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Abstract

Classically, phenotype is what is observed, and genotype is the genetic makeup. Statistical

studies aim to project phenotypic likelihoods of genotypic patterns. The traditional geno-

type-to-phenotype theory embraces the view that the encoded protein shape together with

gene expression level largely determines the resulting phenotypic trait. Here, we point out

that the molecular biology revolution at the turn of the century explained that the gene

encodes not one but ensembles of conformations, which in turn spell all possible gene-asso-

ciated phenotypes. The significance of a dynamic ensemble view is in understanding the

linkage between genetic change and the gained observable physical or biochemical charac-

teristics. Thus, despite the transformative shift in our understanding of the basis of protein

structure and function, the literature still commonly relates to the classical genotype–pheno-

type paradigm. This is important because an ensemble view clarifies how even seemingly

small genetic alterations can lead to pleiotropic traits in adaptive evolution and in disease,

why cellular pathways can be modified in monogenic and polygenic traits, and how the envi-

ronment may tweak protein function.

Introduction

The terms genotype and phenotype have been in use at least since the turn of the last century.

Genotype has been defined as the genetic makeup of an organism or of a specific characteristic.

Phenotype (from Greek phainein, meaning “to show,” and typos, meaning “type”) has been

construed as the composite of the organism’s observable characteristics or traits, such as mor-

phology, development, biochemical, and physiological properties. Classically, the genotype of

an organism has been described as the inherited genetic material coding for all processes in

the organism’s life. It provided some measurement of how an individual is specialized within a

species based on its genomic sequence. By contrast, the phenotype referred to the observation

that similar genotypes can differ in their expression under different environmental and devel-

opmental conditions. Typically, an individual’s genotype relates to a particular gene of interest

or to the combination of alleles that the individual organism or cell carries. To explain how the

genotype determines the phenotype, population genetics [1] pointed out that (1) in real popu-

lations, phenotypic ratios are determined by the frequency of alleles in the population as well

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006648 June 20, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nussinov R, Tsai C-J, Jang H (2019)

Protein ensembles link genotype to phenotype.

PLoS Comput Biol 15(6): e1006648. https://doi.

org/10.1371/journal.pcbi.1006648

Editor: Ignacio Bravo, Centre National de la

Recherche Scientifique, FRANCE

Published: June 20, 2019

Copyright: © 2019 Nussinov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by federal

funds from the National Cancer Institute, National

Institutes of Health, under contract number

HHSN261200800001E. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-8115-6415
http://orcid.org/0000-0003-1524-9928
https://doi.org/10.1371/journal.pcbi.1006648
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006648&domain=pdf&date_stamp=2019-06-20
https://doi.org/10.1371/journal.pcbi.1006648
https://doi.org/10.1371/journal.pcbi.1006648
http://creativecommons.org/licenses/by/4.0/


as by whether the alleles are in dominant or recessive form, (2) the number of phenotypes pro-

duced for a given trait depends on how many genes control that trait, and (3) there is no one-

to-one mapping between genes and traits. Exactly what is a “trait” was not well defined.

The classical genotype–phenotype interpretation dates to a period when a protein, the gene

product, was believed to exist in one shape with a single function (Fig 1). Evolution was per-

ceived to optimize that shape for this function. Phenotype was considered as a visually observ-

able property. Over a century later, with the understanding of the basis of protein structure

and function having undergone a dramatic revolution, the genotype–phenotype paradigm

remains unchanged. Scientific publications still commonly relate to it in terms of this weath-

ered image. This view overlooks the fact that biomolecules exist as heterogeneous dynamic

interconverting states with varying energies, and the multiple traits may mirror those protein

states. The “second molecular biology revolution” [2], which imported newer concepts from

physics and chemistry to molecular biology, such as the powerful idea of the free energy land-

scape [3], allows a new view of this genotype–phenotype dogma. Biomolecules should be

thought of not as static single shapes but as statistical ensembles [4–7]. Here, we explain that

structural ensembles—which allow proteins to fulfill their functions—link genotypes to pheno-

types. Thus, within the broad cellular context, it is the network that controls transcription via

gene regulation [8–30]; here, however, we relate to mutations that affect function at the lower,

protein level.

