 
studies, our group and others have shown that miRNA levels can influence disease development and progres-
sion and may be a therapeutic  target8,9. miRNAs are stable in the circulation and have emerged as promising 
biomarkers in a variety of  pathologies10. In addition to miRNAs, other relevant biomarkers, such as circulating 
metabolites, may be useful in stratifying risk for  ARDS11. Recent advances in metabolomics have enabled the 
evaluation of circulating metabolites in a variety of disease processes including  ARDS12.

Our broad goal is to determine if circulating miRNAs and metabolites may serve as biomarkers to stratify risk 
of developing PARDS. As a first step, we conducted a single-center prospective cohort study to test the hypoth-
esis that circulating miRNA populations can be a diagnostic biomarker of ARDS and that changes in circulating 
miRNAs are associated with changes in circulating metabolites.

Materials and methods
Patient sample collection. This prospective observational study was performed in the Pediatric Intensive 
Care Unit (PICU) at Children’s Hospital Colorado as part of a larger study of airway microbiome changes in 
relation to ventilator-associated  pneumonia13. The study was approved by the Colorado Multiple Institutional 
Review Board (COMIRB #14-1530), and informed consent was obtained from the child’s parents or legal guard-
ian. All methods were performed according to relevant guidelines and regulations. Eligible study subjects were 
31 days to 18 years of age and were expected by their primary clinical team to be intubated ≥ 72 h at enrollment. 
Exclusion criteria specific to this study were known chromosomal abnormalities, cancer not in remission, his-
tory of stem cell transplantation, blood product administration, plasma exchange therapies, or dialysis within 
7 days. Patients in the ARDS group met criteria for moderate to severe ARDS using modified Berlin Criteria 
adjusted for altitude at our site, defined as acute onset (< 7 days from triggering event), bilateral infiltrates on 
chest radiograph, and  PaO2 to  FiO2 (P/F) ratio < 180 or  SaO2 to  FiO2 (S/F) ratio of < 230 on at least 3 time points 
each separated by at least 1 h in a 24-h  period14. Patients included in the control group were critically ill and 
mechanically ventilated but did not meet criteria for ARDS during their PICU stay. Enrolled patients were tested 
as clinically indicated for respiratory viruses and endotracheal bacteria. All 21 ARDS patients and 9 of 14 con-
trols were tested for both viruses and bacteria prior to sample collection; control patients not tested were con-
sidered negative. As a measure of severity of illness, Pediatric Logistic Organ Dysfunction (PELOD) scores were 
calculated for the day of sample  collection15. Plasma samples for miRNA analysis were collected in EDTA tubes, 
centrifuged, aliquoted, and stored at − 80 °C within 30 min of collection. All 21 ARDS patients and 12 of 14 
control patients were endotracheally intubated on PICU day 1 or 2. One control patient was intubated on PICU 
day 3, and 1 additional control patient was intubated on PICU day 4. ARDS criteria were met on day 1 or 2 of 
intubation for 19 of 21 ARDS patients; 1 patient developed ARDS on day 3 of intubation and 1 patient developed 
ARDS on day 4 of intubation. Plasma samples were collected between days 1 and 4 of moderate to severe ARDS 
for all patients, with 19 of 21 samples collected within 3 days of ARDS onset. Samples were collected between 
days 1 and 5 of endotracheal intubation for all patients.

miRNA array. miRNA arrays were performed as described  previously16. Briefly, 3 µl of plasma from each 
subject was submitted to three cycles of heat/freeze to ensure miRNAs are released from microvesicles or inter-
actions with proteins. miRNAs were reverse transcribed using a pool of primers specific for each miRNA (Ther-
moFisher Scientific). Real-time PCR reactions were performed in a 384 well TaqMan Low Density Array (Ther-
moFisher Scientific) containing sequence-specific primers and TaqMan probes in the ABI 7900HT.

Array analysis. Raw Ct values were normalized to miR-320 based on our unpublished results showing 
expression of circulating miR-320 is the least variable in over 400 pediatric samples (not shown). Statistical 
significance was tested using Wilcoxon sign-rank test. Random forest classification (RFC) was executed in R 
using 50,000 trees to identify the top 3 miRNAs that differentiated comparison groups (https:// cran.r- proje ct. 
org/ web/ packa ges/ rando mFore st/ rando mFore st. pdf). The RFC model’s sensitivity and specificity were assessed 
by receiver operating curve (ROC) using the top three differentiating miRNAs. Heatmap was plotted using the 
heatmap.2 function in ggplot2 package in  R17. Area under the receiver operating characteristic curve (AUC) was 
calculated using the pROC  package18. Circos plot was generated using the circacompare  package19.

Pathway analysis. Predicted pathway analysis based on altered miRNAs was done using the miRNA 
Enrichment Analysis and Annotation Tool (miEAA)20. All 15 dysregulated miRNAs were evaluated. Pathways 
with a qvalue of < 0.003 or pathways associated with metabolite-miRNA pairs are shown.

