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Abstract

Motivation: Most current de novo structure prediction methods randomly sample protein conform-

ations and thus require large amounts of computational resource. Here, we consider a sequential

sampling strategy, building on ideas from recent experimental work which shows that many pro-

teins fold cotranslationally.

Results: We have investigated whether a pseudo-greedy search approach, which begins sequen-

tially from one of the termini, can improve the performance and accuracy of de novo protein struc-

ture prediction. We observed that our sequential approach converges when fewer than 20 000

decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also

compared the run time and quality of models produced in a sequential fashion against a standard,

non-sequential approach. Sequential prediction produces an individual decoy 1.5–2.5 times faster

than non-sequential prediction. When considering the quality of the best model, sequential predic-

tion led to a better model being produced for 31 out of 41 soluble protein validation cases and for

18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29

of these cases by the sequential mode and for only 22 by the non-sequential mode. Our compari-

son reveals that a sequential search strategy can be used to drastically reduce computational time

of de novo protein structure prediction and improve accuracy.

Availability and implementation: Data are available for download from: http://opig.stats.ox.ac.uk/re

sources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2.

Contact: saulo.deoliveira@dtc.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A standard de novo protein structure prediction pipeline consists of

randomly sampling the conformational space to identify minimum-

energy conformations. This sampling is usually carried out via a

Monte-Carlo search (Raman et al., 2009); by causing perturbations

to a fully elongated protein chain and accepting/rejecting the

resulting conformations based on an acceptance probability. This

probability is defined in terms of a scoring function that combines

physical and statistical terms. After many successive perturbations, a

conformation is output. The model generation protocol is repeated

via multiple independent runs to produce a large number of candi-

date models (decoys). This process tends to be computationally
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intensive; one estimate suggests that it takes approximately 150

CPU days to accurately predict a protein’s structure (Abbass and

Nebel, 2015).

There has been significant effort to test different sampling strat-

egies to improve both the efficiency and the performance of de novo

protein structure prediction. Replica Exchange Monte Carlo has

been used as an extension to the traditional Monte Carlo protocol in

different implementations (Blaszczyk et al., 2013; Kosciolek and

Jones, 2014; Xu and Zhang, 2012) and it has been suggested as a

more efficient sampling technique. Evolutionary algorithms have

also been applied to structure prediction in order to detect multiple

candidate energy minima conformations (e.g. Custodio et al., 2014;

Garza-Fabre et al., 2016; Zhang et al., 2016). Other search strat-

egies include the optimization of a multi-objective function (Olson

and Shehu, 2014), or approaches based on molecular dynamics

(Perez et al., 2016).

Deviating from the random-restart strategy used in conventional

protocols, search algorithms have also been implemented to extract

information from decoys that have been produced to improve subse-

quent modeling runs (re-sampling) (e.g. Brunette and Brock, 2008;

Mabrouk et al., 2015; Shrestha and Zhang, 2014). In several of its

implementations, re-sampling has been shown to improve the results

of the Monte Carlo search implemented in Rosetta (Simoncini et al.,

2012; 2017). Another perspective is to explore probabilistic frame-

works such as Hidden Markov Model sub-optimal sampling

(Lamiable et al., 2016) and conditional sampling from a united-

residue probabilistic model (Bhattacharya et al., 2016). The latter

was based on experimental evidence supporting the notion of foldon

units. These probabilistic frameworks aim to break down the prob-

lem of folding into smaller local folding problems. Here, we propose

a similar reductionist effect by performing the Monte Carlo search

in a sequential fashion, reducing the global folding problem to a

more tractable, local conformational search.

Sequential search strategies have been previously explored. A

modified version of ROSETTA (Raman et al., 2009) was used to

perform a comparison between predictions generated using a fully

elongated protein chain and predictions performed sequentially

(Ellis et al., 2010). Predictions performed sequentially using the

modified ROSETTA were shown to be better than predictions gen-

erated non-sequentially for approximately half of the cases.

Sequential protein structure prediction has also been used in the ab

initio transmembrane protein protocol of ROSETTA (Yarov-

Yarovoy et al., 2005). The strategy starts with a helix in the middle

of the protein, then adds further transmembrane helices randomly at

either the C- or N-terminal end.