Protein evolution in terms of biophysics

The evolution of proteins in terms of their conformational ensembles has not been overlooked

[31, 32]. In a series of studies, the relationship of the protein’s structure and conformational

Fig 1. Classical view of genotype–phenotype. In this view, a protein or the gene product is considered to have one

shape with a single function. Monogenic traits are expressed by single genes, whereas polygenic traits are affected by

multiple genes. Seemingly unrelated phenotypic traits are pleiotropy that can be expressed by a single gene.

https://doi.org/10.1371/journal.pcbi.1006648.g001
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dynamics to its function and thus its fitness has been explored, not through classical phyloge-

netic approaches, which largely overlook biophysical principles, but by evaluating how muta-

tions impact protein structure, which already has marginal stability [33–35]. Mutations can

also shift the equilibrium from an inactive, autoinhibited state to the active state, as for exam-

ple observed in Raf and phosphoinositide 3-kinase (PI3K) [36]. A linkage between evolution

and biophysics was also explored by changes in dynamic flexibility profiles [37], by protein

interaction networks [38], by protein adaptation as observed by the functional impact of multi-

ple mutations, by identifying key adaptive mutational solutions to the same selective pressure

[39, 40], by extant fold-switching proteins [41], and by exploring the relationship between

metastability, the fitness landscape, and sequence divergence [32]. Evolutionary selection has

been explored in terms of the dynamics of structural evolution [42], and evidence for evolu-

tionary selection in cotranslational folding was also found [43]. The stability of a viral protein

was observed to correlate with its evolutionary dynamics [44], and the evolution of the bio-

physical fitness landscape of an RNA virus was explored as well [45]. Even a web app has

recently been set up for such exploration [46]. Comprehensive analysis indicated that evolu-

tion conserves functional dynamic motions; clusters of conserved residues have a signature

characteristic of protein domains, being spatially separated but individually compact [47]; and

sequence and structurally conserved residues tend have a lower fluctuation than other residues

[48]. Some studies emphasized the challenge of forecasting mutational outcomes, arguing that

ensembles make evolution unpredictable [49].

Can the biophysical view of conformational ensembles link to classical evolutional con-

cepts, such as phenotypic plasticity, bet-hedging, canalization, and assimilation? Classically, a

genotype’s phenotype is viewed as relatively invariant, irrespective of different environments

[50]. However, recently, a linkage was proposed via a “plasticity-first evolution” hypothesis

that suggested how phenotypic plasticity may have facilitated macroevolutionary change [51].

Protein conformational diversity was suggested to correlate with evolutionary rate [52], and

“phenotypic plasticity” through nongenetic heterogeneity was recently proposed to be driven

by protein conformational dynamics [53]. The authors argued that mutations alter the relative

probabilities of conformations, thus changing the effects of future mutations, resulting in

uncertainty in the effect of each subsequent mutation and consequently prediction. Coinciden-

tally, large-scale analysis has further shown that mutational effects on the conformations may

also be small, even smaller than among proteins of identical sequences [54]. Finally, recent

reviews described bridging the physical scales in evolutionary biology, from protein sequence

space to fitness of organisms and populations [55], delineating the evolution of function from

such a perspective [56].

The conformational space is vast, with the available X-crystal structures covering only a

certain fraction, as recently elegantly documented for the Abl tyrosine kinase, for which

molecular dynamics simulations and Markov state models identified a protein conformation

apparently in a Lilly in-house structure of Abl with WHI-P15 but not in the Protein Data Bank

(PDB) [57]. Even though here exploited for drug discovery, it is reasonable to expect that evo-

lution has made use of such vast ensembles as well, adapting them in different ways [58, 59],

including in thermostability [60, 61], diverse cellular environments [62], protein disorder and

the switches between the ordered and the disordered state [63, 64], detailed linker histone

sequence and posttranslational modification (PTM) [65] as well as catalysis of an (O-linked

β-N-acetylglucosamine) O-GlcNAc PTM of nuclear and cytosolic protein [66], allosteric inter-

action networks and signaling pathways [67], and in higher-order organization [68]. This

expectation not only can help in prediction of ligand binding [69] but also has inspired the

proposition that accounting for conformational heterogeneity and dynamics would benefit

protein design methods [70]. Along these lines, recent reviews underscored the role of
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conformational dynamics in enzyme evolution toward new functions and suggested how con-

formational dynamism can be exploited in computational enzyme design protocols [71] and

how a priori knowledge of an allosteric network could improve design through navigation of

the design space [72]. Thus, biophysics is not concerned with quantitative association of gene

loci nor with certain statistical measurements that are hallmarks of classical evolution; it views

evolution at the basic conformational level and considers protein sequence and structural

space and fitness of organisms and populations.