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
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Metabolomic sample extraction and quantification. Plasma samples (10  µl) were extracted with 
240 µl of ice cold methanol:acetonitrile:water (5:3:2) via vigorous vortexing for 30 min at 4 C. Supernatants were 
clarified by centrifugation (10 min, 18,213 rcf, 4 °C) and analyzed on a Thermo Vanquish ultra-high pressure liq-
uid chromatograph coupled online to a Thermo Q Exactive mass spectrometer. Metabolites were separated using 
a 5 min C18 gradient method in positive and negative modes exactly as described previously (separate runs, 20 
µL per injection)21. Peak integration and metabolite assignment were performed using Maven (Princeton Uni-
versity) against the KEGG database, confirmed against chemical formula determination from isotopic patterns 
and accurate mass, and validated against experimental retention times for > 650 standard compounds (Sigma 
Aldrich; MLSMS, IROATech, Bolton, MA, USA)22. Instrument stability was assessed using replicate injections of 
a quality control mix injected every 4 runs.

Metabolomics and miRNA‑metabolite integrated analysis. Plasma samples (10 µl) were extracted 
with 240  µl of ice cold methanol:acetonitrile:water (5:3:2) as described  previously23. Differentially abundant 
metabolites were identified by absolute fold change > 1.5 and p < 0.05 by t-test (n = 4). Differentially expressed 
miRNAs from matched samples were identified using a t-test (p < 0.05). Significantly different miRNAs and 
metabolites were correlated using Pearson correlation in R.

Ethical approval. The study was approved by the Colorado Multiple Institutional Review Board (COMIRB 
#14–1530), and informed consent was obtained from the child’s parents or legal guardian.

Results
Patient characteristics. The study cohort included 21 ARDS patients (11 moderate and 10 severe) and 14 
control patients. Demographic characteristics and clinical characteristics are shown in Table 1. As compared to 
controls, ARDS patients tended to be younger, with a significant increase in lower respiratory tract infections 
(LRTI, 76% vs. 21%, p = 0.002), and significantly more viral respiratory infections (90% vs. 29%, p < 0.001). Viral 
LRTI was identified in 23 patients including primary and non-primary diagnoses (90% ARDS, 29% control, 
p < 0.001); 13 of those patients had both viral and bacterial pathogens identified (10 ARDS, 3 control), and 10 
patients had only viral infection (9 ARDS, 1 control). Bacterial LTRI was diagnosed in 19 patients (11 ARDS, 
8 control), and 6 of those patients had only bacterial infection (1 ARDS, 5 control). Neither viral nor bacterial 
infection was documented in 6 patients (1 ARDS, 5 control). PELOD-2 scores, PICU length of stay, ventilator-
free days, days of non-invasive ventilation following extubation, and days on oxygen therapy prior to hospital 
discharge were similar between ARDS and control groups.

Unsupervised RFC and unsupervised hierarchical clustering of ARDS versus control 
patients. Fifteen miRNAs were differentially expressed between ARDS and control patients, all of which 
were higher in ARDS patients (Table S1, Fig. S1). Unsupervised RFC identified miRNA-345-5p, -375-3p, and 
-126-3p as the best discriminators of ARDS from control patients as demonstrated by the highest mean decrease 
in accuracy and Gini coefficient when removed from the classifier (Fig. 1A,B). All three miRNAs were higher in 
ARDS patients; miRNA-345-5p, -375-3p, and -324-3p increased 1.29, 1.62 and 1.78 fold respectively (Fig. 1C, 
Table S1). Hierarchical clustering distinguished ARDS patients from controls (Fig. 1D). RFC of miRNA profiles 
identified disease status with an area under the curve of 0.762 (Fig. 1E).

Table 1.  Demographics and clinical characteristics. ARDS-acute respiratory distress syndrome, LRTI-lower 
respiratory tract infection, TBI-traumatic brain injury, PELOD-pediatric logistic organ dysfunction, NIV-non-
invasive ventilation, PICU-pediatric intensive care unit.

Characteristic

Control ARDS

p-value(n = 14) (n = 21)

Age (median, yrs) 3.9 (IQR = 0.5–10.7) 1.4 (IQR = 0.7–2.2) 0.35

Sex (% male) 71% 67% 0.81

Primary diagnoses (n, %)

