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Asthma is a common chronic disease with several variant phenotypes and endotypes. NSAID-exacerbated respiratory disease
(NERD) is one such endotype characterized by asthma, chronic rhinosinusitis (CRS) with nasal polyps, and hypersensitivity to
aspirin/cyclooxygenase-1 inhibitors. NERD is more associated with severe asthma than other asthma phenotypes. Regarding
diagnosis, aspirin challenge tests via the oral or bronchial route are a standard diagnostic method; reliable in vitro diagnostic
tests are not available. Recent studies have reported various biomarkers of phenotype, diagnosis, and prognosis. In this review,
we summarized the known potential biomarkers of NERD that are distinct from those of aspirin-tolerant asthma. We also
provided an overview of the different NERD subgroups.

1. Introduction

NSAID-exacerbated respiratory disease (NERD) is charac-
terized by adult-onset chronic rhinosinusitis (CRS) with
nasal polyps, intense eosinophilic infiltration in the upper
and lower airway mucosa, and severe symptoms of exacerba-
tion in response to aspirin/cyclooxygenase- (COX-) 1 inhib-
itors [1]. A previous systematic review had reported a NERD
prevalence of 7% among typical adult asthmatic patients and
twice among patients with severe asthma [2]. NERD is there-
fore considered a risk factor for severe asthma [3, 4]. Among
patients with CRS and nasal polyps, the prevalence of NERD
was 8.7% and 9.7%, respectively [2]. NERD is associated with
severe CRS with nasal polyps, recurrence after sinus surgery,
and airway remodeling [5–7], suggesting that NERD causes
severe asthma with CRS/nasal polyps.

NERD has a unique pathophysiology, with increased
levels of lipid mediators, activated eosinophils, and mast
cells, even without COX-1 inhibitor treatment. Thus, in most
studies defining asthma endotypes, NERD has been identi-
fied as an independent endotype [8, 9]. However, all patients
with NERD are not accompanied by severe asthma, and their
clinical course is also known to be variable [10]. Confirmative
diagnosis of NERD is based on provocation tests with aspirin.
Oral aspirin challenge is considered the gold standard

diagnostic method; however, its use is often limited by the
risk of severe reactions during the test. The bronchial aspirin
challenge is safer and consumes less time; however, it is
limited by its low sensitivity [11]. In addition, oral or bron-
chial aspirin challenge test has limitations that cannot be
used to predict the treatment or prognosis of NERD. There-
fore, in vitro tests should be developed for diagnosing and
monitoring NERD.

In this review, we summarized three groups of known
noninvasive biomarkers that can distinguish NERD from
aspirin-tolerant asthma (ATA): lipid mediators, inflamma-
tory cells and cytokines, and genetic markers. In addition,
we reviewed the subtypes of NERD and the related bio-
markers for developing precision medicine in the future.

2. NERD as an Endotype of Asthma

Recently, many studies were conducted to distinguish asthma
phenotypes and endotypes that affect diagnosis, treatment
choice, and prognosis. A phenotype refers to “clinically
observable characteristics,” and it is distinguished by clinical
features, pathophysiological factors, response to treatment,
prognosis, and so on [12]. An endotype is a subtype of a
disease that is functionally and pathologically defined by
a molecular mechanism or a treatment response [13].
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Although there is no widely accepted method for endotyping,
most studies have classified NERD as an endotype of asthma
[9, 12]. NERD is known to be a late-onset asthma, as the first
symptoms usually start at the age of 20~ 40 years; females are
more affected, and it is not influenced by family history or
geographic region [14]. Rhinitis is usually the first observed
symptom followed by asthma, sensitivity to aspirin, and nasal
polyps [15]. Patients with NERD presented with moderate to
severe asthma (with frequent exacerbation) have poor lung
function and require more frequent intubation and systemic
steroid bursts [6].

The pathophysiological features of NERD include lipid
mediator imbalance and intense eosinophilic inflammation.
Proinflammatory cysteinyl leukotrienes (cysLTs) and prosta-
glandin (PG) D2 (PGD2) are known to be markedly upregu-
lated in NERD, whereas PGE2 has been found to be
constitutively decreased [16–18]. Patients with NERD have
a higher number of mast cells and eosinophils infiltrating
the upper and lower respiratory mucosa, even without expo-
sure to COX-1 inhibitors and changes in tissue eicosanoid
metabolism [19–21]. In NERD, cytokines and chemokines
show a trend of Th2 immune response [22, 23].

