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We develop a normative statistical approach to exploratory behavior called information
foraging. Information foraging highlights the specific processes that contribute to active,
rather than passive, exploration and learning. We hypothesize that the hippocampus plays
a critical role in active exploration through directed information foraging by supporting a set
of processes that allow an individual to determine where to sample. By examining these
processes, we show how information directed information foraging provides a formal
theoretical explanation for the common hippocampal substrates of constructive memory,
vicarious trial and error behavior, schema-based facilitation of memory performance, and
memory consolidation.
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1. INTRODUCTION
Humans and non-human animals are naturally curious and
spontaneously explore (Tolman, 1954; Berlyne et al., 1966;
Loewenstein, 1994). A sophisticated set of inference and mem-
ory processes inform exploratory behaviors and allow an animal
to identify when an observation is “novel” or “surprising” and,
as a consequence, warrants exploration (Baillargeon et al., 1985;
Ennaceur and Delacour, 1988; Eacott and Norman, 2004; Santos,
2004; Spelke and Kinzler, 2007). More formally, exploratory
behavior can be understood as a statistical sampling procedure
through which memory representations and inference processes
are altered such that past observations are represented more
efficiently and future observations become more predictable.
Conceptualizing exploration as a statistical sampling procedure
leads to the intuitive result that as past observations can be used
to better predict future observations, relatively little new infor-
mation is derived from exploration and exploratory behavior
decays.

We identify and discuss two fundamental forms of exploratory
activity. The first set of exploratory activities we discuss are exper-
imentally observable behavioral dynamics. In these cases, explo-
ration refers to a behavioral sampling procedure that an animal
uses to investigate its environment. The second set of exploratory
activities we discuss are representational dynamics that allow an
animal to explore previous experience or the inferences avail-
able from previous experience. In these cases, exploration refers
to a memory-based sampling procedure that an animal uses to
investigate a single representation or switch between different
representations.

Recent experimental findings suggest that each of these
exploratory activities is dependent on the hippocampus and
other areas in the medial temporal lobe. The hippocampus
appears to support a set of memory processes that allows animals

to intelligently and efficiently sample their environments and
memory. We call this directed information foraging. Directed
information foraging has two fundamental components—a
process for predicting observations and a process for computing
how much new information would be derived from a given
observation. The first process is functionally similar to mental
imagery (Hassabis et al., 2007b; Schacter and Addis, 2007)
while the second process process is functionally similar to the
computations that contribute to memory consolidation (Squire
and Alvarez, 1995; Nadel and Moscovitch, 1997; Tse et al., 2007).
We hypothesize these processes represent fundamental functions
of the hippocampus. In the following sections, we review recent
findings from the rodent and place cell literatures that show
animals engage in directed information foraging and maintain
dynamic neural representations in the hippocampus that support
exploration through a generative memory process similar to
mental imagery.

2. RODENT EXPLORATORY BEHAVIOR
Exploratory behaviors have been widely used to study the
inferences supported by spatial (Morris et al., 1982; Eacott
and Norman, 2004; Day et al., 2003) and non-spatial mem-
ory (Ennaceur and Delacour, 1988; Fortin et al., 2002) in
rodents. Exploration is informed by specific stimulus information
(what), spatial location (where), contextual information (which),
observational recency and time of day (when) (Ennaceur and
Delacour, 1988; Dix and Aggleton, 1999; Eacott and Norman,
2004; Zhou and Crystal, 2009). Within this literature, experi-
mental paradigms that specifically focus on spontaneously ini-
tiated exploratory behavior provide a particularly intriguing
approach to understanding exploration and its neural substrates.
In the simplest version of the spontaneous exploration task (see
Figure 1—what task), an animal is familiarized with two versions
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FIGURE 1 | Exploration-based recognition tasks. Simple object recognition
can be assessed using what tasks in which an animal is familiarized with an
object during an initial training session. Recognition memory is then assessed
by measuring the difference in exploratory behavior associated with a novel
object (compared to a familiar control object) during the probe session.
Associations between objects and spatial locations can be assessed using
what/where tasks in which an animal is familiarized with a number of identical
objects distributed throughout an arena during an initial training session.
Recognition memory for the object-place associations is then assessed by
measuring the difference in exploratory behavior associated with the object
in a novel position (compared to an object in a familiar control position) during

the probe session. More complex associations can be assessed using
what/where/which tasks in which an animal is familiarized with two different
contexts in which objects are distributed throughout the environment. These
familiarization periods represent the training period. Recognition memory for
these what/where/which associations is then assessed by measuring the
difference in exploratory behavior associated with an out-of-place object in a
particular context. The E-shaped maze version of the what/where/which task
uses a series of pre-training sessions for acquisition of the what/where/when
association and then a habituation session with one of the objects (object A
in this example). Rats preferentially select the maze-arm with the
non-habituated object (object B in the right arm in this example).

of a single object during a training session. After a delay, the ani-
mal is returned to an arena for a probe trial in which one of the
two original objects is replaced with a novel object. Recognition
memory can be measured by comparing the time spent exploring
the novel object relative to the time spent exploring a previ-
ously presented object (Ennaceur and Delacour, 1988). Variations
on this basic paradigm show that rodents can recognize an
object/location pairs (see Figure 1—what/where task; Dix and
Aggleton, 1999) and the position of an object within a particu-
lar context (see Figure 1—what/where/which task; Mumby et al.,
2002; Eacott and Norman, 2004). Lesion and inactivation stud-
ies suggest that spontaneous exploratory behavior in these tasks
depends on the medial temporal lobe. Spontaneous exploration

on the what task requires perirhinal cortex (Bussey et al., 1999;
Warburton and Aggleton, 1999; Winters et al., 2004; Winters
and Bussey, 2005 but see Ainge et al., 2006), while spontaneous
exploration on more complex versions of the task requires the
hippocampus (Mumby et al., 2002; Eacott and Norman, 2004).

More recent work using the spontaneous object exploration
paradigm has begun to examine the specific memory processes
that support exploration. The spontaneous recognition tasks
described above cannot distinguish between the contributions of
familiarity or recollection to exploratory behavior. Eacott et al.
(2005) developed a modified version of the what/where/which task
to differentiate between the contributions of these memory pro-
cesses. In the E-maze version of the what/where/which task, rats
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are presented with a spatial choice between a recently encoun-
tered object and a less recently encountered object; notably,
neither object is observable from choice point (see Figure 1—
E-version of the what/where/which task). Much like perfor-
mance on the standard object recognition tasks, rats displayed
a novelty preference and preferentially explored the less recently
encountered object (Eacott et al., 2005). Preference for the less
recently encountered object is impair with fornix lesions but
did not impair performance when the object were made visi-
ble at the choice point (Easton et al., 2009). Eacott and Easton
argue that unlike the standard what/where/which task, preferential
exploratory behavior on the E-version of the what/where/which
task cannot be the product of familiarity processes because the
objects were not visible from the choice point. Instead, they
argue that preferential exploratory behavior on the E-version of
the what/where/which task must be the product of recollection
processes.

Eacott and Easton’s work highlights a fundamental differ-
ence between familiarity and recollection as sampling processes.
Within the spontaneous exploration task, familiarity is a passive
sampling process in which an animal simply decides how long
to explore an object. Determining how long to explore requires a
comparison of the actual observation and the expected obser-
vation. In contrast, recollection is an active sampling process in
which an animal must decide where to explore. Selecting where
to explore requires constructing expected observations that would
arise from a specific sampling behavior, determining how infor-
mative these observations might be, and finally selecting a specific
sampling behavior. The differences between familiarity-based and
recollection-based sampling behavior can be further developed by
a formal treatment of sampling behavior as information foraging.