LRTI 3 (21%) 16 (76%) 0.002

Sepsis 4 (29%) 2 (10%) 0.15

TBI 4 (29%) 0 0.01

Other 3 (21%) 3 (15%) 0.65

Viral respiratory infection (n, %) 4 (29%) 19 (90%) < 0.001

Bacterial respiratory infection (n, %) 8 (57%) 11 (52%) 0.77

PELOD (mean ± SD) 7.0 ± 1.5 6.7 ± 2.0 0.34

Ventilator-free days (mean ± SD) 21.3 ± 6.5 20.8 ± 5.6 0.49

NIV days post-extubation (mean ± SD) 0.9 ± 1.5 1.4 ± 1.8 0.38

Days of oxygen therapy (mean ± SD) 9.3 ± 9.9 15.0 ± 25.6 0.34

PICU length of stay (mean ± SD) 9.6 ± 9.3 14.9 ± 25.4 0.33
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Figure 1.  Random forest classification (RFC) of acute respiratory distress syndrome (ARDS) and control 
patients (n = 21 ARDS, n = 14 control). (A) Ranked miRNA importance in patient identification by unsupervised 
RFC of differentially expressed miRNAs. (B) RFC of ARDS and control patients using the top 3 miRNAs. (C) 
Mean relative quantification of the top three miRNAs identified by RFC, black line for the median and whiskers 
for the 25th and 75th percentiles. (D) Receiver-operating curve for classification of samples based on the top 
three miRNAs identified by RFC. (E) Unsupervised hierarchical clustering using the three miRNAs identified by 
RFC. ARDS-Acute respiratory distress syndrome, miRNA-microRNA.
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Unsupervised RFC and hierarchical clustering ARDS versus control in bacterially infected 
patients. We next sought to determine if limiting our analysis to patients with documented bacterial lower 
respiratory tract infections would improve the performance of circulating miRNAs (n = 11 ARDS, n = 9 con-
trol). Unsupervised RFC identified miRNA-590-5p, -324-3p, and -486-3p as the top three miRNAs capable of 
differentiating ARDS from controls (Fig. 2A) as shown by the highest in mean decrease in accuracy and gini 
coefficient (Fig. 2B). miRNA-590-5p, -324-3p, and -486-3p were 1.59, 1.47 and 1.55 fold higher in ARDS patients 
respectively (Fig. 2C, Table S2). Unsupervised hierarchical clustering using the top three miRNAs show these 
miRNAs can distinguish ARDS patients from controls (Fig. 2D). RFC of miRNA profiles identified disease status 
with an AUC of 0.839 (Fig. 2E).

Unsupervised RFC and hierarchical clustering of ARDS patients with viral versus bacterial and 
viral infection. To determine if circulating miRNAs can differentiate infectious etiology in ARDS, 9 ARDS 
patients with only viral infection and 10 patients with bacterial and viral infections were compared using unsu-
pervised RFC. Random forest classification using the top three miRNAs distinguished bacterially infected and 
virally infected patients (Fig. 3A). Unsupervised RFC based on mean decrease in accuracy and gini coefficient 
are shown in Fig. 3B. miRNAs-150-5p and -192-5p increased 1.98 and 1.68 fold respectively, while miRNA-
548a-3p decreased -1.54 fold (Fig. 3C, Table S3). Unsupervised hierarchical clustering using the top three miR-
NAs showed these miRNAs can group ARDS patients according to infection type (Fig. 3D). RFC yielded an AUC 
of 0.894 to differentiate viral from bacterial/viral-infected ARDS patients (Fig. 3E).

Pathway analysis of altered miRNAs. To define the possible biological significance of altered miRNAs, 
we used miEAA to evaluate predicted KEGG  pathways24 of miRNAs altered in ARDS patients when compared to 
controls (from Table S1). As shown in Table 2, 16 pathways with a q < 0.003 were identified. Of those, seven are 
related to metabolism, four to inflammatory/infection processes, two to addiction processes, one to hormonal 
alterations, one to cancer and one to Vascular Endothelial Growth Factor (VEGF). This analysis suggests that 
metabolic alterations/metabolites play an important role in ARDS. We next evaluated if circulating metabolites 
were altered in ARDS patients.

Evaluation of circulating metabolites in a subset of ARDS and control patients. In addition to 
miRNAs, circulating metabolites have received recent attention as a powerful biomarker for human  disease12. 
Therefore, we selected a subset of four ARDS and four control patients that grouped together by unsupervised 
hierarchical clustering to evaluate the relative quantity of circulating metabolites (Fig. 1E, ARDS group far left, 
control group far right). Seven metabolites increased in ARDS patients relative to control, defined by an abso-
lute fold change greater than 1.5 and p < 0.05 (Table S4). 5-oxoproline, L-citrulline, glutamine, and taurine were 
differentially abundant and have previously described relationships with ARDS (Fig. 4A–D). The changes in 
metabolites were then tested to determine if the differential abundance correlated with alterations in miRNA lev-
els. Metabolite abundance strongly correlated (absolute r > 0.7, p < 0.05) with select miRNA abundance (Fig. S2). 
Of the differentially expressed metabolites, the highest correlation coefficients were found for 5-oxoproline-
miRNA-197-3p (r = 0.90; p = 2.49E−3), L-citrulline-miRNA-146a-5p (r = 0.80, p = 1.68E−2), Taurine-miRNA-
328-3p (r = 0.90, p = 2.43E − 3), and Glutamine-miRNA-342-3p (r = 0.86, p = 6.04E−3) (Fig. 4E–H and Fig. S2). 
The significantly altered KEGG pathways related to these metabolites are shown in Table S.