Statistical relationships between genotype and phenotype

Monogenic traits are affected by single genes, polygenic traits are affected by multiple genes,

and pleiotropy occurs when one gene influences multiple, seemingly unrelated phenotypic

traits [73–75] (Fig 1). Quantitative association of trait loci (QTL) aims to explain the genetic

basis of variation in complex traits by linking phenotype data (trait measurements) to geno-

type data (e.g., single-nucleotide polymorphisms [SNPs]). However, quantifying traits is chal-

lenging; matters of contention include traits’ definitions, interdependence, and selection.

Statistics suggest that the frequency of pleiotropy is not high. Instead, the average phenotypic

effect of a mutation on a trait increases with the number of traits that are affected by the muta-

tion. Wagner and Zhang pointed out that pleiotropy may result from multiple molecular func-

tions of a gene (type I pleiotropy) or from multiple outcomes of a single molecular function

(type II pleiotropy) and that type II is the most common, which is why developing drugs that

target only one particular phenotype of a pleiotropic gene may fail [74]. Here, we consider two

types of scenarios (Fig 2). In the first, the mutations affect solely the protein (a “node”). This

scenario applies only to monogenic phenotypes. In the second, the mutations create or break a

protein–protein interaction (an “edge”). This scenario works by altering the cellular network.

It can take place in gained monogenic or polygenic phenotypes. Since we focus on protein

ensembles, we only consider mutations/SNPs in protein-coding regions.

Genome-wide association studies (GWAS) seek relationships between sites of common

genome sequence variation and disease predisposition. They have already revealed the genetic

basis of over 50 disease-susceptibility loci and provided insight into the allelic architecture of

multifactorial traits [75], indicating that the approach can successfully identify common SNP

variants with sufficiently large phenotypic change and illuminate relationships between

changes in genome sequence and phenotypic variation. Challenges are not so much in detect-

ing the statistical association signals but in relating them to the molecular mechanisms of phe-

notypic expression. There are 20,000 to 30,000 genes in the human body; there are millions of

phenotypic traits [76]. Statistical studies such as those above can reveal relations and associa-

tions; they are unable to explain how SNPs, disease-related mutations, or mutations in adap-

tive evolution lead to phenotypic change. Since each record contains many variables, it is

difficult to fully interpret the observed statistical biases [77]. This, however, becomes possible

when we consider gene products as ensembles of dynamic, interconverting states. The linkage

between genotype and phenotype can be understood in terms of the statistics of the ensemble.

The genotype encodes a conformational ensemble

In line with the rich biophysics literature, with some of the most recent cited above (as well as

[34, 78]), and the long-standing awareness that multiple/promiscuous function drives transi-

tions [35, 79], the genotype should be thought of not as determining a structure but instead as

establishing a distinct conformational ensemble, which in turn specifies the phenotype (Fig 3).

This ensemble embodies all states, including the orthosteric ligand-bound conformation, the

activated (or inactivated) allosteric modulated states, posttranslationally modified states,
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transition states, and nonfunctional states serving as a reservoir for emerging functions [4–7].

The ensemble can be described by statistical mechanical laws, and its populations follow statis-

tical distributions. Their specific distributions reflect the environment and conditions of the

protein’s milieu. The “environment and conditions” include both the physical surrounding,

such as concentration, pH [80], presence of solutes or lipids, ions (where binding of sodium

ions was shown to shift the population toward conformational states [81]) and covalent

changes in the protein, such as mutations and their combinations, and phosphorylation, ubi-

quitylation, etc. A shift of the conformational ensemble that alters the highly populated state

may define the phenotype. This thesis observes that evolution encoded all states and their pop-

ulations in the genotype and optimized them, including rare states, for distinct phenotypes.

Fig 2. Network perturbations of genotype–phenotype. Mutations can shift phenotype traits generated from wild-

type trait (upper panel), affecting solely the protein (a “node”) or protein–protein interaction (an “edge”). The former

and latter are node and edge mutations, respectively. The node mutation (middle panel) generates a monogenetic trait,

whereas the edge mutation (bottom panel) creates or breaks the protein–protein interactions yielding monogenetic or

polygenetic traits. An example shown for edge trait is polygenetic.

https://doi.org/10.1371/journal.pcbi.1006648.g002
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The genotype—i.e., the genetic makeup of cells—and the phenotype have been in the lime-

light for decades. The genotype and phenotype have been linked through expression of the

specific encoded proteins. The linkage has been understood in terms of the specific three-

dimensional structures that they obtain. However, the genetic makeup is expressed through

ensembles of states and their interactions, and it is the distinct states in the ensemble that

define the phenotype. A specific function is executed by a specific conformation, and a switch

between the states, typically elicited by an allosteric event, can lead to a phenotypic change

[82–86]. Examples include the G protein–coupled receptors (GPCRs), highly dynamic proteins

that adopt multiple active states linked to distinct functional outcomes [87].