Regardless of the search strategy used to sample conformations,

modeling success is highly dependent on the accuracy of the scoring

function. Improvement of existing scoring potentials has been the

focus of several articles published recently (Chae et al., 2015;

Ovchinnikov et al., 2015a and 2015b; O’Meara et al., 2015; Yang

and Zhang, 2015). In particular, pairwise potentials based on dis-

tance restraints inferred from co-evolution information have made

consistent and accurate template-free structure prediction possible

(e.g. de Oliveira et al., 2016; Jones et al., 2012; Kamisetty et al.,

2013; Marks et al., 2011), when a sufficient number of homologue

sequences is available. Metagenomics from microbial DNA has been

used to complement this sequence information, further broadening

the applicability of such approaches (Ovchinnikov et al., 2017).

Contact predictions have been shown to be critical for modeling suc-

cess. As co-evolution methods have only recently become a standard

part of de novo protein structure prediction, most search strategies

(including the sequential implementations of ROSETTA) have not

incorporated these distance restraints in their tests. One exception is

the work described in (Jones et al., 2012), in which sequential in-

corporation of distance restraints let to better modeling results when

the contact order was sufficiently high.

One of the main limitations that has not been addressed by con-

tact prediction is the fact that de novo structure predictors still re-

quire a large amount of computational resources for accurate and

consistent modeling. This relates to the large number of decoys that

need to be produced during model generation and to the large num-

ber of moves performed to generate a single decoy. There is no con-

sistency in terms of the number of decoys that need to be produced

across different prediction software (Supplementary Table S1).

Three recent studies using the software ROSETTA describe the use

of 10 000 (Ovchinnikov et al., 2015b), 20 000 (Ovchinnikov et al.,

2017), and 20 000–900 000 (Kim et al., 2014) decoys per target,

meaning that the consensus is not clear even for the same structure

predictor. Furthermore, no rationale as to how many decoys should

be produced is presented in articles describing different methods,

and for some cases the choice appears arbitrary.

Here, we investigate whether a sequential search heuristic could

be used to improve both the efficiency and the accuracy of template-

free protein structure prediction. To do so, we developed SAINT2, a

completely independent fragment-assembly structure predictor.

SAINT2 differs from conventional fragment-assembly approaches

as it is able to perform predictions either sequentially, starting from

either terminus, or non-sequentially, similar to traditional structure

prediction software such as ROSETTA. Both sequential and non-

sequential protocols use exactly the same parameters and input to

facilitate unbiased comparison between the two modes. Given that

successful de novo modeling is reliant on accurate contact-

prediction, SAINT2 incorporates predicted protein contacts into its

modeling routine.

First, we present a rationale for the number of decoys that

SAINT2 needs to generate in order for a correct answer to be pro-

duced. We then compare the run time and the modeling results of

SAINT2’s sequential and non-sequential approaches on validation

sets of 41 soluble proteins and 24 transmembrane proteins. Our re-

sults show that sequential protein structure prediction requires

fewer decoys to be produced, produces individual decoys signifi-

cantly faster and is capable of consistently generating better

models.

2 Materials and methods

We have implemented a sequence-to-structure pipeline to perform

de novo protein structure prediction (see Supplementary Fig. S1).

Our pipeline takes as input a target sequence for which we generate

secondary structure predictions using PSIPRED (Jones, 1999), tor-

sion angle predictions using SPINE-X (Faraggi et al., 2009; 2012), a

fragment library using Flib (de Oliveira et al., 2015), and, when pos-

sible, residue–residue contact predictions using metaPSICOV (Jones

et al., 2014) as it was shown to produce the most accurate predic-

tions (de Oliveira et al., 2016) (for full details see Supplementary

Material). The final step in our pipeline is to generate structure pre-

dictions using SAINT2. SAINT2 requires the output files of steps

one to four to generate models.

2.1 Fragment library
Flib (de Oliveira et al., 2015) is used to generate the fragment libra-

ries for SAINT2. Flib extracts fragments from a curated database of

known structures. This database is a non-redundant (sequence
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identity < 90%), high quality (resolution<2.5 Å) subset of the

PDB (Berman et al., 2000). HHSearch (Söding, 2005) is used to

identify and remove homologs to the target from this database in

order to represent a realistic de novo structure prediction scenario.