Discussion
ARDS is a highly heterogeneous syndrome of severe respiratory failure resulting from diverse etiologies. Accu-
mulating evidence indicates that sub-phenotypes of ARDS may respond differently to therapeutic  interventions5. 
These findings suggest that developing biomarkers to more accurately identify ARDS or sub-phenotypes of 
ARDS may be of great clinical utility. In addition, while evidence is emerging that circulating miRNAs may be 
useful biomarkers in adult ARDS patients, the role of circulating miRNAs in pediatric ARDS remains largely 
unexplored. We demonstrate here that circulating miRNAs are detectable in critically ill children, that circulating 
miRNA expression patterns differ between patients with ARDS and control patients, and that circulating miRNA 
patterns differ depending on the underlying etiology of ARDS.

Using RFC and hierarchical clustering, we found that ARDS and control patients were accurately differenti-
ated by a three-miRNA biomarker panel of miRNA-345-5p, -375-3p, and -126-3p (Fig. 1). This is consistent 
with other studies that have used 1–4 miRNAs to assess ARDS risk in  sepsis25, severe community acquired 
 pneumonia26, and critical  illness27. Intriguingly, miRNA-126 was identified previously as a biomarker differentiat-
ing adult patients who did or did not progress to ARDS in the setting of severe community acquired  pneumonia26. 
And importantly, miR-126-3p was recently defined as a biomarker of mortality in pediatric ARDS  patients28. 
This is the first time miRNAs-345-5p and -375-3p have been identified as biomarkers for ARDS, though they 
have previously been implicated as biomarkers for pediatric  diabetes29. The fact that these differences were seen 
early in the course of ARDS and in comparison to a critically ill and mechanically ventilated control group raises 
the possibility that miRNA profiling could be of use in identifying ARDS patients at an early time-point in their 
course and inform therapeutic interventions.

The most common etiologies of ARDS in children are respiratory infections. We observed that the specificity 
of patient grouping increased substantially when the analysis was limited to patients with a documented bacterial 
respiratory infection (Fig. 2). Among patients with bacterial LRTI, the three miRNAs that best discriminated 
ARDS from control patients (-590-5p, -324-3p, and -486-3p) have been described as biomarkers in the settings 
of COVID-19 infection and lung  cancer30,31. Notably, miRNAs-486-3p has also been identified as a biomarker of 
sepsis, a common cause of  ARDS32. This is the first time these three miRNAs have been identified as circulating 
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Figure 2.  Random forest classification (RFC) of bacterially infected acute respiratory distress syndrome 
(ARDS) and control patients (n = 11 ARDS, n = 8 control). (A) Ranked miRNA importance in patient 
identification by unsupervised RFC of differentially expressed miRNAs. (B) RFC of bacterially-infected ARDS 
and control patients using the top 3 miRNAs. (C) Relative quantification of the top three miRNAs identified by 
RFC, black line for the median and whiskers for the, 25th and 75th percentiles. (D) Receiver-operating curve 
for classification of samples based on the top three miRNAs identified by RFC. (E) Unsupervised hierarchical 
clustering using the three miRNAs identified by RFC. ARDS-Acute respiratory distress syndrome, miRNA-
microRNA.
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Figure 3.  Random forest classification (RFC) of virally vs bacterially infected acute respiratory distress 
syndrome (ARDS) patients (n = 10 bacterial, n = 9 viral). (A) Ranked miRNA importance in patient 
identification by unsupervised random forest classification (RFC) of differentially expressed miRNAs. (B) 
RFC of patients with viral vs bacterial infection using the top 3 miRNAs. (C) Relative quantification of the top 
three miRNAs identified by RFC, black line for the median and whiskers for the 25th and 75th percentiles. 
(D) Receiver-operating curve for classification of samples based on the top three miRNAs identified by RFC. 
(E) Unsupervised hierarchical clustering using the three miRNAs identified by RFC. ARDS-Acute respiratory 
distress syndrome, miR-microRNA.
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Pathways P-value Q-value miRNAs

Pantothenate and CoA biosynthesis 6.45E−07 1.51E−04

hsa-miR-16-5p; hsa-miR-375-3p; hsa-miR-345-5p

hsa-miR-186-5p; hsa-miR-374a-5p; hsa-miR-125b-5p

hsa-miR-26a-5p; hsa-miR-195-5p; hsa-miR-374b-5p

hsa-miR-331-3p; hsa-miR-142-3p

Inflammatory bowel disease IBD 1.34E−06 1.51E−04

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-590-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

hsa-miR-139-5p

Nicotinate and nicotinamide metabolism 1.41E−06 1.51E−04

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-186-5p; hsa-miR-374a-5p; hsa-miR-125b-5p

hsa-miR-26a-5p; hsa-miR-126-3p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p