Structural ensembles link genotype to phenotype

Sickle cell anemia—a disorder that leads to atypical hemoglobin molecules that can distort red

blood cells into a sickle, crescent shape resulting in anemia, repeated infections, and periodic

episodes of pain—is one classical monogenic adaptive evolution example. It is a consequence

of a single nucleotide/amino acid Glu! Val change. The conformational landscape of hemo-

globin encompasses both states; however, the sickle cell conformation is visited more often in

the mutant. A more recent example concerns melanocortin receptor 1 (MC1R), which plays a

central role in regulation of animal coat color formation. Two nonsynonymous mutations in

the MC1R gene previously associated with coat color in Chinese Minxian black-fur sheep are

not present in the white coat (large-tailed Han) sheep [88]. A striking example concerns the

coat color of deer mice [89]. Light coat color provides a selective advantage against visually

hunting predators for mice that have recently colonized the light-colored soil of the Nebraska

Sand Hills, in contrast to dark-colored deer mice inhabiting nearby dark soils. The phenotype

Fig 3. New paradigm of genotype–phenotype. In this view, genotype encodes a distinct conformational ensemble in

all states. Populations determine the specific phenotype traits that link to genotype. Mutations shift the equilibrium of

preexisting conformational ensembles altering phenotypes.

https://doi.org/10.1371/journal.pcbi.1006648.g003
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is composed of five color traits: dorsal hue, dorsal brightness, ventral color, dorsal–ventral

boundary, and tail stripe. Each trait is statistically associated with a unique set of SNPs, with

one exception, a serine deletion in exon 2 that was linked to both ventral color and tail stripe.

Each color trait indicates selection. This example suggests (1) that the large-locus effect divides

into small- to moderate-effect mutations and (2) that when one gene influences multiple,

seemingly unrelated phenotypic traits, it is the individual mutations that bring the population

closer to its phenotypic optimum. Thus, small minimally pleiotropic mutations occurring

within a single gene may rapidly adapt an organism to multiple phenotypes. In the language of

the free energy landscape, a set of mutations provides a complex conformational behavior;

however, their combinations can more readily achieve specific optimal conformations. Similar

strategies have been adopted by evolution through combinatorial sets of allosteric PTMs,

which create recognition barcodes [90]. Each set of SNPs results in one type of coat color

through distinct conformations.

A similar complex conformational behavior appears to be involved between the human

MC1R pigmentation and skin cancer gene and youthful facial looks. Loss-of-function poly-

morphisms (multiple functions of a single gene) in human MC1R result in the yellow to red-

dish pheomelanin, which has a weaker ultraviolet (UV) shielding capacity. Recent analysis of

over 8 million SNPs in 2,693 elderly Dutch Europeans indicated that MC1R SNP variants are

most significantly associated with perceived facial age, with the homozygote MC1R risk haplo-

type looking up to 2 years older on average than noncarriers [91]. This association was inde-

pendent of age, sex, skin color, and sun damage, such as wrinkling and pigmented spots,

suggesting independence from melanin synthesis. The strongest associations with perceived

facial age were for multiple SNPs; however, it was enhanced for four SNPs—variants

rs1805005 (V60L), rs1805007 (R151C), rs1805008 (R160W), and rs1805009 (D294H)—known

to be missense loss-of-function variants [92], causing phenotypes such as red hair color and

pale skin [92, 93], and involved in age-related skin phenotypes such as pigmented spots [94].

Along similar lines, across a total of 2,459 patients at different ages and 53 families, the pres-

ence of a mutation in a sarcomere gene (cardiac myosin-binding protein C gene [MYBPC3]

and myosin heavy chain 7 gene [MYH7]) in familial hypertrophic cardiomyopathy (HCM) has

been associated with a number of phenotypic clinical features, including age at presentation,

gender, family history of familial HCM and sudden cardiac death (SCD), and maximum left

ventricular wall thickness (MLVWT) [95].