3. EXPLORATION AS INFORMATION FORAGING:
INFORMATION GAIN AND EXPECTED
SAMPLING INFORMATION

In statistical terms, exploratory behavior can be understood as a
sampling procedure in which an agent acquires new information.
Efficient exploration is equivalent to maximizing the informa-
tion gained for each sample (Burns and Brock, 2005). Sampling
procedures that obtain redundant information are inefficient.
Efficient exploration should therefore obtain samples from infor-
mation rich areas at high densities and information sparse areas at
much lower densities. However, in order to know where to sam-
ple, the animal must be able to predict where these information
rich regions lie. Theoretically, the expected sampling information
across a sample space can be computed using the Kullback–
Leibler (KL) divergence of a Bayesian prediction. The expected
sampling information can then be used to identify the most infor-
mative sampling region within a sampling space. In simple terms,
maximizing information gain means identifying where the most
informative samples can be found.

To illustrate, let us consider a toy example in which a rat
searches for a reward 1 source along a wall (see Figure 2A). Let
us suppose that through previous experience, the rat initially has

1The example can be extended to any type of observation and to any sampling
space (e.g., a physical set of locations, a set of actions, or a memory space).
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FIGURE 2 | Using expected sampling information to find an object in a

one-dimensional space. (A) The rat searches along a one-dimensional
space (e.g., a wall) for an object. (B) The prior probabilities for the left,
middle, and right locations. (C) The known observation functions for each of
the three competing hypotheses for the location of the object. (D) The
posterior distribution for each hypothesis given an observation of the object
(hit) at a given location. (E) The posterior distribution for each hypothesis
given a failure to observe the object (miss) at a given location. (F) The
expected sample information for a hit (solid gray ), a miss (broken gray), and
the sum (black). The regions with the highest expected sample information
across x are expected to yield the most informative samples. Here the prior
probabilities for each hypothesis were p(h1) = 0.3, p(h2) = 0.2, and
p(h3) = 0.5.

three competing hypotheses regarding the location of the reward:
h1: the reward source is on the left; h2: the reward is in the center;
and h3: the reward is on the right. The rat has prior proba-
bilities for each of these hypotheses p(hi|I) where hi represents
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the location of the reward reward source (left/center/right) and
I denotes previous experience. In order to determine where it
should search for the reward, the rat must maintain an observa-
tion function for each hypothesized reward location p(y|h, I) that
describes probability of observing reward y given the assumption
that particular hypothesis h is true and previous experience I (see
Figure 2).

Given the observation functions and the priors for each
hypothesis, the rat can use Bayes’ rule to compute how a given
observation (reward present/absent) at any location, x, along the
wall would affect the probability of each potential reward source
(left/center/right)2.

p(h|y, I) = p(y|h, I) p(h|I)∑
h′ p(y|h′, I) p(h′|I) (1)

The posterior distributions for each possible observation out-
come are shown in Figure 2. If the observation comes from a
particularly informative part of the sampling space, it will cause
the hypothetical posterior distribution to diverge from the prior
distribution. The divergence between the prior and hypothetical
posterior distributions can be used to compute the informa-
tion gain for each potential observation y across the sampling
space.

Infogain(y) =
∑

h

p(h|y, I) log
p(h|y, I)

p(h|I) (2)

The expected information gain for each potential observation can
be computed across the sampling space by weighting the infor-
mation gain from each possible observation by the probability
of the observation. If the expected information gain is computed
for each potential sampling location x across a sampling space,
the expected sampling information is a function of the sample
location.

KLsample info(x) = Ey

[∑
h

p(h|x, I) log

(
p(h|x, y, I)

p(h|x, I)

)]
(3)

As a result, some sampling locations are expected to provide
much richer information than others (see Figure 2F). In our
toy example, we expect that more information can be gained
from sampling at the center of one of reward source locations
(left/center/right) than between them.

4. INFORMATION FORAGING AND MEMORY FUNCTION
The computations outlined above provide a set of formal dis-
tinctions between the processes that contribute to exploration
behavior. The sample information (Equation 2) computes the
information gain for a single observation. The sample infor-
mation allows an animal to determine the extent to which a
sampling location will continue to yield informative observations.
In contrast, the expected sampling information computation

2Technically, the sample space and the sampling procedure should be included
in this calculation. That is, likelihood and prior should be conditioned on the
sample space and sampling procedure. We neglect these for simplicity.

(Equation 3) predicts where highly informative observations are
expected. Computing the expected sample information allows
an animal to direct its exploratory behavior toward information
rich areas and sample efficiently. These computations support
very different aspects of exploration behavior—sample infor-
mation supports undirected information foraging and expected
sampling information supports directed information foraging.
The following discussion describes the specific behavioral impli-
cations of sample information computations and expected sam-
ple information computations with an emphasis on the memory
and decision processes associated with each computation.

4.1. INFORMATION GAIN, UNDIRECTED FORAGING, AND
FAMILIARITY

Sample information computes the degree of consistency between
an observation and expectations. In our toy example, a “reward
absent” observation is more probable than a “reward present”
observation (see Figure 2). As a result, a “reward absent” obser-
vation provides less informative than a “reward present” obser-
vation because it matches expectations (see the dashed gray line
panel F). Sample information (information gain) is an informa-
tion theoretic variant of a prediction error signal that can be used
as a learning signal (by gating encoding Hasselmo, 1993). If the
sample information (information gain) for a given observation is
large, the observation is inconsistent with expectations and learn-
ing processes should be initiated; if the information gain for a
given observation is small, the observation is generally familiar
and minimal learning should occur.

An information gain-based learning signal functionally acts as
a familiarity index Yonelinas (2001). Used as a familiarity index, it
can be conditioned on variety of dimensions and provides a sim-
ple and flexible method for computing familiarity across a variety
of representational substrates. For instance an observation can be
judged as familiar or not familiar for object identity (what), loca-
tion (where), and object identity and location in a given context
(what/where/when), even time of day. Familiar observations sug-
gest that little information can be gained from further sampling
while unfamiliar observations suggest that more information can
be gained from further sampling. Sampling unfamiliar observa-
tions repeatedly provides the basis for reshape expectations such
that sample information decreases. Experimental observations
from spontaneous object exploration tasks suggest this famil-
iarization process occurs across the first two or three minutes
of standard object recognition tasks (Dix and Aggleton, 1999;
Mumby et al., 2002).

Although an information foraging treatment of recognition
memory provides a standard set of predictions, it provides sev-
eral important computational insights. First, sample informa-
tion computations requires only an observation and expectations
associated with the current observation. As a result, sample infor-
mation operates like a filter for current observations and yields
a scalar quantity indicating the information gain for the current
sample observation. The properties of the filter are dictated by
the statistics of previous experience. Experience-based filtering
of current observations is consistent with much research sensory
processing including mismatch, novelty, and recency responses
observed in temporal cortex and the hippocampus (O’Keefe and
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Nadel, 1978; Li et al., 1993; Rolls et al., 1993; Zhu et al., 1995;
Xiang and Brown, 1998; Brown and Aggleton, 2001; Kumaran and
Maguire, 2006) and ROC analysis of familiarity within recogni-
tion behaviors (Yonelinas, 2001; Fortin et al., 2004).

Second, the behavioral decision process associated with sam-
ple information-based foraging behavior is essentially a go/no-
go choice. The animal simply determines whether to continue
sampling the same stimulus/location/etc. The complexity of the
representational substrate is irrelevant to the decision (e.g., what
versus what/where versus what/where/which). Exploratory behav-
ior based on this decision process and driven by sampling infor-
mation is undirected: it utilizes only directly observable informa-
tion and requires no planning. Undirected foraging is driven by
a familiarization process in which an animal needs only to pause
and attend to high information samples until the sample source
is sufficiently familiar to move on to the next sample source.