Malaria 1.27E−05 8.96E−04

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-345-5p; hsa-miR-590-5p; hsa-miR-186-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-126-3p

hsa-miR-142-3p; hsa-miR-139-5p

Cocaine addiction 1.40E−05 8.96E−04

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-590-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-126-3p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

hsa-miR-139-5p

Rheumatoid arthritis 1.89E−05 0.00101

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-590-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-126-3p

hsa-miR-195-5p; hsa-miR-374b-5p; hsa-miR-142-3p

hsa-miR-139-5p

Fatty acid biosynthesis 3.18E−05 0.001458

hsa-miR-16-5p; hsa-miR-375-3p; hsa-miR-186-5p

hsa-miR-374a-5p; hsa-miR-26a-5p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

Phosphonate and phosphinate metabolism 4.62E−05 0.001676
hsa-miR-16-5p; hsa-miR-375-3p; hsa-miR-186-5p

hsa-miR-374a-5p; hsa-miR-26a-5p; hsa-miR-195-5p

VEGF signaling pathway 4.70E−05 0.001676

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-345-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-126-3p

hsa-miR-195-5p; hsa-miR-374b-5p; hsa-miR-331-3p

hsa-miR-142-3p; hsa-miR-139-5p

Amphetamine addiction 9.90E−05 0.002928

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-590-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-126-3p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

hsa-miR-139-5p

Butanoate metabolism 1.13E−04 0.002928

hsa-miR-16-5p; hsa-miR-375-3p; hsa-miR-186-5p

hsa-miR-374a-5p; hsa-miR-125b-5p

hsa-miR-126-3p; hsa-miR-195-5p; hsa-miR-374b-5p

Porphyrin and chlorophyll metabolism 1.16E−04 0.002928

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

Parathyroid hormone synthesis, secretion and action 1.21E−04 0.002928

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-345-5p; hsa-miR-590-5p; hsa-miR-186-5p

hsa-miR-374a-5p; hsa-miR-125b-5p

hsa-miR-26a-5p; hsa-miR-126-3p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

hsa-miR-139-5p

Continued
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biomarkers of ARDS in bacterially infected patients. The ability of miRNAs to distinguish ARDS and control 
patients in the bacterial-infection subset indicates that stratification of patients could further enhance the prog-
nostic value of three-miRNA panels.

Given that RFC differentiated ARDS and control patients more accurately when subset by bacterial infection, 
we next sought to classify infection type using circulating miRNAs. RFC and hierarchical clustering using the 
top three miRNAs (miRNA-150-5p, -192-5p, -548a-3p) differentiated patients by infection type (Fig. 3). Thus, 
circulating miRNAs could be used to support patient stratification and application of the sub-grouped 3-miRNA 
panels. The size of our viral cohort precluded differentiation of ARDS and control patients in this subgroup, 
though miRNAs have been identified as dysregulated in response to viral infection  previously33,34. We speculate 
that a larger cohort of patients with viral infection would inform an analysis to improve patient stratification.

Pathway analysis suggested miRNAs altered in ARDS patients were overwhelmingly predictive of altered 
metabolic pathways. In addition, inflammatory/infectious processes, VEGF signaling, drug treatment, cancer and 
hormonal imbalances were also predicted to be affect by these miRNAs. As ARDS is an inflammatory process, 
inflammation/infection pathways were expected, as were pathways related to possible drug treatments (cocaine 
and amphetamine addiction). VEGF induces vascular permeability, and anti-VEGF treatment attenuated lung 
injury in a mouse model of  ARDS35.

Metabolic regulation is central to inflammatory processes, which may explain the large number of predicted 
altered metabolic  pathways36. As not much is known on levels of circulating metabolites in ARDS patients, we 
investigated, in a subset of patients, if circulating metabolites were altered and their relationship to circulating 

Pathways P-value Q-value miRNAs

Vitamin B6 metabolism 1.33E−04 0.002928
hsa-miR-16-5p; hsa-miR-186-5p; hsa-miR-125b-5p

hsa-miR-26a-5p; hsa-miR-195-5p; hsa-miR-331-3p

Endometrial cancer 1.41E−04 0.002928

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-345-5p; hsa-miR-590-5p; hsa-miR-186-5p

hsa-miR-374a-5p; hsa-miR-125b-5p

hsa-miR-26a-5p; hsa-miR-126-3p; hsa-miR-195-5p

hsa-miR-374b-5p; hsa-miR-331-3p; hsa-miR-142-3p

hsa-miR-139-5p

Inflammatory mediator regulation of TRP channels 1.46E−04 0.002928

hsa-miR-181a-5p; hsa-miR-16-5p; hsa-miR-375-3p

hsa-miR-345-5p; hsa-miR-186-5p; hsa-miR-374a-5p

hsa-miR-125b-5p; hsa-miR-26a-5p; hsa-miR-126-3p

hsa-miR-195-5p; hsa-miR-374b-5p; hsa-miR-331-3p

hsa-miR-142-3p; hsa-miR-139-5p

Table 2.  Predicted pathways for dysregulated miRNAs. Pathways with a q < 0.003 were included.