Fragments are selected from structures in this database based on the

target’s sequence, predicted secondary structure and predicted tor-

sion angles. On average, Flib generates �30 fragments per target

position that are 6–20 residues long. The same fragment library is

used for a target in all three modes of SAINT2.

2.2 SAINT2
SAINT2 is based on a heuristic that treats protein structure predic-

tion as a global optimization problem. Its energy function is a com-

bination of different knowledge-based and physical potentials (see

Supplementary Material for more details). The conformational

space is sampled using a library of fragments of known structures,

performing successive fragment replacements on an existing peptide

conformation (Supplementary Fig. S2).

SAINT2 builds models for a given target using the 3-D Cartesian

coordinates of the five main backbone atoms (C, N, O, C-a and C-

b). These coordinates are calculated using the fragment library (see

Supplementary Material for more details) and completed using ideal

bond lengths. SAINT2 does not consider side-chains explicitly.

Three different modes have been implemented within SAINT2:

Forward, Non-sequential and Reverse. SAINT2 Forward is initial-

ized by selecting a fragment from the fragment library correspond-

ing to the N-terminal residues of the target protein. In this mode, the

peptide will grow as the simulation is executed. The direction of

peptide extrusion is N-terminal to C-terminal. The reverse mode is

analogous to the forward mode, but the initialization occurs at the

C-terminus. In the reverse mode, the peptide will also grow as the

simulation is executed, but the direction of peptide extrusion is re-

versed (C-terminal to N-terminal). SAINT2 can also perform

fragment-assembly in a similar fashion to traditional approaches

such as ROSETTA. We refer to this as non-sequential structure pre-

diction. In the non-sequential mode, SAINT2 is initialized with a

fully extruded protein conformation where the torsion angles are set

to 180� and ideal bond lengths and angles are used. In the analyses

described in this manuscript, an identical number of moves is used

for each of the three modes of SAINT2.

2.3 Model generation
The Forward mode of SAINT2 is outlined in Supplementary Figure

S2. Here, we outline each of the stages of our model generation

routine.

2.3.1 Fragment replacement step

Fragments are selected at random from the fragment library. The

probability of selecting a given fragment is proportional to the frag-

ment score assigned by Flib, which is based on the predicted Torsion

angle score (Supplementary Fig. S2).

2.3.2 Extrusion steps

Extrusion steps are a specific type of fragment replacement that al-

ways takes place at the end of the existing conformation, growing

the peptide by one residue. For the forward mode, an extrusion al-

ways occurs at the C-terminal end of the peptide, in which a frag-

ment representing the C-terminal is randomly selected from the

fragment library (see Supplementary Fig. S2). The extrusion replace-

ment always adds a new residue to the existing peptide conform-

ation. For the Reverse mode, extrusion occurs in an analogous

fashion, but at the N-terminal end of the peptide. The new conform-

ation resulting from an extrusion step is always accepted. No extru-

sions are performed for the non-sequential mode, as in this mode the

initial conformation already contains all the residues of the target.

Different increments of up to 10 residues were tested for extru-

sion steps and produced comparable results. We have chosen to use

an increment size of one residue. Extrusion steps use a different frag-

ment as opposed to extending the existing fragment by one residue.

However, this choice does not affect the results as extrusion steps

are always accepted and a significant number of move steps is per-

formed between extrusions.

2.3.3 Move steps

Move steps are fragment replacements that take place at random

positions in the existing peptide conformation. Unlike extrusion

steps, move steps do not append new residues at the end of the

sequence.

2.3.4 The Mover

The mover is responsible for swapping between move and extrusion

steps in the Sequential and Reverse modes of SAINT2 (for more de-

tails see Supplementary Material).

2.3.5 Score

SAINT2 uses a combined knowledge-based and physical potential

that consists of five different components: RAPDF, Lennard-Jones,

solvation, predicted secondary structure, and predicted inter-residue

contacts. The score is a weighted sum of each of its five components

(refer to Supplementary Material for more details).

2.3.6 Decoy selection

SAINT2 samples the conformational space by generating thousands

of decoys for each target (see Determining the Number of Decoys

section). Decoys are ranked according to our combined knowledge-

based and physical potential (see Score section of Supplementary

Material).

2.4 Datasets
SAINT2 was trained using a set of 43 structurally diverse proteins

extracted from the PDB (Berman et al., 2000).