Given that undirected foraging behavior is supported by
sample information computations, a variety of signals should
be present within the brain areas that support undirected
exploratory behavior. Simple binary decisions such as go/no-go
choices can be modeled using integration-to-threshold mod-
els (or diffusion-to-bound models; Gold and Shadlen, 2002;
Mazurek et al., 2003). Within these models, evidence in support
of a particular action accumulates across time until a threshold
for action is reached and a specific action is initiated. In undi-
rected information foraging, the two actions are go—sampling
from another location or no-go—continue sampling from the same
location. Neural activity associated with integration-to-threshold
dynamics has been observed in the lateral intraparietal area and
can be used to predict choice behavior and response times (Gold
and Shadlen, 2000, 2003; Shadlen and Newsome, 2001; Yang and
Shadlen, 2007). Given that simple undirected object recognition
is dependent on the perirhinal cortex (Bussey et al., 1999; Winters
et al., 2004), we predict that that neurons within perirhinal cortex
will display similar integration-to-threshold dynamics that pre-
dict go/no-go behavior in simple object recognition tasks. More
specifically, the decision process embedded within undirected for-
aging predicts that a subpopulation of perirhinal neurons will
display activity that accumulates (or dissipates) to a standard
threshold; once neural activity reaches threshold, the animal will
discontinue sampling the current stimulus and begin exploring
other aspects of its environment.

4.2. EXPECTED SAMPLING INFORMATION, DIRECTED
FORAGING, AND RECOLLECTION

Directed foraging requires an animal to compute the expected
sampling information across the sampling space. This computa-
tion allows an animal to construct an efficient sampling strategy
in order to sample from the most informative regions of a sam-
pling space and avoid less informative regions. As a result, the
behavioral decision processes associated with directed informa-
tion foraging is a where to sample choice.

Standard spontaneous exploration tasks conflate directed
information foraging with undirected information foraging. An
animal might spend more time exploring a novel object because
it just stumbled across the object while randomly wandering
through the environment—undirected information foraging. Or

it might spend more time exploring a novel object because the
animal identified the novel object as the most information rich
part of the environment and chose to sample it over all other
available options—directed information foraging. In order to
disambiguate the contributions of undirected and directed infor-
mation foraging, an experiment must meet two criteria. First,
it must force the animal to choose between sampling options
with differential expected sampling information. Second, it must
prevent apparent exploration that is the product of randomly
stumbling into the highly informative region of the sampling
space3.

The E-maze version of the what/where/which task meets each
of the experimental criteria for assessing directed information
foraging. The E-maze version of the what/where/which task has
three phases (see Figure 1 above). In the first phase, a rat receives
a series of training sessions in which it learns the location of two
objects within the E-maze. The training sessions are a critical
component of the task because they allow the animal to form
expectations about the observations available within each maze
arm. In the second phase, the rat is given a habituation session
with one of the two objects. This devalues the informativeness of
the object and makes it “less novel.” In the third phase, the rat is
presented with a choice between maze arms leading toward the
“less novel” and the “more novel” object. Rats typically display a
novelty preference and choose the path toward the “more novel”,
non-habituated object. The effect persists even when the objects
are not visible from the choice point. Because the objects are
not visible from the choice point, the animals cannot use undi-
rected information foraging and must make their choice accord-
ing to the expected sampling information associated with each
option.

The experimental observation that animals prefer to attend
to or search out unexpected stimuli, even when these stimuli
may not be directly observable, can be explained by directed
information foraging. In Figure 3 we return to our toy exam-
ple of a rat searching for a reward source along a wall. The
observation functions have been modified to reflect two highly
probable reward source locations and a third highly improbable
source location (see Figure 3B). The expected sampling infor-
mation for each location is shown in Figure 3C. Because the
expected sampling information is dependent on the priors, we
can plot the expected sampling information at each feeder loca-
tion (left/right) as a function of the prior probability for a given
feeder location (see Figure 3D). Predictably, the expected sam-
pling information decreases as the animal becomes more certain
of the active feeder location (e.g., the prior probability for a
given active feeder p(h1) → 1). However, an interesting aspect
of the expected sampling information computation is that more
information is expected from sampling at the feeder location
that has the lower prior probability. This suggests that directed
information foraging naturally produces a novelty preference.

Eacott and Easton contend that because an animal must make
its choice on the E-maze version of the what/where/which task
according to an expected observation, the animal must generate

3This can be accomplished by preventing the animal from obtaining sample
prior to making its choice.
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FIGURE 3 | Novelty preferences as information foraging. (A) The prior
probabilities for the left, middle, and right locations. (B) The known
observation functions for each of the three competing hypotheses for the
location of the object. (C) The expected information gain as calculated by
the KL divergence for a hit (solid gray ), a miss (broken gray), and the sum
(black). (D) The expected information gain (bits) for sampling at the left
location (site 1) and the right location (site 3) as a function of the prior
probability associated with the left location (site 1). See panel C for left and
right locations. Note that expected information gain is higher at the site
opposite to the higher prior probability.

this observation from memory (Eacott et al., 2005). Although
they argue this generative process entails recollection (Eacott
et al., 2005; Easton and Eacott, 2008), the animal could simply
access a set of stimuli associations rather than engaging in a true
recollective process. The expected sampling information compu-
tation similarly requires generating the likelihood of potential
observations across the sampling space—a computation that
again can either be performed by generating the outcome on the
spot or retrieving the probability of outcomes from a cache. Two
experimental observations suggest that rat indeed generate obser-
vations according to a true recollective process. First, lesions of
the hippocampus compromise novelty preference on the E-maze
version of the what/where/which task (Eacott et al., 2005; Easton

and Eacott, 2010). Second, ROC analysis of recognition memory
shows that rats with hippocampal lesions display behavior that
is consistent with a loss of recollective memory processes (Fortin
et al., 2004; Eichenbaum et al., 2007). The deficits caused by hip-
pocampal lesions in rats are also consistent with human patients
with compromised episodic memory and suggest that recollective
memory retrieval is governed by a binary successful generation of
failed generation of an observation (Yonelinas, 2001).

4.2.1. The evolution of directed information foraging
The development of directed information foraging is the prod-
uct of two distinct learning processes. The first learning process
is associated with the development of observation functions.
Observation functions indicate the conditional probability of
making an observation (reward present/absent) at any sampling
location x given a particular source location (the active feeder
positioned on the left/center/right). The second learning process
is a discriminative learning process associated with the differen-
tial development of priors associated with each source location
(left/center/right).

In Figure 4, we show how directed information foraging devel-
ops as a function of evolving observation functions and dif-
ferential development of priors. We model the development of
observation functions as gaussian distributions contaminated by
a uniform noise function (see Figure 2). As learning occurs, the
signal-to-noise ratio—the ratio of the amplitude of the gaussian
function to the amplitude of the uniform noise function—for
each of the observation functions increases (Figure 4A). The
development of the observation functions provides the basis for a
transition from random sampling behavior to directed sampling
behavior that is focused on the three source locations. Figure 4C
shows the differential development of expected sampling infor-
mation across the sampling space even when the priors associated
with each of the three source locations are uniformly distributed.
Differential development of the priors associated with each of
the three source locations leads to differential expected sampling
information at each of the source locations. If evidence accumu-
lates in support of a single “winning” source location, expected
sampling information decreases across all sampling locations and
directed information foraging ceases4. The evolution of observa-
tion function and priors leads to a specific sequence of foraging
behavior during learning: (1) initial random foraging, (2) devel-
oping directed foraging, (3) cessation of directed foraging and a
transition to exploiting reward-related information (if reward is
present).