3. Biomarkers of NERD

3.1. Lipid Mediators. The most reproducible and informative
biomarker to distinguish NERD from ATA is a high-level
urinary LTE4 (Table 1). LTE4 is the substance last metabo-
lized in cysLTs. LTC4 and LTD4 are easily metabolized in
the following stages, while LTE4 is released into the urine
in a stable manner; it is therefore suitable for use as a bio-
marker [24]. The LTE4 levels in induced sputum and saliva
are higher in NERD than in ATA [25–27]. However, urinary
LTE4, which indirectly reflects the activity of cysLTs in the

lungs, has been used to distinguish NERD from ATA in
many studies [25, 28–36]. In addition, the nature of the urine
specimen makes it easier to standardize the level of LTE4,
and it has the advantage of noninvasiveness. The value of
urinary LTE4 is increased, in the baseline as well as under
aspirin or COX-1 inhibitor provocation, in NERD compared
to ATA. Thus, baseline urinary LTE4 can be used as a bio-
marker to distinguish NERD from ATA. This phenomenon
is present in both random urine and 24h urine; recent studies
on 24h urine have reported an area under the curve (AUC)
of 0.87 [35]. In addition, it was confirmed that the metabo-
lites of urinary LTE4 were significantly different in NERD
and ATA, even in studies that used metabolomics [37]. Uri-
nary LTE4 can be used not only to distinguish between
NERD and ATA but also to indicate the prognosis and treat-
ment response. Urinary LTE4 is associated with a decrease in
FEV1 during aspirin challenge in patients with NERD [38]. It
has been reported that urinary LTE4 is significantly higher in
patients with NERD who failed in aspirin desensitization
than in patients who achieved aspirin desensitization suc-
cessfully [36]. Although urinary LTE4 is also increased in
allergic asthma, eosinophilic asthma, and severe asthma
without NERD, it can be used as a biomarker in patients with
NERD, as it shows a remarkable increase in NERD, com-
pared to ATA; it can therefore be used for predicting
treatment response and prognosis.

PGD2 and PGE2, which are counteracted by the products
of cyclooxygenase, are known to be closely related to the
pathogenesis of NERD, but their use as biomarkers is still
limited. PGD2 is mainly secreted from mast cells and eosin-
ophils and is known to act as a proinflammatory and bronch-
oconstrictive mediator through CRTH2 [39]. Baseline PGD2
has been observed to be significantly increased in induced
sputum [26]. PGD2 metabolites in urine and blood are also

Table 1: Lipid mediators.

Mediators and
parameters

Biologic
sample

Detection method
Baseline Response after ASA provocation

Compared
to ATA

Reference
Compared to

ATA
Reference

LTE4

Urine
Immunoassay ↑ [25, 28–34] ↑ [25, 28, 30, 31, 34]

Mass spectrometry ↑ [35, 36] ↑ [36]

Saliva Immunoassay ↑ [25] ↑ [27]

Induced
sputum

Immunoassay ↑ [25]

Mass spectrometry ↑ [26] ↑ [26]

Blood and
urine

Untargeted metabolomic
analysis

↑ [37]

COX
pathway

PGD2
Induced
sputum

Immunoassay ↑ [32]

Mass spectrometry ↑ [26]

PGD2 metabolite
Spot urine

Immunoassay ↑ [31, 33]

Mass spectrometry ↑ [41] ↑ [41]

Blood Mass spectrometry ↑ [40] ↑ [40, 42]

PGE2 Spot urine Immunoassay ↓ [33]

Others
Sphingolipid
metabolite

Blood Mass spectrometry ↑ [48] ↓ [48]

Spot urine Mass spectrometry ↑ [48]