A full list of these proteins is given in Supplementary Table S1.

These proteins are all single chain, single domain proteins propor-

tionally distributed among the four SCOP (Murzin et al., 1995) pro-

tein classes: all a, all b, a=b, and aþ b. They are also evenly spread

in terms of length, ranging from 59 to 508 residues. Each of the pro-

teins in our dataset belongs to a different Pfam family (Punta et al.,

2012).

Our sequential comparison analyses were carried out on two

validation datasets: a soluble set of 41 structurally diverse proteins

and a transmembrane set of 24 a-helical bundles extracted from

the PDB (Berman et al., 2000). A full list of these proteins is given

in Supplementary Table S2. For the soluble set, analogous to the

training dataset, the proteins are all single chain, single domain

proteins proportionally distributed into the four SCOP (Murzin

et al., 1995) protein classes. They are also evenly spread in terms of

length, ranging from 54 to 504 residues. For the transmembrane

set, a set of polytopic a-helical transmembrane chains was taken

from the Orientations of Proteins in Membranes (OPM) datbase

(Lomize et al., 2006). Taking only unbroken chains, the set

was culled to keep no more than one member of each family, as

defined by the OPM database, and also culled by PISCES
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(Wang and Dunbrack, 2003) so that the maximum sequence iden-

tity between chains was 20%. By manual inspection, chains were

selected which had no soluble domain, consisted of at least four

helices, and formed a single transmembrane domain. We used only

the 24 shortest proteins in the resulting set, ranging from 132 to

385 residues in length. There is no overlap between the Pfam fami-

lies in the training and validation sets.

2.5 CASP12 dataset
We used SAINT2 to generate models for 23 free-modeling domains

from CASP12. For this comparison, we considered only free-model-

ing targets and included all the domains for which structural data

was available on the CASP12 website.

Only sequence and structure information available before the be-

ginning of CASP12 was used in this analysis (we excluded all struc-

tures and sequences published after April 2016 from our databases).

2.6 Validation
TM-Score (Xu and Zhang, 2010; Zhang and Skolnick, 2004) was

used to evaluate the quality of the decoys generated by SAINT2.

Three different TM-Score based measures were defined to help as-

sess our results:

• TM-Score of the best decoy (TM-Score Best): computed by se-

lecting the decoy from among all decoys generated with the high-

est TM-Score compared to the target’s native structure.
• TM-Score of the Top 5 decoys (TM-Score Top-5): the TM-Score

of the best decoy among the five top decoys output by our

sequence-to-structure pipeline.

3 Results

3.1 Determining the number of decoys required by

SAINT2
Successful de novo protein structure prediction methods tend to rely

on brute force approaches that generate hundreds of thousands of

conformations (Kandathil et al., 2016; Moult et al., 2014).

Therefore, accurate template-free modeling is heavily dependent on

the availability of large computational resources. As seen in

Supplementary Table, there is not a consensus as to the number of

decoys that need to be produced across different methods or even

for a single method. It is hard to draw a comparison across different

predictors as some perform significantly higher numbers of moves

for a single decoy and produce a smaller number of decoys.

Little analysis has been done to assess how many decoys are ac-

tually needed in order to obtain a good answer. The only common

result is the suggestion that the longer the protein, the larger the

number of decoys needed (Kim et al., 2014; Moult et al., 2014;

Simoncini and Zhang, 2013; Xu and Zhang, 2012). Given the recent

improvements obtained by incorporation of co-evolution restraints

into prediction pipeline, it is possible that more efficient search heur-

istics could be used to reduce the number of decoys used.

SAINT2 Forward, which performs prediction sequentially start-

ing with a fragment representing the N-terminus and gradually

growing this peptide as the conformational space is sampled, was

used to generate 100 000 decoys for each of the 43 proteins in our

training dataset. Correct answers [TM-Score to native structure >

0.5 (Xu and Zhang, 2010)] were generated for 25 targets. These 25

cases were used to estimate how many decoys are necessary to ob-

tain a correct answer and a ‘best’ model in the 100 000 decoy en-

semble (Fig. 1). We define a ‘best’ model as a decoy within 0.05

TM-Score units of the best possible solution in the 100 000 ensem-

ble. In order to identify the number of decoys required to produce ei-

ther a ‘best’ model or a correct answer, we sampled decoys from the

ensemble. A hundred samples of each size were taken and we noted

the sample size (number of decoys) needed to observe at least one

correct answer (Supplementary Fig. S3) or ‘best’ model in over 95%

of samples of a given size.