An example of this kind of increasingly specific foraging
behavior has been studied by Morris and colleagues using the
paired-associated task (Day et al., 2003; Tse et al., 2007; Bethus
et al., 2010). In the paired-associate task, rats learn that a spe-
cific flavor indicates the location of reward among a matrix of
food locations. The flavor/location association is called a paired
associate and different flavors indicate reward at different loca-
tions. Rats learn the initial set of paired-associates slowly over
a series of daily training sessions spread across several weeks.

4Note that if reward is embedded within the task, the animal may continue to
exploit that knowledge.
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FIGURE 4 | Development of information foraging with experience. (A)

Developing signal-to-noise ratio of the observation function as a function of
time. (B) Developing prior probabilities as a function of time. (C) Expected
information gain as a function of time (x-axis) and sample position (y-axis).
Note the development of higher expected information coincides with the
development of the signal-to-noise ratio of the observation functions. The
uniform expected information gain suggests an initial period of non-directed
or random foraging behavior. The non-uniform expected information gain

allows the animal to transition into a period of directed foraging across the
three feeder sites. Although the development of differential expected
information gain is the result of the prior probabilities associated with each
site, increasing the prior probability of a single site to near certainty produces
decreased expected information gain across the entire sampling space. This
produces a cessation of information foraging. A contingency switch produces
a change in the prior probabilities (in this case between the blue and the red
feeders) and leads to another bout of information foraging.

However, acquisition of new paired-associates following initial
learning requires as little as a single paired-associate presentation
(Tse et al., 2007). Morris and colleagues explain single trial learn-
ing in terms of developing task schemas that facilitate learning
and subsequent behavioral performance by focusing exploratory
behavior.

This interpretation provided by Tse et al. (2007) suggests that
performance on the paired-associate task is governed by two dis-
tinct learning processes: schema learning in which the animal

learns that flavors predict specific reward locations and discrimi-
native associative learning in which the animal learns which flavor
is associated with which reward location. These learning pro-
cesses directly correspond to the two learning processes embed-
ded within directed information foraging. In our toy example,
schemas correspond to observation functions and discrimina-
tive associative learning corresponds to the beliefs mediated by
the prior and the posterior distributions. Just as the development
schemas facilitate learning by focus search behavior and learning
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more from a single observation, the development of observation
functions directing search behavior toward highly informative
observations and increase the impact of these observations.

4.2.2. Vicarious trial and error
The temporal development of directed information foraging is
reminiscent of the development of vicarious trial and error (VTE)
behavior on discrimination tasks described by Muenzinger (1938)
and Tolman (1939). VTE behavior occurs when an animal pauses
at a choice point and orients toward different possible spatial
options before making a decision. Tolman (1939, 1948) argued
that an animal vicariously samples the outcome of each option
during VTE behavior. VTE is then a form if directed information
foraging in which an animal samples memory rather than a physi-
cal space and VTE behavior is the observable residual of sampling
from a memory.

Tolman (1939, 1948) described the development of VTE
behavior in three phases. The first phase of behavior on tasks
in which VTE behavior occurs is simple trial and error behav-
ior characterized by random sampling of different choice options.
VTE behavior is absent during this initial phase. The second
phase of behavior is punctuated by high levels of VTE behav-
ior at choice points and increasing performance on memory or
discrimination tasks. During the third phase of behavior, mem-
ory or discrimination performance increases to ceiling and VTE
behavior ceases.

VTE behavior occurs on a variety of choice tasks and
can be induced by altering task contingencies (Tolman, 1939;
Blumenthal et al., 2011). On tasks in which VTE behavior is
induced through contingency changes, VTE behavior occurs at
specific, highly informative task locations (Blumenthal et al.,
2011) including the the choice point on the E-version of the
what/where/when task (Alexander Easton, pers. comm.).

Directed information foraging can be used to simulate and
predict VTE behavior that is induced by a change in task con-
tingencies. In our toy example, we model a change in task con-
tingency by modifying the prior beliefs regarding which feeder is
active. If the priors associated with a food source at on the left and
right switch (as indicated by the red and blue curves on the right
side of Figure 4A), reflecting a contingency reversal, the expected
sampling information increases and information foraging begins
again. Learning higher order task contingencies allows foraging to
be more precisely directed to highly informative sampling areas.
We believe that VTE behavior reflects the use of learned higher
order task contingencies to simulate or imagine the outcomes of
different behavioral sampling. If true, VTE dependents on at least
a rudimentary form of mental imagery.

And like recollection-based performance on the E-version of
the what/where/when task, VTE behavior is dependent on the hip-
pocampus (Hu and Amsel, 1995) and drives increased metabolic
activity in the hippocampus (Hu et al., 2006). Moreover, the
development of task schemas that support increasingly specific
directed foraging are also hippocampus dependent (Tse et al.,
2007). These converging experimental results highlight the var-
ious roles of the hippocampus in directed information foraging.

From its initial treatment by Tolman (1939), VTE has encoun-
tered a variety of conceptual and experimental challenges.

Guthrie (1952), for instance, critiqued Tolman’s description of
the mechanisms that support VTE behavior, suggesting that his
theory left rats “buried in thought” when confronted with a
choice. This conceptual criticism continues to plague theoreti-
cal treatments of VTE. Experimentally, VTE presents a variety of
challenges associated with defining orienting behavior at choice
points and its frequently transient presence in most tasks. For
these reasons, VTE has remained sparsely studied over the past
seventy years.

Information foraging provides a conceptual framework for
both developing a theory of VTE and future experimental inves-
tigations of VTE behavior. The dynamics of information foraging
suggest a novel approach to analysis of the transient and often
subtle sampling behavior observed in VTE behavior. The com-
putational requirements of information foraging—recollection-
like processes associated with generation of potential obser-
vations that are shaped by task schema—and its connection
to reinforcement learning algorithms such as POMDP address
Guthrie’s long-standing conceptual critique. Converging evidence
from hippocampal lesion studies on VTE behavior (Hu and
Amsel, 1995), recollection (Easton et al., 2009), and schema
development (Tse et al., 2007) provide an experimental path
toward understanding the neural substrates of VTE behavior
as well.

4.3. CONCLUSIONS: BEHAVIORAL EXPLORATION
The previous discussion has shown how information foraging
can be used to differentiate two major classes of exploratory
behavior. Undirected information foraging is characterized by a
go/no-go decision process based on the sample information (e.g.,
familiarity) and depends on extra-hippocampal areas, principally
the perirhinal cortex. In contrast, directed information forag-
ing is characterized by a where to go decision process based on
expected sampling information and depends on the hippocam-
pus. While the where to go decision process is most frequently a
spatial question (O’Keefe and Nadel, 1978), the key contribution
of the hippocampus is generating potential observations using a
constructive recollective memory process. This generative process
utilizes hippocampus-dependent schemas in order to more pre-
cisely direct foraging behavior to highly informative samples (Tse
et al., 2007).

Information foraging provides a formal approach that shows
how hippocampal-dependent schemas and recollective processes
interact. It provides a clear, quantitative approach that allows
precise analysis of exploratory behavior, both in terms of its distri-
bution of spatial sampling and in terms of its temporal evolution.
Finally, it provides, for the first time, a comprehensive theory of
vicarious trial and error behavior.