ATA: aspirin-tolerant asthma; LO: lipoxygenase; LT: leukotriene; COX: cyclooxygenase; PG: prostaglandin.
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increased after aspirin provocation [40–42]. However, these
results differ among studies, and the range of overlap is wide;
therefore, the use of PGD2 as a biomarker of NERD to distin-
guish it from ATA is limited. A previous study had reported
that urinary PGD2 metabolites reflect the difference between
tolerant and intolerant groups during aspirin desensitization
in patients with NERD [36]. Further studies are required to
validate the use of PGD2 as a biomarker for predicting the
treatment response and prognosis of NERD. PGE2 is consid-
ered a key mediator in the pathogenesis of NERD. Unlike
cysLTs or PGD2, it is known to have anti-inflammatory
and bronchoprotective effects in airway inflammation.
Inhaled PGE2 prevents bronchoconstriction and cysLT pro-
duction in NERD [43]. Most urinary PGE2 metabolites are
derived from COX-2, and several studies have demonstrated
that airway tissues in patients with NERD showed impaired
expression of COX-2 [44, 45]. Apart from one study that
suggested decreased baseline PGE2 levels in NERD [33],
most studies showed no significant differences in the levels
of PGE2 or its metabolites between NERD and ATA groups,
indicating that further investigations are needed to evaluate
its use as a potential therapeutic target.

The lipid mediators, not the arachidonic acid metabolites,
have also been studied as biomarkers of NERD, especially
sphingolipid metabolites. Sphingolipid metabolites mediate
cell growth, cell differentiation, cell death, and autophagy,
and the dysregulation of sphingolipid metabolism could
induce airway inflammation and bronchial hyperreactivity
[46, 47]. Baseline levels of serum sphingosine-1-phosphate
(S1P) and urine sphingosine were significantly increased in
patients with NERD, and a significant correlation with a
decrease in FEV1 has been observed after aspirin challenge
[48]. Sphingolipid metabolites may be possible biomarkers
for NERD, although further studies are needed to validate
their use.

3.2. Inflammatory Cells and Cytokines. The cellular patho-
genic mechanism in NERD involves an intense eosinophilic
inflammation, in which Th2 immunity orchestrates the
phenotype of eosinophilic asthma (Table 2). Based on these
findings, various studies have reported the eosinophil count,
eosinophil-related mediators, and Th2 cytokines as bio-
markers of NERD. Sputum and blood eosinophil counts are
biomarkers for asthma phenotype of airway eosinophilic

inflammation [49]. NERD is characterized by phenotypes
represented by adult-onset eosinophilic asthma. Further-
more, local eosinophilia has been observed in the nasal polyp
tissues or the bronchial lavage fluid of patients with NERD as
well as blood eosinophilia [21, 50–52]. Therefore, sputum
and blood eosinophil counts are difficult to use as direct
diagnostic biomarkers of NERD, but they are important as
biomarkers in distinguishing eosinophilic inflammation,
one of the pathogenesis of NERD. Sputum and blood eosin-
ophil counts are biomarkers that are also useful in predicting
asthma severity and response to therapy [53, 54]. Therefore,
sputum and blood eosinophil counts are biomarkers that can
be used to evaluate the severity of NERD and the response to
therapy. Among all the mediators of Th2 immunity, the bio-
marker most associated with NERD is periostin. Periostin is
an extracellular matrix protein that is known to regulate
inflammation/remodeling of the asthmatic airway [55]. Peri-
ostin is known to be a surrogate marker of Th2 immunity
[56]. In a study on 277 adult asthmatic patients, we showed
that serum periostin was a useful biomarker of NERD and
that it could be used as an index of blood/sputum eosino-
philia and asthma severity [57]. This study showed that it is
useful as a biomarker to predict NERD (p = 0 006) even after
multivariate regression analysis, which is more efficient than
predictions of severe asthma phenotype (p = 0 04). This
suggests that periostin is a potential independent biomarker
of NERD diagnosis. Various other Th2 cytokines and chemo-
kines, including IL-4, IL-5, IL-13, IL-33, TSLP, GM-CSF, and
eotaxin have been studied, and some studies have shown
statistically significant differences in their levels [58, 59]. In
addition, cytokines such as IL-6, IL-8, and IFN-r have also
been associated with AERD [60, 61], although further studies
will be needed to validate their clinical significances.

Platelet activation is associated with leukocytes, which
promote the secretion of proinflammatory lipid mediators
such as cysLTs in NERD. Platelet activation induces the
expression of cell adhesion molecules on the extracellular
surface, which bind to the leukocytes through P-selectin
(CD62P)–P-selectin glycoprotein ligand 1, GPIIb/IIIa-Mac-
1, and CD40 ligand (CD40L)–CD40 [62, 63]. Recent studies
have reported an increased percentage of platelet-adherent
leukocytes and platelet activation markers such as sP-
selectin and sCD40L in the blood of patients with NERD.
These phenomena contribute to the overproduction of

Table 2: Cellular and cytokine markers.