Our results show that when fewer than 10 000 decoys are gener-

ated, SAINT2 consistently produces a correct answer for 20 targets

and a ‘best model’ (as good as any in the 100 000 ensemble) for 14

targets (Fig. 1).

We analysed whether sequence features could be used to estimate

the number of decoys required to consistently produce a correct an-

swer (Fig. 2). For the proteins shorter than 250 residues where

SAINT2 has produced a correct answer, this answer can consistently

be produced when fewer than 10 000 decoys have been generated.

Fig. 1. Number of decoys required by SAINT2 to produce a correct answer or a ‘best’ model. We generated 100 000 decoys for each target in the training dataset

and have estimated both the number of decoys required to produce a correct answer (A) and to produce a ‘best’ model (B). A correct answer is one with TM-

Score to the native structure greater than 0.5 and a ‘best’ model is a decoy within 0.05 TM-Score units of the best possible solution produced in the 100 000 decoy

ensemble (see Supplementary Fig. S3 for more details). Proteins are coloured according to their SCOP classes
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For proteins longer than 250 residues, a larger number of decoys

had to be output to achieve this consistency. Other than this binary

behavior, no correlation was observed between length and the calcu-

lated required number of decoys. When considering the number of

loop positions, similar results were observed. Results for the SCOP

classes show that SAINT2 can consistently generate a correct answer

for most All a and All b proteins in our dataset when fewer than

5000 decoys are produced. However, no correct answer was pro-

duced for any All b proteins longer than 250 residues.

Sequence features were also compared against the number of

decoys required to consistently produce a ‘best’ model for each pro-

tein in our Training DataSet (Supplementary Fig. S4). We observe

no correlation between our estimate for the number of decoys

required to produce a ‘best’ model and protein length or number of

loop positions. Results for the SCOP classes show that aþ b pro-

teins tend to require fewer decoys compared to other SCOP classes

in order for a ‘best’ model to be generated. We also tested for a rela-

tionship between the number of decoys required to produce a cor-

rect answer or a ‘best’ model with the fragment library precision

and the precision of predicted residue-residue contacts and observed

no correlations (Supplementary Figs S5–8).

We have assessed the number of decoys that need to be generated

by SAINT2 so that a correct answer or a ‘best’ model is produced.

Our results reveal that generating 10 000 decoys is sufficient to en-

sure that a correct answer is produced for most cases. We have also

shown that the number of decoys required to produce a ‘best’ model

shows little correlation to protein length and is lower for proteins

belonging to aþb SCOP classes. These results allow us to estimate

the number of decoys that SAINT2 should generate for a given

target.

3.2 Impact of sequentiality on the quality of soluble

protein models
The main concern when employing a pseudo-greedy search heuristic

is local minimum entrapment, especially when considering a rugged

objective function. We have, therefore, investigated the impact of se-

quentiality on the quality of models. We performed a comparison

between SAINT2 Forward and SAINT2 Non-sequential to evaluate

performance on a validation set of 41 soluble proteins.

We generated 10 000 decoys for each of the 41 targets in our sol-

uble validation set using SAINT2 Forward and SAINT2 Non-

sequential. For this comparison, identical fragment libraries, contact

predictions and number of moves to generate a decoy were used.

In that sense, both approaches were nearly identical. No aspect of

our pipeline was designed to favor sequential prediction over its

non-sequential counterpart. In fact, the knowledge-based potentials

in SAINT2 were developed for a non-sequential prediction pipeline.

Decoys generated using SAINT2 Forward tend to present a

higher TM-Score Best when compared to SAINT2 Non-sequential

(Fig. 3—left). SAINT2 Forward produced a correct answer (Best

TM-Score > 0.5) for 18 cases whereas SAINT2 Non-sequential pro-

duced a correct answer for only 13 cases. There are no cases where a

correct answer was generated using the SAINT2 Non-sequential

that was not also produced sequentially. SAINT2 Forward predic-

tions were better in 10 out of the 13 cases for which SAINT2 Non-

sequential generated a correct answer.