5. EXPLORING MEMORY
We now discuss the representational dynamics that allow an
animal to explore memory. Memory-based information for-
aging allows an animal to obtain samples from its memory
rather than its environment. Memory-based exploratory activ-
ity, much like behavioral exploratory activity, can be split into
undirected and directed information foraging. Animals can
stumble across informative memories—undirected foraging; or
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they can actively search for them—directed foraging. Directed
information foraging applied to memory-based information for-
aging provides a formal approach to understanding how an ani-
mal locates particularly useful and informative memories within
its memory (even when these aren’t “strong” memories). The
following discussion focuses on memory-based directed informa-
tion foraging.

5.1. HIPPOCAMPAL REPRESENTATIONAL DYNAMICS
We identify two major dynamics observed in hippocampal neu-
ral activity that support directed information foraging. The
first hippocampal dynamic we discuss is hippocampal sweeps
(Johnson and Redish, 2007; Gupta, 2011). Hippocampal sweep
dynamics allow an animal to sample different spatial locations
from memory. This VTE-like dynamic supports the “vicari-
ous” sampling process embedded within vicarious trial and
error behavior. The second hippocampal dynamic we dis-
cuss is hippocampal map-switching (Jackson and Redish, 2007;
Fenton et al., 2010; Kelemen and Fenton, 2010). The map
switching dynamic allow an animal to re-represent its cur-
rent task with respect to different reference points. Each of
these representational dynamics provide the animal with an
opportunity to obtain maximally informative information from
memory.

5.1.1. Hippocampal sweeps
Directed information foraging predicts that animals will sam-
ple from memory as VTE behavior occurs. We expect that VTE

behavior and the representational dynamics that support VTE
occur at points within a task where simple familiarity fails to
provide adequate information and further retrieval is required to
make an informed choice. This predicts the locations when sweep
dynamics should occur within a task. We further expect that the
information retrieved during VTE to reflect highly informative
aspects of the task that will, in turn, contribute the animal’s choice
behavior. This predicts what or where sweep dynamics should
represent within a particular task.

Johnson and Redish (2007) trained rats on a sequential spa-
tial decision task in which VTE is observed (Johnson and Redish,
2007; Blumenthal et al., 2011). Much like the findings from
previous studies, hippocampal place cells usually display spik-
ing activity as the animal runs through each cell’s place field on
this task. Such “within field” activity is consistent with the notion
that the hippocampus represents the animal’s current position as
it moves through the maze. However, place cells also displayed
“out of field” spiking activity at the high cost choice point on
the maze. Johnson and Redish (2007) found that “out of field”
spiking at the choice point was coordinated across the ensem-
ble; decoding the animal’s position during epochs of high “out of
field” spiking at the choice point predicted coherent position esti-
mates that dynamically moved from the animal’s current position
at the choice point toward feeder locations (see Figure 5A). These
hippocampal dynamics are consistent with memory retrieval
processes embedded within VTE and the dynamics predicted
by directed information foraging: they occur when the animal
encounters a high cost choice and insufficient information is

time
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Ensemble 2 : Map 2

Ensemble  1

Ensemble 1
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time
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FIGURE 5 | Hippocampal dynamics associated with directed information

foraging. (A) VTE-like dynamics in the hippocampus are non-local
representations that occur at choice points. While the animal pauses at the
choice point (the bottom-center of the box), spatial representations in the
hippocampus move ahead of the animal, following potential trajectories
toward the different reward source locations. The spiking activity associated

with these place cell dynamics is shown at right. (B) Map-switching is a
representational dynamic in which place cell ensembles alternate between
two maps. An initial map of place fields (left, top) can be divided into different
maps (right) by identifying two or more sets of temporally non-overlapping
ensemble spiking activity (left, bottom). These maps often reflect different
task components.
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available from familiar environmental cues and they represent
positions ahead of the animal that correspond to future potential
trajectories.

5.1.2. Map switching
Directed information foraging predicts that animals will dynami-
cally shift between competing task representations and will utilize
a task representation that best predicts environmental observa-
tions. In the two-frame avoidance task used by Kelemen and
Fenton (2010) rats must maintain representations of their current
position two different reference frames in order to avoid a shock.
One reference frame is based on stable room cues and predicts the
location of an otherwise invisible shock zone. The second refer-
ence frame is based on local cues embedded within the navigation
arena and predicts the location of another invisible shock zone.
Avoidance behavior on this task is dependent on the hippocam-
pus (Cimadevilla et al., 2001; Wesierska et al., 2005; Kelemen
and Fenton, 2010). Place cell activity within the two-frame avoid
task reflects both the room and arena reference frames: one set
of place cells forms a stable map within room frame and a sec-
ond set of place cells forms a stable map within the arena frame
(see Figure 5B right). Place cell activity within each maps main-
tain an estimate of the animal’s current location within that map.
However, ensemble activity coherently switches between reference
frames (see Figure 5B left). Kelemen and Fenton (2010) showed
that the hippocampal map that better predicts the proximal shock
zone is consistently more active. When the shock zone associ-
ated with the room reference frame is closer to the animal, place
cells that represent the animal’s location in the room reference
frame are more active; when the shock zone associated with the
arena reference frame is closer to the animal, place cells that rep-
resent the animal’s location in the arena reference frame are more
active.

The hippocampal dynamics found on the two-reference frame
avoidance task can be understood as directed information for-
aging from memory. At each moment, the hippocampus can
represent the animal’s current position in one of two compet-
ing maps. Within the two-reference frame avoidance task, the
expected sampling information associated with each reference
reference varies across time. The expected sampling information
associated with each reference frame is a function of the ani-
mal’s location within each reference frame and the observations
the animal would expect as a result of its locations within the
reference frame. Given a gradual accumulation of noise in the
hippocampal estimate of the animal’s location within each ref-
erence frame, directed information foraging allows the animal to
most efficiently update its location across reference frames. More
specifically, directed information foraging suggests that the ani-
mal should activate the map that will yield the richest and most
task salient observations at a particular location so that discrep-
ancies between the animal’s current estimate of its location and
its actual location (as indicated by available observations) can be
found.

5.2. THE TEMPORAL EVOLUTION OF REPRESENTATIONAL DYNAMICS
We propose that the temporal evolution of these hippocam-
pal dynamics parallels the development of directed information

foraging behavior outlined above (see Figure 4). Initially, these
hippocampal representational dynamics are absent because
observation functions and possible task schema have not been
learned. As the animal learns the observation functions and pos-
sible task schema, these hippocampal representational dynamics
develop and reach their peak frequency. Finally, if the animal
learns the task well enough to predict task-related observations,
hippocampal representational dynamics provide no additional
information and, consequently, diminish in frequency. However,
if the task-related observations remain difficult to predict, hip-
pocampal representational dynamics continue to provide impor-
tant task-related information and continue to occur at a high
frequency.

The observed temporal evolution of VTE-like representa-
tional dynamics in the hippocampus is consistent with directed
information foraging from memory. Johnson and Redish (2007)
showed that hippocampal sweeps increase in frequency during
early behavior and diminish as animals are able to predict the
outcomes of a simple spatial choice. However, the frequency
of hippocampal sweeps did not appear to diminish on a cued
version of the task in which the outcomes of a spatial choice
were much more difficult to predict (Johnson and Redish, 2007).
Similarly, map switching dynamics on the two-frame reference
task (Kelemen and Fenton, 2010) and similarly complex tasks
(Jackson and Redish, 2007) occur at high frequency but diminish
in frequency on simple tasks (Jackson and Redish, 2007; Fenton
et al., 2010).