An additional combinatorial conformational barcodes example concerns MYH9-related

disorders, a group of rare autosomal dominant platelet disorders caused by mutations in the

MYH9 gene encoding the nonmuscle myosin heavy chain II-A (NMMHC-IIA). Nonsyndro-

mic forms are characterized by macrothrombocytopenia with giant platelets and leukocyte

inclusion bodies; syndromic forms combine these hematological features with deafness and/or

nephropathy and/or cataracts. A recent 8-year study of a large cohort of 109 patients from 37

sporadic cases and 39 unrelated families identified 43 genetic variants. Thirty-three of these

were missense mutations. Distinct combinations of this heterogeneous mutational landscape

resulted in specific disease phenotype [96].

Finally, a broad, systematic study of genotype–phenotype relationships mapped thousands

of missense point mutations and in-frame insertions and deletions related to disease. Specific

locations of distinct mutations of the same gene on the interface related to disease specificity.

This was experimentally validated for the MLH1–PMS2, Wiskott–Aldrich syndrome protein

(WASP)–cell division control protein 42 (CDC42), and tumor protein (TP) 63–TP73 interac-

tions [97]. Mutations in protein–protein interfaces (edges) that change the conformational dis-

tributions can lead to a selection of a different binding partner, thereby leading to a phenotype

change through altered interactions.
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Single mutations

Above, sets of nonsense mutations combinatorially decide the preferred conformational states

that provoke the phenotype. Below, we give examples of single-point mutations also acting by

shifting the conformational landscape. Although in such cases it has been generally assumed

that the phenotype is determined by a single (“driver”) substitution, additional—albeit to date

mostly unidentified—previous or subsequent mutational events may cooperate. Low-fre-

quency presumed “passenger” mutations may act combinatorially with the driver in promot-

ing distinct phenotypic expression [77, 98]. Somatic mutations evolve and accumulate over

time and may be expected to affect the distributions of the conformational states, similar to the

combinatorial examples above.

Plasma-membrane integrin αIIbβ3 is a major receptor in platelets during clotting. The

L33P mutation in knockin mice reduces bleeding and clotting times and elevates the in vivo

thrombosis phenotype, platelet attachment, and spreading onto fibrinogen [99]. Under unsti-

mulated conditions, the mutation primes αIIbβ3 intracellular domains for outside-in signal-

ing, increasing Src phosphorylation through talin interactions with the β3 cytoplasmic

domain, leading to hypercoagulability and increased risk for coronary thrombosis and stroke.

The mutation, resulting in a Pro32-Pro33 sequence, modifies the αIIbβ3 conformational equi-

librium. The proline at position 33 was suggested to alter the flexibility in the β3 knee defined

by the plexin-semaphorin-integrin (PSI), insulin-like growth factor 1 (IGF-1), and IGF-2

integrin αIIbβ3 extracellular domains, resulting in increased adhesion capacity of human

platelet antigens (HPA)-1b platelets to fibrinogen [100]. Stormorken syndrome—a rare auto-

somal dominant disorder characterized by a phenotype that includes meiosis, thrombocytope-

nia/thrombocytopathy with bleeding time diathesis, intellectual disability, mild hypocalcemia,

muscle fatigue, asplenia, and ichthyosis—provides a second example. The syndrome appar-

ently results from a single gene defect, consistent with mendelian dominant inheritance. Stro-

mal interaction molecule 1 (STIM1) protein mutation p.R304W is observed in patients but

not in their unaffected family members. The STIM1 protein is an endoplasmic reticulum (ER)

Ca2+ sensor. Data suggest that the STIM1 p.R304W mutation shifts the equilibrium toward an

altered conformation of the inhibitory helix, unlocking the inhibitory state of STIM1. The

mutation causes a gain of function increasing both resting Ca2+ levels and store-operated cal-

cium entry [101]. An additional example of a mutation shifting the ensemble relates to the Nie-

mann-Pick disease type C, a fatal neurodegenerative disease. Its major cause is mutations in

the Niemann-Pick disease, type C1 (NPC1) gene, which encodes a late endosomal polytopic

membrane protein required for intracellular cholesterol trafficking. One prevalent mutation

(I1061T) causes a folding defect, which results in failure of endosomal localization of the pro-

tein, leading to loss-of-function phenotype [102].