Figure 4.  Correlation of circulating metabolites with circulating miRNAs (n = 4 ARDS, n = 4 control). (A–D) 
Normalized count detection for 5-oxoproline, L-citrulline, Taurine, and glutamine respectively. Statistical 
significance determined by t-test, indicated by blue bars. (E–H) miRNA and metabolite abundance for pairs 
with the highest correlation. ARDS-acute respiratory distress syndrome, CTL-control.
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miRNAs. Measurement of circulating metabolites in four control and four ARDS patients identified seven dif-
ferentially abundant metabolites (Table S4). 5-oxoproline37 and  taurine11 have been described as biomarkers of 
human lung injury consistent with our data. L-citrulline38 and  Taurine39 have also been found to be upregulated 
in preclinical models of lung injury. Conversely, L-citrulline and 5-oxoproline have been found to be lower in 
patients with lung injury in the settings of sepsis and tuberculosis  respectively40,41. It appears that the dysregula-
tion of these metabolites is dependent on the primary condition leading to ARDS. Functionally, L-citrulline42, 
 Taurine43, and  Glutamine44,45 have been shown to ameliorate lung injury. This suggests that these metabolites 
are upregulated endogenously as a response to injury. Circulating metabolite abundance also correlated with 
circulating miRNA expression (Fig. 4). It is unknown if there is a coordinated response between the release of 
miRNAs and metabolites in the circulation, or if disease-specific processes coordinately affect various organs 
resulting in the release of these circulating factors from different sources. The strong correlation between miR-
NAs and metabolites suggests that metabolites could be used as an alternative or supplementary biomarker to 
enhance discrimination of patients. A larger cohort of samples is needed to determine if combined metabolomic 
and miRNomic can more accurately identify patients than any single circulating factor.

There are limitations to this study. First, a greater sample size is necessary to validate these initial findings and 
determine the predictive value of the miRNAs identified in this study. Similar expansion of the metabolomics 
cohort could enable combined predictive modeling of ARDS using metabolites and miRNAs, an approach that 
has been applied to other  diseases46. Second, quantification of plasma miRNAs combines the contents of the 
extracellular fluid, exosomes, and other non-cellular sources. We did not identify the source of these miRNAs, 
or their origin. Exosome isolation requires a much higher volume of specimen than what our methodology 
requires. Since these are pediatric patients, sample collection volume was limited by weight. Also, we applied a 
modified Berlin ARDS definition rather than the broader PALICC definition, and thus these findings may not 
be generalizable to patients meeting only the PALICC ARDS definition. Lastly, although samples were collected 
relatively early in their course for all patients, variation in the timing of sample collection between patients is also 
a limitation, especially as we were not able in this study to assess trajectories of miRNA expression with time. To 
better define the utility of miRNA expression patterns for diagnosing PARDS, a larger prospective study with 
stricter sample timing and serial sampling will be necessary.

Conclusion
In summary, we have demonstrated that circulating plasma miRNA profiles may not only be able to identify 
pediatric patients with ARDS early in the course of their illness but also may be able to provide information about 
the underlying infectious etiology. Further work in a larger cohort will be necessary to validate these findings 
and further explore the potential utility of miRNA profiling in a systems biology approach to ARDS diagnosis 
and treatment in children.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 7 December 2021; Accepted: 24 June 2022

References
 1. Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 5, 18 (2019).
 2. Schouten, L. R. A. et al. Incidence and mortality of acute respiratory distress syndrome in children. Crit. Care Med. 44, 819–829 

(2016).
 3. Khemani, R. G. et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): An international, 

observational study. Lancet Respir Med. 7, 115–128 (2019).
 4. Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome. Pediatr. Crit. Care Med. 

16, 428–439 (2015).
 5. Calfee, C. S. et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised con-

trolled trials. Lancet Respir Med. 2, 611–620 (2014).
 6. O’Brien, J., Hayder, H., Zayed, Y., & Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front 

Endocrinol (Lausanne) 9 (2018).
 7. Ferruelo, A., Peñuelas, Ó. & Lorente, J. A. MicroRNAs as biomarkers of acute lung injury. Ann. Transl. Med. 6, 34–34 (2018).
 8. Good, R. J. et al. MicroRNA dysregulation in lung injury: the role of the miR-26a/EphA2 axis in regulation of endothelial perme-

ability. Am. J. Physiol. Cell. Mol. Physiol. 315, L584–L594 (2018).
 9. van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).
 10. Weiland, M., Gao, X.-H., Zhou, L. & Mi, Q.-S. Small RNAs have a large impact. RNA Biol. 9, 850–859 (2012).
 11. Viswan, A. et al. Metabolomics based predictive biomarker model of ARDS: A systemic measure of clinical hypoxemia. PLOS 

ONE. 12, e0187545 (2017).
 12. Metwaly, S. et al. Evolution of ARDS biomarkers: Will metabolomics be the answer?. Am. J. Physiol. Cell. Mol. Physiol. 315, L526–

L534 (2018).
 13. Mourani, P. M. et al. Temporal airway microbiome changes related to ventilator-associated pneumonia in children. Eur. Respir J. 