5.3. DIRECTED INFORMATION FORAGING AND MEMORY
CONSOLIDATION

We believe that the temporal evolution of directed informa-
tion foraging provides deep insights into memory consolidation.
The representational dynamics that support directed information
foraging from memory are based on generating/retrieving infor-
mation that is not otherwise available from simple associative
(familiarity-based) memory processes. Given that the function of
directed information foraging is to provide a set of observations
that will most greatly alter simple associative learning processes,
directed information foraging diminishes when simple associa-
tive learning mechanisms can support behavioral performance. In
these cases, directed information foraging is unnecessary and task
performance is independent of the neural substrates that support
directed information foraging. This is a functional description of
memory consolidation.

A variety of memory tasks display a temporally limited depen-
dence on the hippocampus (Zola-Morgan and Squire, 1990;
Packard and McGaugh, 1996; Teng and Squire, 1999; Maviel et al.,
2004; Morris, 2006; Tse et al., 2007, 2011). In many of these tasks,
behavior that is initially dependent on the hippocampus becomes
dependent on frontal cortices as task information is consolidated
to these non-hippocampal areas (Maviel et al., 2004; Tse et al.,
2011). Although a variety of theories attempt to explain con-
solidation in terms of differential learning rates across different
brain areas (medial temporal lobe encoding is fast and obliga-
tory while neocortical encoding is slow and selective; Squire and
Alvarez, 1995; Nadel and Moscovitch, 1997), recent findings by
Morris and colleagues suggest that previous learning can facilitate
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consolidation (Tse et al., 2007, 2011; Bethus et al., 2010). Tse
et al. (2007) showed that following the initial training period
on the paired-associate task, hippocampus dependent single trial
learning underwent consolidation within 48 h. Explaining these
findings, Tse et al. (2007) suggest that schema learning facili-
tated consolidation but leave open the specific mechanisms that
facilitate consolidation.

Time varying consolidation can be understood in terms of
information foraging. Sampling behavior during initial learning
is based on random foraging and provides relatively uninfor-
mative samples that slowly reshape simple associative learning
processes outside the hippocampus. Sampling behavior during
later learning is based on directed information foraging and
provides highly informative samples that quickly reshape sim-
ple associative learning processes outside the hippocampus. As a
result, learning that occurs after the animal has learned relevant
task schemas can utilize directed information foraging and train
non-hippocampal learning processes more quickly, thereby mak-
ing behavioral performance less dependent on the hippocampus
more quickly.

Treatment of memory consolidation within the context of
directed information foraging leads to the intriguing predic-
tion that the consistency of place cell activity could be used
to predict the hippocampal dependence of a task. In order to
more thoroughly develop this prediction, consider how rep-
resentational dynamics in the hippocampus lead to increased
levels of apparent noise within place cell activity (see Figure 5;
Johnson et al., 2009)5. Given our previous description of the
task-dependent temporal evolution of directed information for-
aging and its associated hippocampal dynamics (see the previous
subsection), we predict that on tasks where memory consolida-
tion occurs, place cells will display high levels of apparent noise
and instability followed by a reduction in apparent noise and
increased place cell stability across task acquisition. In contrast,
we predict that on tasks where memory consolidation does not
occur, place cells will display high levels of apparent noise and
instability across task acquisition. As a result, we predict that
hippocampus independent behavioral performance in individ-
ual animals with low levels of apparent place cell noise after task
acquisition6.

5.4. CONCLUSIONS: MEMORY EXPLORATION
The previous discussion has shown how directed information
foraging can be extended to generative memory dynamics in
the hippocampus. Memory-based directed information foraging

5VTE-like representational dynamics increase apparent noise within place cell
activity because place cells transiently represent non-local positions in the
environment rather than the animal’s current position in the environment.
Map switching dynamics increase apparent noise within place cell activity
because place cells that are active at a one spatial location on one map are
not active at the same spatial location on another map.
6Apparent noise in place cells can be identified using measures like overdis-
persion (Fenton et al., 1998, 2010; Jackson and Redish, 2007). Jackson and
Redish (2007) and Fenton et al. (2010) have measured overdispersion on hip-
pocampus dependent open field foraging tasks to be approximately 3.2–3.8.
This value decreases to approximately 2.0 on hippocampus independent tasks
such as the linear track.

suggests that hippocampal sweep dynamics and map switching
dynamics are based on an active search for information from hip-
pocampal memory. Directed information foraging suggests when
these dynamics should occur within a behavioral task and what
information is represented by these transient dynamics. Both
when generative memory dynamics occur and what information
they represent is governed by developing task representations and
schema.

The temporal evolution of hippocampal memory-based
directed information foraging mirrors the temporal evolution of
directed information foraging behavior. Memory-based directed
information foraging comes to an end when simple associative
memory processes predict all task relevant observations and,
consequently, can support task performance. As a result, the
cessation of memory-based directed information foraging sig-
nals the transition from recollective memory processes to simpler
associative process and memory consolidation. Finally, because
memory-based directed information foraging and the hippocam-
pal dynamics that support it are associated with increased appar-
ent noise in place cell activity, directed information foraging
predicts that apparent noise can be used to gauge memory con-
solidation and the developing hippocampal independence of task
performance.

6. CONTROL PROCESSES IN DIRECTED FORAGING
Behaviorally observable and covert sampling behaviors are the
product of decision processes. Our previous discussion sug-
gests that the information available within the hippocampus is
used to control both observable and covert sampling behavior.
We hypothesize that medial prefrontal cortex (mPFC) plays a
central role in the control of both overt behavioral sampling
behavior and covert mnemonic sampling within hippocampal
representations.

The mPFC has been widely implicated in the flexible control
of behavior (Granon and Poucet, 1995; Balleine and Dickinson,
1998; Corbit and Balleine, 2003; Ostlund and Balleine, 2005;
de Wit et al., 2006; Rich and Shapiro, 2007) and memory
retrieval (Maviel et al., 2004; Churchwell et al., 2010; Tse et al.,
2011). We hypothesize that the mPFC functions as a controller
that utilizes hippocampus-based expected sampling information
signals to direct behaviorally observable information foraging
and retrieval processes that support covert information forag-
ing. The control processes associated with directed informa-
tion foraging within the mPFC are dependent on the develop-
ment of hippocampal representations that allow the mPFC to
select where to sample in order to maximize information gain.
During initial learning when hippocampal representations are
relatively poorly developed, mPFC utilizes expected informa-
tion gain signals from the hippocampus to direct behavioral
sampling. As task learning progresses and hippocampal repre-
sentations are better developed, mPFC utilizes expected sampling
information signals from the hippocampus to direct retrieval
processes that support covert information foraging. Finally, as
expected information signals from the hippocampus based on
retrieval processes decay, memory consolidation occurs and ren-
ders retrieval processes hippocampus independent. As result,
our proposal suggests that mPFC lesions will produce both
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behavioral deficits such as reduced VTE behavior and absence
of hippocampal dynamics associated with directed information
foraging.

Several recent studies support our proposal. Tse et al. (2011)
recently showed that paired associate learning activates both
mPFC and hippocampus when previously learned schemas can
contribute to learning, but learning only activates the hip-
pocampus when no previously learned schemas can contribute.
Moreover, temporary lesions of mPFC compromised retrieval
on the paired-associate task. If mPFC lesions compromise
hippocampus-based memory retrieval, we expect that hippocam-
pal activity associated with retrieval processes will be reduced
and consequently increase observed consistency within place cell
activity. Consistent with this prediction, Kyd and Bilkey (2003)
showed that the information content of place cells increases
following mPFC lesions.