Mediators and
parameters

Biologic
sample

Detection method
Baseline

Response after aspirin
provocation

Compared
to ATA

Reference
Compared
to ATA

Reference

Cell

Eosinophil NALF
Morphological count

of stained slide
↑ [52]

Platelet-adherent leukocyte blood Flow cytometry ↑ [65]

Soluble platelet surface marker blood Immunoassay ↑ [64]

Others
ECP NALF Immunoassay ↑ [27]

Periostin Blood Immunoassay ↑ [57]

ATA: aspirin-tolerant asthma; NALF: nasal lavage fluid; ECP: eosinophil cationic protein.
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cysLTs [64, 65]. Thus, activated platelet surface markers are
possible biomarkers for NERD, although further studies are
needed to validate their use.

3.3. Genetic Markers. Various genetic polymorphisms have
been reported through genetic association studies of targeted
genes (lipid mediators and inflammatory responses) associ-
ated with the pathogenesis of NERD. In addition, a number
of genome-wide association studies (GWAS) and epigenetic
studies have reported potential genetic markers that distin-
guish NERD from ATA (Table 3).

First, the prevalence of HLA-DPB1∗0301 was signifi-
cantly higher in patients with NERD in a Polish population;
the same results were obtained in a study on a Korean popu-
lation as well [66–68]. The patients carrying this marker had
higher prevalence of CRS/nasal polyps than those who had
no marker. Furthermore, GWASs demonstrated significant
association of two SNPs of HLA-DPB1 (rs1042151 and
rs3128965) and susceptibility to NERD [69, 70], suggesting
HLA-DPB1 may be a strong genetic marker for predicting
the NERD phenotype.

Genetic polymorphisms related to arachidonic acid
metabolism and their receptor have been reported in candi-
date gene association studies. Leukotriene C4 synthase
(LTC4S) is an important enzyme involved in the production

of cysLTs. The gene that encodes LTC4S has been extensively
studied for variations; however, it has been found to vary
widely, depending on ethnic groups. In the study in the
Polish population, which was the first study, it was possible
to distinguish between NERD and ATA [71]. However, a
recent meta-analysis did not show any significant results in
NERD; the only significant results were obtained in the
ATA and Caucasian subgroups [72]. In a Korean study,
ALOX5 (5-LO enzyme gene) ht1 [G-C-G-A] was found to
be significantly higher in NERD than in ATA in the 4SNP
(−1708G>A, 21C>T, 270G>A, and 1728G>A) [73]. Two
groups of receptors, cysLT receptors (CysLTR1, CysLTR2)
and PGE2 (EP1, EP2, EP3, and EP4) receptor polymor-
phisms, have been demonstrated differences in polymor-
phism between NERD and ATA [74–78].

Several genetic markers associated with eosinophil acti-
vation have been reported. CRTH2 in response to PGD2,
and CCR3 in response to eotaxin and RANTES, could induce
eosinophil activation and recruitment. Polymorphisms in
CRTH2 (−466T>C) and CCR3 (−520T>C) were associated
with NERD [79, 80] and higher levels of eotaxin 2, indicating
that the two SNPs of CRTH2 and CCR may be potential
genetic markers that represent eosinophil activation in the
upper and lower airway inflammation in NERD. Mast cells
were also found with genetic polymorphisms that distinguish

Table 3: Potential genetic markers.