These trends are reproduced if we look at the TM-Score Top-5

(Supplementary Fig. S9). SAINT2 Forward presents a higher TM-

Score Top-5 than SAINT2 Non-sequential in 33 of the 41 cases, gen-

erating 11 correct answers (TM-Score Top-5 > 0.5). SAINT2 Non-

sequential produced a correct answer amongst its top five scoring

decoys for only in 3 of the 41 cases.

It has previously been suggested that proteins belonging to the

a=b SCOP class and longer proteins are more likely to fold in a se-

quential fashion (Deane et al., 2007; Saunders et al., 2011). We used

our SAINT2 modes to assess the relationship between length/SCOP

class and the improvements observed by performing predictions se-

quentially. SAINT2 Cotranslational presents a higher TM-Score

Best for 9 out of 10 a=b proteins in our soluble validation set (as

shown in Fig. 3). Furthermore, the effect seems to be stronger (i.e.

the differences between the TM-Score Best of SAINT2 Forward and

Non-sequential are larger) for a=b proteins. We observe no relation-

ship between model improvement and protein length.

We have also compared the run time of our different modes of

SAINT2. The time complexity of our fragment assembly approach is

quadratic on the number of atoms. Given that SAINT2 Forward

performs many moves on a reduced number of atoms (a portion of

the full protein chain), it can generate decoys at least 1.5 times faster

than SAINT2 Non-sequential (Supplementary Table S3).

Overall, our results show that SAINT2 Forward employs a more

efficient search approach and produces better models for a majority

of modeling cases. There are no cases where a conventional, non-

sequential search strategy is capable of producing a model that

is significantly better than the ones generated sequentially. The im-

provement in modeling results was observed across all pro-

tein lengths and across all SCOP classes represented in our

validation set.

Fig. 2. Correlation between the number of decoys required by SAINT2 to produce a correct answer and three sequence-based features. The x-axis represents a

feature, protein length (A), number of predicted loop positions (B), and SCOP class (C). The y-axis is the number of decoys required to generate a correct answer

for the 25 targets in our Training dataset where SAINT2 produced a correct answer
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3.3 Impact of sequentiality on the quality of

transmembrane models
We also used SAINT2 to test whether a sequential approach is a

more efficient way to sample the conformational space and generate

accurate decoys than a standard, non-sequential approach for trans-

membrane a-helical bundles. These are known to be inserted

cotranslationally into the membrane, so a fragment assembly proto-

col that imitates this process may succeed by following the natural

folding pathway.

We generated 10 000 decoys for each of the 24 targets in our

transmembrane set using SAINT2 Forward and SAINT2

Non-sequential. For this comparison, identical fragment libraries,

residue–residue contacts and number of moves to generate a decoy

were used.

We compared the best TM-score of all decoys (TM-score Best)

produced by each of SAINT2 Forward and SAINT2 Non-sequential

(Fig. 3). For 18 out of 24 proteins, SAINT2 Forward produces a

more accurate decoy. In two cases, the improvement in TM-score

Best for sequential over non-sequential is>0.15. There are five cases

where SAINT2 Forward produces a correct answer (TM-score-

>0.5) and SAINT2 Non-sequential does not. Two of these corres-

pond to the longest proteins in the set (292 and 324 residues) for

which a correct answer was produced. There were just two cases

where a correct answer was only produced non-sequentially.

3.4 CASP12 results
We have also compared our sequential approach to state-of-the-art

prediction software. We used SAINT2 Forward to produce 10 000

decoys for the 23 free-modeling domains from CASP12 for which

structural data were available. We compared the results obtained by

SAINT2 Forward against the most successful predictor in CASP12,

the Baker Group (Supplementary Fig. S10). As our models are post-

diction rather than prediction, this comparison should only be used

to see if SAINT2 Forward can produce results of similar quality.

We compared the best model submitted by the Baker Group to

CASP12 (best-of-five) to the five highest scoring models produced by

SAINT2 Forward (best-of-five). Given that we currently do not have

a model selection protocol for SAINT2, we have used the scoring

function developed for model generation to select these

(Supplementary Fig. S10A). We have also provided results for the best

model produced by SAINT2 Forward (Supplementary Fig. S10B).

The Baker group submitted models with correct topology (TM-Score

> 0.5) for 4 out of the 23 free-modeling targets. SAINT2 Forward

produced a model with correct topology for eight targets but only

three of these cases were amongst the five highest scoring models.