If mPFC neurons support the control processes necessary
for directed information foraging, we predict three classes of
mPFC neural activity should emerge during directed infor-
mation foraging. The first class of mPFC neurons codes the
expected sampling information available within a task and pro-
vides the basis for directed foraging behavior. We predict that
these neurons code specific sampling strategies and behavioral
sequences. The second class of mPFC neurons code the expected
sampling information available in memory and provides the
basis for directed foraging from memory. These neurons con-
trol hippocampal retrieval dynamics such as hippocampal sweeps
(Johnson and Redish, 2007). We predict that these neurons code
specific memory sampling strategies and mnemonic sequences
that dictate the extent of hippocampal retrieval. The third class
of mPFC neurons code a statistically compact task representa-
tion. We predict that these neurons, in tandem with the sec-
ond class of mPFC neurons, support memory consolidation.
A statistically compact task representation is a representation
for which expected sampling information is minimized and,
as a result, the memory is stabilized. For example, we predict
that as an animal makes different observations which provide
redundant task information, this information will be represented
categorically.

These predictions are consistent with a variety of recent find-
ings from mPFC recording studies. mPFC neurons differentially
code sampling strategies—even while the animal performs the
same behavior—when strategies must be used to solve a strategy-
based plus maze task (Rich and Shapiro, 2009). And a subset of
prelimbic mPFC neurons increased firing rates following changes
in task contingencies on the plus maze and returned to base-
line firing rate as performance returned to asymptotic levels
with subsequent learning. These observations are consistent with
our prediction that neural activity within mPFC codes for the
expected sampling information available within the task—a sig-
nal that can be used to inform overt directed information foraging
behavior.

Although few studies have explicitly examined mPFC-
mediated hippocampal retrieval in rodents, a number of stud-
ies have identified coordinated theta activity between the hip-
pocampus and mPFC that may support information transfer
between these areas (Jones and Wilson, 2005; Siapas et al.,

2005; Adhikari et al., 2010). We predict that theta synchrony
between the hippocampus and mPFC are associated with behav-
ioral information foraging while transient reductions in theta
coherence are associated memory retrieval processes associ-
ated and covert information foraging. Adhikari et al. (2010)
showed that the coherence theta oscillations in mPFC and
ventral hippocampus decreases immediately before the animal
enters the high anxiety arm of the elevated plus maze. During
these periods, animals display behaviors very similar to VTE
(Kaesermann, 1986) and the spiking activity of a subset of
mPFC neurons represent the future position of the animal
rather than the animal’s current sensory cues (Adhikari et al.,
2011). These observations are consistent with our prediction
that that the presence of coordinated theta activity across the
mPFC and hippocampus is associated with behaviorally observ-
able directed information foraging while transient reductions
in mPFC-hippocampal theta activity are associated with the
retrieval processes that support covert information foraging from
memory.

Finally, many studies suggest that mPFC neurons flexibly
code salient sensory information, behavior, and goals (Hok
et al., 2005; Hyman et al., 2005, 2010; Cowen and McNaughton,
2007; Rich and Shapiro, 2009; Adhikari et al., 2011). Although
ascertaining the extent to which mPFC neurons code com-
pact task representation is currently experimentally challeng-
ing, Adhikari et al. (2011) have shown that spiking activity
in mPFC neurons on the elevated plus maze represent non-
redundant task information. Future work is needed to deter-
mine how mPFC representations develop and support memory
consolidation.

7. CONNECTIONS WITH HUMAN MEMORY RESEARCH
Our review has focused on recent developments within the rodent
literature highlighting the contributions of the hippocampus
and medial temporal lobe structures to exploratory activity. We
used information foraging as a formal framework to examine
the fundamental computations and mechanisms that support
exploratory behavior in rodents. However, information forag-
ing can also be applied to recent work on human exploratory
behavior (Hartley et al., 2003; Voss et al., 2011b,c), the contribu-
tion of metacognition to individual study patterns (Dunlosky and
Hertzog, 1998; Metcalfe, 2009), and constructive episodic mem-
ory (Buckner and Carroll, 2007; Hassabis et al., 2007b; Schacter
et al., 2007).

7.1. HUMAN INFORMATION FORAGING
A particularly intriguing series of experiment by Voss and col-
leagues (Voss et al., 2011a,b,c) explicitly investigated human
information foraging. Subjects were asked to study a two-
dimensional grid of images and commit each image and its loca-
tion to memory. In the volitional control condition, subjects con-
trolled the location of the viewing window and actively explored
the objects in the environment in order to learn object/location
pairs. In a passive viewing condition, subjects were presented with
the views selected by the previous subject and were not able to
actively explore the environment. From an information foraging
perspective, the key difference between the two conditions is that
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subjects in the yoked-control condition were unable to engage in
directed information foraging behaviors.

Subjects performed better on subsequent memory tests in the
volitional control condition compared to the passive control con-
dition. Furthermore, subjects in the volitional control condition
reported higher levels of remembering, a process indicative of rec-
ollection, than subjects in the passive viewing condition. Subjects
in the volitional control condition also spontaneously revisited
previously viewed object/location pairs, an explicit information
foraging behavior that resulted in increased subsequent mem-
ory performance even after controlling for viewing time. These
results suggest that subjects in the volitional control condition
engaged in directed information foraging and were able to obtain
more informative viewing samples with respect to their specific
schemas and memory content.

Subjects with damage to the hippocampus displayed little
directed information foraging behavior in the volitional con-
trol condition and none of the memory gains associated with
volitional control observed in hippocampal controls subjects.
Volitional control activated a prefrontal-hippocampal-parietal
network while specific information foraging behaviors (spon-
taneous revisitation) were associated with more specific activa-
tion of the left anterior hippocampus and left medial frontal
gyrus.

The findings by Voss and colleagues (Voss et al., 2011a,b,c)
provide an important link between directed information forag-
ing behaviors in rodents and humans. Spontaneous revisitation
behavior is functionally equivalent to the novelty preference
observed on the E-maze version of the what/where/which task:
subjects in the volitional control condition must make a spatial
choice between stimuli and prefer novel stimuli with respect to
their current memory traces. Such behavior is based on an assess-
ment of expected sampling information computation. Moreover,
drawing insights from the rodent literature, we expect that eye-
tracking in the volitional control condition would most likely
reveal VTE-like glances across different spatial locations that
allow a subject to assess memory strength and decide whether
revisitation is necessary or beneficial.

7.2. METACOGNITION AND INFORMATION FORAGING
In order to engage in information foraging, an individual
must ascertain whether information can be gained by sampling.
Directed information foraging further suggests that an individ-
ual must anticipate the relative information gain across a set of
sampling behaviors in order to decide where to sample. Such
evaluations are closely linked with metacognitive judgments that
are used to determine how much an individual should study
(Dunlosky and Hertzog, 1998; Metcalfe and Kornell, 2005). In
fact, the information theoretic approach to directed informa-
tion foraging outlined above provides a normative statistical
basis for the region-of-proximal-learning framework (Metcalfe
and Kornell, 2005; Metcalfe, 2009). This framework predicts that
individuals will allocate study-time according the relative rate of
information gain and that they will stop studying once the rate
of information gain reaches zero. Although humans clearly com-
pute these expected information gain evaluations across much
more sophisticated representational content than do animals, the

computations that underlie such information theoretic predic-
tions are, in principle, identical7.

7.3. CONSTRUCTIVE EPISODIC MEMORY AND INFORMATION
FORAGING

Constructive episodic memory can be understood as covert
information foraging within a memory space rather than an
explicitly spatial foraging space as used by Voss et al. (2011b,c).
Constructive episodic memory prompts require more informa-
tion than can be provided by associative processes within seman-
tic memory (Addis et al., 2007; Hassabis et al., 2007b). These
prompts increase the expected sampling information associated
with a given position in an episodic memory space. Sampling
from memory space is analogous to episodic memory retrieval.
As a result, episodic memory retrieval and directed information
foraging should inform autobiographical search behaviors such
as looking through a family album.