Gene Polymorphisms Patients
Ethnic
group

Mechanism Reference

Arachidonic
acid
metabolism

CYSLTR1
_634 C>T, _475 A>C,

_336 A>G
NERD: 105, ATA: 110,

NC: 125
Korean CysLTR1 expression [74]

CYSLTR2
_819T>G, 2078C>T,

2534A>G
NERD: 134, ATA: 66,

NC: 152
Korean

CysLTR2 expression,
LTC4S gene interaction

[75]

EP2 uS5, uS5b, uS7
NERD: 198, ATA: 282,

NC: 274
Japanese

Decrease transcription
level of EP2, PGE2

braking
[76]

PTGER

PTGER2: _616 C>G,
_166 G>A

PTGER3: _1709 T>A,
PTGER4: _1254 A>G

NERD: 108,
ATA: 93, NC: 140

Korean
PGE2, TXA2 receptor

polymorphism
[77]

TBXA2R −4684C>, 795T>C

PTGER
PTGER3: rs7543182,

rs959
NERD: 243,
ATA: 918

Korean
PGE2 receptor
polymorphism

[78]

Eosinophil-
associated
gene

CRTH2 _446T>C NERD: 107, ATA: 115,
NC: 133

Korean
Decrease CRTH2

expression and increase
eotaxin-2 production

[79]

CCR3 _520T>C NERD: 94, ATA: 152 Korean
Higher mRNA

expression of CCR3
[80]

HLA

HLA-DPB1 DPB1∗0301
59 NERD, 57 ATA,

48 NC
Polish [66]

HLA-DPB1 DPB1∗0301
76 NERD, 73 ATA,

91 NC
Korean [68]

HLA-DPB1 rs3128965
264 NERD, 387 ATA,

238 NC
Korean [70]

HLA-DPB1 rs1042151 117 NERD, 685 ATA Korean [69]

NERD: NSAID-exacerbated respiratory disease; ATA: aspirin-tolerant asthma; CysLTR: cysteinyl leukotriene receptor, LT: leukotriene; PG: prostaglandin;
TX: thromboxane; CRTH: chemoattractant receptor homologue expressed by type 2 helper T cells; CCR: chemokine receptor; HLA: human leukocyte
antigen; DPP: dipeptidyl peptidase.
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between NERD and ATA. The genotype frequency of
FCER1G-237A>G was significantly different in patients with
NERD, and patients with ATA and FCERIA-344C>T and
FcɛR1β−109T>C polymorphisms were associated with
staphylococcal enterotoxin-specific IgE antibodies [81, 82].

So far, most genetic markers have been reported based on
pathogenesis only. No genetic markers have been identified
repeatedly in different patient groups, except HLA-DPB1.
Further studies on diverse populations are required.

4. NERD Subtypes and Their Biomarkers

Although NERD is an endotype of asthma, it has been found
in diverse phenotypes. Not all patients with NERD exhibit
CRS and nasal polyps. The severity and response to treat-
ment varies among patients. Recently, two studies of cluster-
ing in NERD cohorts were reported. The first study clustered
201 patients with NERD using a latent class analysis includ-
ing clinical data from questionnaires, spirometry, atopy
traits, blood eosinophilia, and urinary LTE4 concentrations
as observable variables and found 4 classes [51]: class 1
patients showed moderate asthma course; class 2 showed
mild asthma course; and class 3 and 4 patients showed severe
asthma course. Blood eosinophilia and high urinary LTE4
were shown to be biomarkers that helped in class differentia-
tion, especially for class 1. We performed a two-step cluster
analysis using 3 clinical criteria: atopy, CRS, and urticaria
to identify phenotypic clusters. We found 4 subtypes: subtype
1 (NERD with CRS/atopy and no urticaria), subtype 2
(NERD with CRS and no urticaria/atopy), subtype 3 (NERD
without CRS/urticaria), and subtype 4 (NERD with urti-
caria). Subtypes 1 and 2 showed more severe clinical courses
with higher blood/sputum eosinophilia and frequent asthma
exacerbation requiring systemic steroid burst [83]. Higher
levels of urinary LTE4 were observed in subtypes 1 and 3.
These findings suggested that the level of LTE4 was not only
a strong biomarker of NERD; it could also be applied to
specific subtypes and endotypes of NERD. Classifying NERD
into subtypes using biomarkers such as urinary LTE4 will
help in better management of NERD.

5. Conclusion

The most useful biomarker of NERD is urinary LTE4. Uri-
nary LTE4 level can be used for distinguishing the phenotype
(including subtypes) and for predicting the response to
desensitization and prognosis. Sputum/blood eosinophil
counts are also biomarkers that can be used to identify the
endotype of NERD and to monitor the course of treatment.
Serum periostin levels and HLA-DPB1 (∗0301 and genetic
polymorphisms) are suggested as useful biomarkers for
predicting NERD phenotypes.
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