57, 2001829 (2021).
 14. The ARDS Definition Task Force. Acute respiratory distress syndrome: The Berlin definition. JAMA 307, 2526–2533 (2012).
 15. Leteurtre, S. et al. Development of a pediatric multiple organ dysfunction score. Med. Decis. Mak. 19, 399–410 (1999).
 16. Mariner, P. D. et al. Improved detection of circulating miRNAs in serum and plasma following rapid heat/freeze cycling. MicroRNA. 

7, 138–147 (2018).
 17. Wickham, H. ggplot2: Elegant Graphics for Data Analysis [Internet] (Springer, 2016).
 18. Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
 19. Parsons, R., Parsons, R., Garner, N., Oster, H., & Rawashdeh, O. CircaCompare: a method to estimate and statistically support 

differences in mesor, amplitude and phase, between circadian rhythms. Bioinformatics. (2019).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14560  | https://doi.org/10.1038/s41598-022-15476-0

www.nature.com/scientificreports/

 20. Kern, F. et al. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic 
Acids Res. 48, W521-8 (2020).

 21. Nemkov, T., Reisz, J. A., Gehrke, S., Hansen, K. C., & D’Alessandro, A. High-throughput metabolomics: Isocratic and gradient 
mass spectrometry-based methods. p. 13–26 (2019).

 22. Nemkov, T., Hansen, K. C. & D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quan-
titative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 31, 663–673 (2017).

 23. Nemkov, T., D’Alessandro, A. & Hansen, K. C. Three-minute method for amino acid analysis by UHPLC and high-resolution 
quadrupole orbitrap mass spectrometry. Amino Acids 47, 2345–2357 (2015).

 24. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
 25. Xu, F., Yuan, J., Tian, S., Chen, Y. & Zhou, F. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis 

and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury. Life Sci. 256, 117957 (2020).
 26. Wu, X., Wu, C., Gu, W., Ji, H. & Zhu, L. Serum exosomal MicroRNAs predict acute respiratory distress syndrome events in patients 

with severe community-acquired pneumonia. Biomed. Res. Int. 2019, 1–11 (2019).
 27. Zhu, Z. et al. Whole blood microRNA markers are associated with acute respiratory distress syndrome. Intensive Care Med. Exp. 

5, 38 (2017).
 28. Lee, L. K., Eghbali, M. & Sapru, A. A novel miRNA biomarker panel associated with mortality in pediatric patients with ARDS. 

Respir Res. 22, 169 (2021).
 29. Erener, S., Marwaha, A., Tan, R., Panagiotopoulos, C., & Kieffer, T. J. Profiling of circulating microRNAs in children with recent 

onset of type 1 diabetes. JCI Insight. 2 (2017).
 30. Fehlmann, T. et al. Evaluating the use of circulating MicroRNA profiles for lung cancer detection in symptomatic patients. JAMA 

Oncol. 6, 714 (2020).
 31. de Gonzalo-Calvo, D. et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl. Res. 

236, 147–159 (2021).
 32. Ojha, R., Nandani, R., Pandey, R. K., Mishra, A. & Prajapati, V. K. Emerging role of circulating microRNA in the diagnosis of 

human infectious diseases. J. Cell. Physiol. 234, 1030–1043 (2019).
 33. Fu, X. et al. Upregulation of microRNA-328-3p by hepatitis B virus contributes to THLE-2 cell injury by downregulating FOXO4. 

J. Transl. Med. 18, 143 (2020).
 34. Cui, L. et al. Serum MicroRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with 

hand-foot-and-mouth disease. PLOS ONE. 6, e27071 (2011).
 35. Zhang, Z., Wu, Z., Xu, Y., Lu, D. & Zhang, S. Vascular endothelial growth factor increased the permeability of respiratory barrier 

in acute respiratory distress syndrome model in mice. Biomed. Pharmacother. 109, 2434–2440 (2019).
 36. Das, U. N. Essential fatty acids and their metabolites in the pathobiology of inflammation and its resolution. Biomolecules 11, 1873 

(2021).
 37. Zang, X., Monge, M. E., McCarty, N. A., Stecenko, A. A. & Fernández, F. M. Feasibility of early detection of cystic fibrosis acute 

pulmonary exacerbations by exhaled breath condensate metabolomics: A pilot study. J. Proteome Res. 16, 550–558 (2017).
 38. Kulvinskiene, I., Raudoniute, J., Bagdonas, E., Ciuzas, D., Poliakovaite, K., Stasiulaitiene, I., et al. Lung alveolar tissue destruction 

and protein citrullination in diesel exhaust‐exposed mouse lungs. Basic Clin. Pharmacol. Toxicol.bcpt.13213 (2019).
 39. Hofford, J. M., Milakofsky, L., Pell, S. & Vogel, W. A profile of amino acid and catecholamine levels during endotoxin-induced acute 

lung injury in sheep: Searching for potential markers of the acute respiratory distress syndrome. J. Lab. Clin. Med. 128, 545–551 
(1996).