Our results show that models produced by SAINT2 Forward are of

comparable quality to the state of the art.

3.5 Investigating the effect of directionality during

model generation
The ROSETTA ab initio membrane protocol uses an incremental

but bi-directional method to build decoys (Yarov-Yarovoy et al.,

2006). It is therefore using sequential sampling, but not in the direc-

tion of protein synthesis. We assessed how directionality may affect

conformational sampling by comparing SAINT2 Forward to

SAINT2 Reverse, which performs the same sequential protocol, but

in the non-biological C- to N-terminal direction.

We generated 10 000 decoys for each of the 41 proteins in our

soluble set and for the 24 targets in our transmembrane set using

SAINT2 Forward and SAINT2 Reverse (Supplementary Fig. S11).

For both modes, identical fragment libraries, residue–residue con-

tacts and number of moves to generate a decoy were used.

We observed small differences between the TM-Score Best of

models generated for the soluble set by SAINT2 Forward and

SAINT2 Reverse. For the transmembrane set, little difference was

observed.

4 Discussion

In this paper, we have investigated the behavior of a sequential

search heuristic for fragment-based de novo structure prediction.

Our aim was to test whether a pseudo-greedy search strategy could

reduce the computational cost of accurate de novo modeling.

Our initial study assessed how efficiently our sequential pre-

dictor SAINT2 can produce a model of similar quality to its best

possible model. There is a general perception in the literature that

hundreds of thousands of decoys are required for a correct model to

be produced (Kim et al., 2014; Simoncini and Zhang, 2013; Xu and

Zhang, 2012), whereas little evidence is presented as to how many

decoys are required to produce a sufficiently good answer. SAINT2

Forward, in the majority of cases where a correct answer is pro-

duced, is able to produce it when less than 10 000 decoys are

Fig. 3. Comparison of the TM-Score Best for a validation set of 41 soluble proteins (left) and 24 transmembrane proteins (right) obtained using SAINT2 Forward

(x-axis) against SAINT2 Non-sequential (y-axis). Points below the diagonal indicate cases where sequential prediction performs better than non-sequential pre-

diction. Point size indicates protein length and point colour indicates the protein SCOP class
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generated. This suggests that SAINT2 is either more efficient at sam-

pling the conformational space or that other methods are generating

an excessive number of decoys. It is possible that the number of

decoys could be further reduced by optimization of the sequential

search in terms of satisfying the distance constraints. As the number

of available homologue sequences increases, so does the precision of

contact prediction (de Oliveira et al., 2016), which may enable

greedier strategies.

Traditional structure predictors always perform moves on and

score a full protein conformation. SAINT2 Forward optimizes per-

formance by performing moves on and scoring a peptide that is

shorter than the target protein. In the analyses in this manuscript,

where we use the same number of moves for the two methods,

SAINT2 Forward is capable of generating an individual decoy be-

tween 1.5 and 2.5 times faster than SAINT2 Non-sequential. This

means that regardless of the number of decoys produced, a sequen-

tial approach can significantly reduce the computational cost of ac-

curate structure modeling.

One possible issue with using a sequential protein structure pre-

dictor is the idea of local entrapment, that by folding the N-terminal

residues before the rest of the protein, they could become trapped in

a local minimum that is not relevant for the global fold. This type of

entrapment does not appear to influence our methodology as, on

our soluble and transmembrane validation sets, SAINT2 Forward

generates more correct models and better models than SAINT2

Non-sequential. Considering a threshold of 0.02 TM-score units to

establish model similarity (Kryshtafovych et al., 2015; Li et al.,

2016), there are no cases across all soluble and membrane cases

where SAINT2 Non-sequential predictions are significantly better

than SAINT2 Forward.

It is arguable that the improvement in modeling results described

in this work could be a consequence of the particular implementation

used in SAINT2. The same implementation was used in all modes of

SAINT2 (the same potentials, scoring functions, heuristics and param-

eters were used). Furthermore, we have used potentials that have been

developed, trained, and used in non-sequential protocols.

Sequentiality had also been previously explored in transmembrane

protein structure prediction by ROSETTA (Yarov-Yarovoy et al.,

2006). Therefore, it seems that the improvement observed for sequen-

tial predictions is unlikely to be a consequence of our implementation.