Structural ensemble can link genotype to phenotype through

phosphorylation

Hepatitis C virus (HCV) requires only 10 proteins for evading the immune system. Phosphory-

lation of the intrinsically disordered domain (IDD) of nonstructural protein 5A (NS5A), which

is important for replication, changes its dynamics and represents a strategy to expand the viral

proteome while limiting its coding capacity. The phosphorylation site is at Thr2332, near one of

its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A IDD

to a state that permitted detection of the polyproline motif by using 15N-, 13C-based multidi-

mensional NMR spectroscopy. Mutating Thr2332 to alanine in HCV genotype 1b reduced the

steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal pheno-

type could be rescued by changing Thr2332 to glutamic acid, a phosphomimetic substitution.
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The inability to produce pT2332-NS5A caused loss of integrity of the virus-induced membra-

nous web/replication organelle [103]. The protein kinase A (PKA)-phosphorylated form of

NS5A populates a conformation distinct from that of the unphosphorylated protein. The shifted

distribution of the conformational ensemble encoded by the viral genome links HCV genotype

to its phenotype, in this case via PTM of intrinsically disordered viral proteins.

The complexity of the genotype–Phenotype relationship

The association between genotype and phenotype is hard to understand. A structural view can

help to illuminate the genotype/phenotype landscape. We distinguish between traits expressed

by the protein itself (node traits) and by its interactions (edge traits) (Fig 2). Node traits are

monogenic and can be considered to lie at the “end” of the pathway. The pigments in the deer

mouse provide a good example. Edge traits can be monogenic or polygenic. Self-assembly of

sickle cell hemoglobin—a monogenic adaptive evolution trait—creates new edges resulting in

polymers. Cancer, a growth and proliferation disease, involves driver mutations in more than

one protein; thus, polygenic traits involve the cellular network (Fig 4). For example, mutations

in KRas, one of the most highly oncogenic proteins, are often coupled with mutations in Ras

effectors [104] or with parallel pathways (Hippo/Yap1) [105, 106]. Oncogenic Ras does not

rely on epidermal growth factor receptor (EGFR) signaling—that is, on an EGFR–Ras edge.

Raf mutations can work by relieving the need for Ras-driven Raf side-by-side dimerization,

which is required for activation [107, 108]. p53 mutations are similarly typically coupled with

additional driver mutations in other proteins [109, 110]. Node mutations, such as the pigment

examples above, affect only the node; edge mutations (e.g., the disease examples above), which

Fig 4. Cellular network. The network controls the transcriptional regulation for gene. Edge mutations can alter the

cellular network, expressing the end-product phenotype.

https://doi.org/10.1371/journal.pcbi.1006648.g004
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create or break interactions (Fig 2), alter the cellular network [111–116] (Fig 4). All traits—

node, edge, and type I (multiple molecular functions of a gene) and the more common type II

(multiple consequences of a single molecular function) pleiotropy [74]—can be understood in

terms of statistics of protein ensembles (Fig 3). The shift in the populations of the sickle cell

hemoglobin following the Glu! Val mutation favors polymerization, similar to the shift in

Alzheimer amyloid β (Aβ) mutants, there resulting in amyloid formation [117, 118]. Likewise,

edge formation/removal in oncogenic mutants arises from a redistribution of the conforma-

tional ensemble [119]. Because distinct mutations can shift the ensemble in different ways, the

resulting edges can precipitate altered types of cancer by the same protein, as in the case of

KRas driver mutations, which have different frequencies in distinct cancers [120]. This

description holds both for adaptive evolution and for disease. The usefulness of a structural

ensemble, node-versus-edge view can be seen in its drug targeting implications, as well as in

prediction of phenotypes from genotypes.

Prediction of phenotype from genotype

Phenotypes may involve multiple traits that emerge from multiple nodes and edges, making it

difficult to predict and relate specific nodes (proteins or genes) to specific traits [10, 13, 121];

however, networks of pairs of nodes and edges that drive phenotypes can be identified [122,

123]. To accomplish this goal, a network (or pathway)-based approach is adopted: instead of

directly connecting genotype with phenotype, genotype variants are assembled into gene net-

works and subnetworks that are statistically connected to the phenotype are identified [10].

Cell signaling and phenotypic expression take place across time and space and are on length

scales from nanometers to micrometers [124], which require consideration of how the genetic

variation would affect the function in the cell. Recently, this has led to a strategy based on

knowledge of cellular subsystems and their hierarchical organization as defined by the Gene

Ontology (GO) or inferred from published datasets [10]. Genotype data are formulated hierar-

chically in terms of the consequences of the genetic variation at multiple cellular scales. The

resulting “ontotype” is interpreted by logical rules. As an example, it was used to predict yeast

cell growth phenotype of two new screens of double gene knockouts affecting DNA repair or

nuclear lumen.