 40. Che, N. et al. Decreased serum 5-oxoproline in TB patients is associated with pathological damage of the lung. Clin. Chim. Acta. 
423, 5–9 (2013).

 41. Ware, L. B. et al. Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. 
Crit. Care. 17, R10 (2013).

 42. Fike, C. D. et al. Rescue treatment with L-citrulline inhibits hypoxia-induced pulmonary hypertension in newborn pigs. Am. J. 
Respir. Cell. Mol. Biol. 53, 255–264 (2015).

 43. Zhao, W. et al. Taurine enhances the protective effect of Dexmedetomidine on sepsis-induced acute lung injury via balancing the 
immunological system. Biomed. Pharmacother. 103, 1362–1368 (2018).

 44. Lai, C.-C., Liu, W.-L. & Chen, C.-M. Glutamine attenuates acute lung injury caused by acid aspiration. Nutrients 6, 3101–3116 
(2014).

 45. Lei, C. et al. Antecedent administration of glutamine benefits the homeostasis of CD4 + T cells and attenuates lung injury in mice 
with gut-derived polymicrobial sepsis. J. Parenter. Enter. Nutr. 43, 927–936 (2019).

 46. Wu, Q. et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass 
surgery. Int. J. Obes. 39, 1126–1134 (2015).

Acknowledgements
We thank lead coordinator Yamila Sierra for her contribution of specimen collection for this study.

Author contributions
D.O. contributed to the design of the study, to the analysis and interpretation of the data, and to the drafting 
and revision of the manuscript. He gives approval of the submitted version and agrees to be accountable for all 
aspects of the work. C.S. contributed to the interpretation of the data, and to the drafting and revision of the 
manuscript. She gives approval of the submitted version and agrees to be accountable for all aspects of the work. 
C.V. contributed to the interpretation of the data, and to the drafting and revision of the manuscript. She gives 
approval of the submitted version and agrees to be accountable for all aspects of the work. L.H.L. contributed 
to the interpretation of the data, and to the drafting and revision of the manuscript. She gives approval of the 
submitted version and agrees to be accountable for all aspects of the work. A.K.F. contributed to the analysis and 
interpretation of the data, and to the drafting and revision of the manuscript. She gives approval of the submit-
ted version and agrees to be accountable for all aspects of the work. P.M. contributed to the design of the study 
and to the drafting and revision of the manuscript. He gives approval of the submitted version and agrees to be 
accountable for all aspects of the work. T.C. contributed to the design of the study, to the analysis and interpreta-
tion of the data, and to the drafting and revision of the manuscript. He gives approval of the submitted version 
and agrees to be accountable for all aspects of the work. E.N. contributed to the design of the study, to the analy-
sis and interpretation of the data, and to the drafting and revision of the manuscript. She gives approval of the 
submitted version and agrees to be accountable for all aspects of the work. C.C.S. contributed to the design of 
the study, to the analysis and interpretation of the data, and to the drafting and revision of the manuscript. She 
gives approval of the submitted version and agrees to be accountable for all aspects of the work.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14560  | https://doi.org/10.1038/s41598-022-15476-0

www.nature.com/scientificreports/

Funding
This work was funded by 5 R01 HL119533 (TC, ESN, CCS); K24 HL150630 (CCS); 5 R01 HL124103 (PM); 1 
R35 HL139726 (ESN).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 15476-0.

Correspondence and requests for materials should be addressed to C.C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-15476-0
https://doi.org/10.1038/s41598-022-15476-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Plasma microRNA and metabolic changes associated with pediatric acute respiratory distress syndrome: a prospective cohort study
	Materials and methods
	Patient sample collection. 
	miRNA array. 
	Array analysis. 
	Pathway analysis. 
	Metabolomic sample extraction and quantification. 
	Metabolomics and miRNA-metabolite integrated analysis. 
	Ethical approval. 

	Results
	Patient characteristics. 
	Unsupervised RFC and unsupervised hierarchical clustering of ARDS versus control patients. 
	Unsupervised RFC and hierarchical clustering ARDS versus control in bacterially infected patients. 
	Unsupervised RFC and hierarchical clustering of ARDS patients with viral versus bacterial and viral infection. 
	Pathway analysis of altered miRNAs. 
	Evaluation of circulating metabolites in a subset of ARDS and control patients. 

	Discussion
	Conclusion
	References
	Acknowledgements