We carried out a comparison of SAINT2 Forward’s performance

on the CASP12 targets in order to establish whether its results are

equivalent to those of the best performers within CASP. However,

as our models are postdiction (though every care was taken to re-

move information available post CASP12—see Methods) we see

these results as indicative rather than definitive. Models with a TM-

score above 0.5 may not be useful for a large number of biological

applications. Nonetheless, results from the most recent iteration of

CASP show that, in the absence of a reliable template, protein struc-

ture predictors rarely achieve TM-Scores greater than 0.8. The most

successful template-free predictor (Baker Group) produced a model

with a TM-Score greater than 0.8 for only one free-modeling do-

main in our CASP12 dataset. SAINT2 was able to produce models

with TM-Score greater than 0.8 for approximately 10% of its sol-

uble targets (4 out of 41). However, no model of this quality was

produced for the targets in our transmembrane and CASP12 sets.

Currently, our structure prediction pipeline does not have a

model selection protocol implemented. Therefore, for our CASP12

comparison, we considered both the best-of-five (as selected by

SAINT2 score, see Results) and the best model out of all 10 000

decoys generated by SAINT2 Forward. Our score has not been opti-

mized for ranking and this approach is unlikely to outperform any

clustering selection protocol (Kryshtafovych et al., 2015). To make

a fairer comparison, it would be ideal to replicate the Baker Group’s

decoy selection protocol, but unfortunately their method is not re-

producible due to use of human intervention. When considering the

best-of-five models output by SAINT2, we were able to predict the

correct topology for three cases, one fewer than the Baker Group.

When considering the best model output by SAINT2, the correct

topology was predicted for eight of these cases. However, we do not

know how many cases had at least one model with correct topology

across all the decoys produced by the Baker group as this data is not

publicly available. Even if we were to consider the best model pro-

duced by the Baker Group, the number of decoys produced by their

protocol is in the order of hundreds of thousands which far exceeds

the 10 000 decoys produced by SAINT2. It may be that a compari-

son using identical computational time for SAINT2 as that used by

the Baker group in CASP12 would be most appropriate.

The results in Supplemetary Figure S10 establish that SAINT2

Forward is capable of producing models of comparable quality to

those produced by the state of the art. Our findings highlight the im-

portance of re-evaluating search strategies with the advent of in-

creasingly more accurate scoring functions.

The way by which predicted contacts are introduced during sam-

pling has an impact on which conformations are sampled. For in-

stance, it has been suggested that using only short-range contacts

during the earlier stages of sampling can lead to modeling improve-

ments for some proteins (Kosciolek and Jones, 2014). Due to the se-

quential nature of our algorithm, N-terminal contacts are

introduced earlier and more moves can be dedicated to satisfying

these constraints than for the C-terminal contacts. Our approach

paves the way for considering different ways in which predicted con-

tacts can be incorporated into structure prediction protocols.

Existing structure prediction software can, at times, produce cor-

rect models without the use of predicted contacts. We assessed the

role of these contacts in the quality of modeling as performed by

SAINT2 Forward by testing the protocol without predicted contacts

(Supplementary Fig. S12). We find that correct models were pro-

duced by SAINT2 Forward without contacts for only 10 of the 18

cases where a correct model was produced by SAINT2 Forward

with contacts. These results highlight the importance of accurate

contact prediction for successful modeling (de Oliveira et al., 2017).

We observed comparable results when predictions were gener-

ated in a biological direction and its reverse. This is consistent with

the notion that protein folding is a series of small optimization prob-

lems where segments of the chain fold independently (foldons) and

then collapse to the complete structure (Hu et al., 2013; Maity

et al., 2005). Given the amount of experimental evidence to support

the notion that proteins are folding as they are being translated

(Basharov, 2000; Fedorov and Baldwin, 1997; Giglione et al., 2009;

Holtkamp et al., 2015; Kolb, 2001; Puglisi, 2015), we have opted to

maintain the biological direction as the standard approach in

SAINT2.

We have demonstrated the validity and applicability of a sequen-

tial, pseudo-greedy search heuristic to perform de novo model gener-

ation. When drawing an unbiased comparison, sequential prediction

requires fewer decoys to produce good answers, can generate indi-

vidual decoys faster and improves the overall modeling results.
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