Observed conformational changes

To most clearly demonstrate our thesis, the examples should concomitantly (1) relate to signal-

ing (i.e., pathways with nodes and edges), (2) present a clear visual phenotype (like the fur col-

ors of deer mice or the aging of facial features), and (3) indicate a clear conformational change.

We were unable to find such examples. The examples above imply conformational change; but

they do not directly show it. Here, we present two examples indicating conformational change;

however, they relate to pathogens—thus, no signaling pathway—and the phenotype they con-

fer is disease. The first involves HIV-1 coreceptors (CCR5 and CXCR4) that are critical for

virus tropism and pathogenesis (Fig 5). During infection, a mutation from a negatively to a

positively charged residue at position 322 in the V3 loop of the HIV-1 envelope glycoprotein

gp120 can accomplish a phenotype switch of R5 virus to an X4 virus, and this correlates with

disease progression. The NMR structure of the V3 region of an R5 strain illustrates that posi-

tively charged and negatively charged residues at positions 304 and 322, respectively, oppose

each other in the β-hairpin structure, resulting in stabilizing the R5 conformation. By contrast,

in the X4 conformation, electrostatic repulsion between residues 304 and 322 induces a shift in

the N-terminal strand, pointing to electrostatic interactions as modulating the conformation

and thereby the phenotype switch [125]. The second example involves the classical
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phenomenon of yeast prion strain variants [126]. Infectious prion states—each of which has

distinct conformation—cause distinguishable phenotypes. Even though the spectrum of con-

formations is identical to that of the noninfectious state, the relative populations differ. Solu-

tion NMR, amide hydrogen/deuterium (H/D) exchange, and mutagenesis of two strain

conformations, termed Sc4 and Sc37, of the yeast Sup35 prion indicated an overlapping amy-

loid core composed of tightly packed β-sheets. This stable core is expanded in the Sc37 confor-

mation, explaining why this strain has higher fiber stability, which impedes chaperone-

mediated replication. The large conformational differences among prion strains provide a

structural basis for their physiological phenotypic behavior.

Methods to associate ensembles and function

The fact that a protein-coding gene encodes not a single conformation but an ensemble of con-

formations is indisputable, as is the fact that this must play a role in the making of the pheno-

type(s). However, the questions of how to capture the multiple states and relate them to

distinct functions are challenging. Until recently, X-ray crystallography could only capture a

single conformation. Recently, time-resolved crystallography [127–134], diffuse X-ray scatter-

ing [135], and cryo-electron microscopy [136–138] have been shown capable of capturing

Fig 5. Phenotype switch of HIV-1 entry. Schematic diagram representing the initial process of the HIV-1 entry that

led to fusion between the viral and the host cell membranes. The gp120 trimer undergoes a conformational change

upon binding to cellular receptor CD4, exposing the variable loop V3. The V3 loop binds to the coreceptor (CCR5 and

CXCR4), triggering the entry process. The wild-type V3 loop with positively and negatively charged residues at

positions 304 and 322, respectively, recognizes CCR5. A phonotype switch by a mutation from a negatively to a

positively charged residue at position 322 in the V3 loop alters coreceptor recognition to CXCR4. Modeled structures

are the crystal structures of gp120 (PDB code: 24BC), CCR5 (PDB code: 4MBS), and CXCR4 (PDB code: 3ODU) and

the NMR structure of V3 loop (PDB code: 2ESX). CCR5, C-C chemokine receptor type 5; CXCR4, C-X-C chemokine

receptor type 4; PDB, Protein Data Bank.

https://doi.org/10.1371/journal.pcbi.1006648.g005
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multiple conformations at high resolution along time. These can provide unparalleled insight

into catalytic steps in enzyme reactions and binding/dissociations of proteins with their

ligands, such as the dissociation of carbon monoxide from myoglobin. However, to date, high-

resolution experimental methods linking specific macromolecular states to distinct functions

are still challenging. To date, comparisons of available static crystal structures of a given pro-

tein complexed with different biological ligands relating to specific functions appear as the

method of choice to attain this aim. Computations coupled with lower experimental resolu-

tions have, however, made significant strides toward accomplishing this goal [139, 140], as

well as other combined approaches or alone [141–144]. The heterogeneity of molecules is vast,

the distinct mechanism of each molecule is often unknown, the sample size of each molecule is

often very small, and often too these possess different PTMs. A related way to gauge the con-

formational diversity can be via a large-scale analysis of structures of proteins belonging to the

same family [145]. The structural distribution observed in family members, which differ in

sequence, is another reflection of a shift in the ensemble, as is of the proteins in different

media [146]. Sequence divergence, media—water versus organic solvents—and molecular

crowding are all changes in the environments, which redistribute the conformational ensem-

ble. Conformational diversity of the native state modulates protein function [62, 147, 148] and

may be revealed constructing and analyzing networks of evolutionarily coupled residues [149].

Other methods include mapping the conformational landscape of a dynamic enzyme by multi-

temperature and X-ray free electron laser (XFEL) crystallography [150]; however, these meth-

ods are unable to relate specific conformers to distinct functions. Another recent approach

focused on proteins that switch folds via remodeling of secondary structure in response to a

few mutations (evolved fold switchers) or cellular stimuli (extant fold switchers), both alloste-

ric events. Putative extant fold switchers with only one solved conformation were identified by

incorrect secondary structure predictions and likely independent folding cooperativity, result-

ing in an estimate that 0.5%–4% of PDB proteins switch folds [41]. A method that identifies

functionally interacting mutations in both extant and reconstructed ancestral sequences mod-

els pairwise functional dependencies and higher-order interactions that enable evolution of

new protein functions. The results reveal that function-preserving mutation dependencies are

frequently from structural contacts, whereas gain-of-function mutation dependencies are

most commonly between residues distal in protein structure [39].

Conclusions: The significance of the conformational-level linkage

The “second molecular biology revolution” [2] calls for a new view of the genotype–phenotype

dogma. The genotype does not encode only one state; it encodes ensembles of states. It is the

ensembles that enable proteins to fulfill their functions; and thus, they are the ones that link

genotype to phenotype. This new view of the genotype–phenotype association is not mere

semantics. Its significance lies in deeper understanding of the connection of the disease pheno-

type with the genetic change and in providing the structural basis for disease-treating decisions

[77]. Healthcare decisions are largely based on associating an observed disease phenotype with

the genetic landscape, which is obtained through statistical analyses [151]. The conformational

ensemble linkage can provide the mechanism of the mutation, point to cooperative “latent

driver” mutations, and help in making predictions in precision medicine. Latent driver muta-

tions behave as passengers; however, coupled with other emerging mutations, they may drive

disease or phenotypic change [98]. Latent drivers are somatic mutations, emerging at any time

during the individual life span. Eventually, the genetics of diseases is mediated by ensembles.

Classically, phenotype is what is observed; genotype is the genetic makeup serving as blue-

print for protein expression and shape. Recently, the polycistronic nature of human genes has
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also been shown to be critical to understanding the genotype–phenotype relationship, and the

addition of alternative open reading frames in databases argued to help relate phenotypes and

genotypes [152]. However, today we also understand that a genotype is expressed not by a sin-

gle protein shape but by a large number of shapes, some of which defining altered phenotypes.

Key factors include the conformational heterogeneity, the populations, and the environment.

The old view of the genotype–phenotype association is unable to explain how different combi-

nations of mutations in the same gene lead to altered phenotypic changes, as in the case of the

deer mouse above. Current concepts explain that all conformations preexist, and an altered

pattern of mutations shifts the equilibrium of the conformational ensemble, which now dis-

plays changed characteristics. We believe that it is time to broadly link the age-old phenotype/

genotype view. We now know: their association is mediated by the statistical distribution of

the ensemble of states.

So why is an ensemble view of a genotype–phenotype linkage important? Why update our

perspective when current approaches have been working? First, it allows understanding of the

physicochemical basis of observations. Second, the advent of the so-called precision medicine,

in which treatments are envisioned to be tailored to a person’s genetic profile, argues for a

need to go beyond the multifactorial statistics. The free energy landscape of a protein can

explain, and with time we hope quantify and predict [119, 153–155], how specific mutational

combinations in an individual would alter the interactions of the protein and thus its cellular

network and the prescribed drug regime. Conformational diversity of the native state can

modulate protein function, with different ligands shifting the conformational equilibrium

through their binding to highest-affinity conformers [147]. Conformational ensembles affect

emerging functions and bear on enzyme and antibody promiscuity, signaling, protein–protein

recognition, and preponderance of disease [156]. It is becoming increasingly clear that statis-

tics based on combinations of multiple variables may not be enough to achieve this aim.

Finally, third, creativity and innovation require in-depth understanding.
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