The control processes that regulate constructive episodic
memory have only recently begun to be studied (Buckner and
Carroll, 2007; Hassabis et al., 2007a; Schacter et al., 2007;
Summerfield et al., 2010). Guthrie’s critique of vicarious trial
and error, specifically that it leaves rats “buried in thought”
(Guthrie, 1952), can be similarly asked of constructive episodic
memory: how does an individual know when to stop searching
through memory and respond to the prompt? Information forag-
ing provides a formal approach that follows the basic intuition
that retrieval processes embedded within constructive episodic
memory cease when no further memory content can inform a
response.

8. CONCLUSIONS
Information foraging represents an ever increasing part of daily
life. Our formal treatment of exploration as information for-
aging highlights the specific processes that contribute to active,
rather than passive, exploration and learning. We hypothesize
that the hippocampus plays a critical role in active exploration
through directed information foraging by supporting a set of
processes that allow an individual to determine where to sam-
ple. The directed information foraging approach to hippocampal
function is consonant with previous explanations of hippocam-
pal function as fundamentally spatial (O’Keefe and Nadel, 1978;
Redish, 1999); however, our approach connects spatial concep-
tions of hippocampal function with more general memory-based
approaches to hippocampal function (Eichenbaum et al., 1999;
Squire et al., 2004). Directed information foraging provides a
formal theoretical explanation for the common hippocampal
substrates of constructive memory, recollection, schema-based
facilitation of memory, and memory consolidation. We leave fur-
ther elaboration of the directed information foraging framework
to future research but note its utility in constructing specific
behavioral predictions with respect to search behavior and ana-
lyzing transient hippocampal dynamics.

7Studies on the contribution of metacognition to human study habits may
benefit from the behavioral distinction we make between familiarity and
recollection in the rodent object recognition literature.

Frontiers in Human Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 216 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Johnson et al. Information foraging in the hippocampus

REFERENCES
Addis, D. R., Wong, A. T., and Schacter,

D. L. (2007). Remembering the
past and imagining the future:
common and distinct neural sub-
strates during event construction
and elaboration. Neuropsychologia
45, 1363–1377.

Adhikari, A., Topiwala, M. A., and
Gordon, J. A. (2010). Synchronized
activity between the ventral hip-
pocampus and the medial prefrontal
cortex during anxiety. Neuron 65,
257–269.

Adhikari, A., Topiwala, M. A., and
Gordon, J. A. (2011). Single units
in the medial prefrontal cortex with
anxiety-related firing patterns are
preferentially influenced by ventral
hippocampal activity. Neuron 71,
898–910.

Ainge, J. A., Heron-Maxwell, C.,
Theofilas, P., Wright, P., de
Hoz, L., and Wood, E. R.
(2006). The role of the hip-
pocampus in object recognition
in rats: examination of the influ-
ence of task parameters and
lesion size. Behav. Brain Res. 167,
183–195.

Baillargeon, R., Spelke, E. S., and
Wasserman, S. (1985). Object
permanence in five-month-old
infants. Cognition 20, 191–208.

Balleine, B. W., and Dickinson, A.
(1998). Goal-directed instrumen-
tal action: contingency and incen-
tive learning and their cortical
substrates. Neuropharmacology 37,
407–419.

Berlyne, D. E., Koenig, I. D., and Hirota,
T. (1966). Novelty, arousal, and the
reinforcement of diversive explo-
ration in the rat. J. Comp. Physiol.
Psychol. 62, 222–226.

Bethus, I., Tse, D., and Morris, R. G.
M. (2010). Dopamine and mem-
ory: modulation ofthe persistence
ofmemory for novel hippocam-
pal nmda receptor-dependent
paired associates. J. Neurosci. 30,
1610–1618.

Blumenthal, A., Steiner, A., Seeland, K.,
and Redish, A. D. (2011). Effects
of pharmacological manipulations
of nmda-receptors on deliberation
in the multiple-t task. Neurobiol.
Learn. Mem. 95, 376–384.

Brown, M. W., and Aggleton, J. P.
(2001). Recognition memory: what
are the roles of the perirhinal cor-
tex and hippocampus? Nat. Rev.
Neurosci. 2, 51–61.

Buckner, R. L., and Carroll, D. C.
(2007). Self-projection and the
brain. Trends Cogn. Sci. 11, 49–57.

Burns, B., and Brock, O. (2005).
“Toward optimal configuration
space sampling,” in Proceedings

of Robotics: Science and Systems
(Cambridge, MA: MIT Press), 1–8.

Bussey, T. J., Muir, J. L., and Aggleton,
J. P. (1999). Functionally disso-
ciating aspects of event memory:
the effects of combined perirhinal
and postrhinal cortex lesions
on object and place mem-
ory in the rat. J. Neurosci. 19,
495–502.

Churchwell, J. C., Morris, A. M., Musso,
N. D., and Kesner, R. P. (2010).
Prefrontal and hippocampal contri-
butions to encoding and retrieval
of spatial memory. Neurobiol. Learn.
Mem. 93, 415–421.

Cimadevilla, J. M., Wesierska, M.,
Fenton, A. A., and Bures, J. (2001).
Inactivating one hippocampus
impairs avoidance of a stable
room-defined place during disso-
ciation of arena cues from room
cues by rotation of the arena.
Proc. Natl. Acad. Sci. U.S.A. 98,
3531–3536.

Corbit, L. H., and Balleine, B. W.
(2003). Instrumental and pavlovian
incentive processes have dissociable
effects on components of a hetero-
geneous instrumental chain. J. Exp.
Psychol. Anim. Behav. Process. 29,
99–106.

Cowen, S. L., and McNaughton, B.
L. (2007). Selective delay activity
in the medial prefrontal cor-
tex of the rat: contribution of
sensorimotor information and
contingency. J. Neurophysiol. 98,
303–316.

Day, M., Langston, R., and Morris, R.
G. M. (2003). Glutamate-receptor-
mediated encoding and retrieval
of paired-associate learning. Nature
424, 205–209.

de Wit, S., Kosaki, Y., Balleine, B.
W., and Dickinson, A. (2006).
Dorsomedial prefrontal cortex
resolves response conflict in rats.
J. Neurosci. 26, 5224–5229.

Dix, S. L., and Aggleton, J. P. (1999).
Extending the spontaneous prefer-
ence test of recognition: evidence of
object-location and object-context
recognition. Behav. Brain Res. 99,
191–200.

Dunlosky, J., and Hertzog, C. (1998).
Metacognition in Educational
Theory and Practice, Chap. Training
Programs to Improve Learning
in Later Adulthood: Helping
Older Adults Educate Themselves.
Mahwah, NJ: Erlbaum.

Eacott, M. J., Easton, A., and
Zinkivskay, A. (2005). Recollection
in an episodic-like memory
task in the rat. Learn. Mem. 12,
221–223.

Eacott, M. J., and Norman, G. (2004).
Integrated memory for object,

place, and context in rats: a possible
model of episodic-like memory? J.
Neurosci. 24, 1948–1953.

Easton, A., and Eacott, M. (2008).
“A new working definition of
episodic memory: replacing ‘when’
with ‘which,’” in Handbook of
Episodic Memory, Vol. 18, eds E.
Dere, A. Easton, L. Nadel, and J.
P. Huston (Amsterdam: Elsevier),
185–196.

Easton, A., and Eacott, M. J. (2010).
Recollection of episodic mem-
ory within the medial temporal
lobe: behavioural dissociations
from other types of mem-
ory. Behav. Brain Res. 215,
310–317.

Easton, A., Zinkivskay, A., and Eacott,
M. J. (2009). Recollection is
impaired, but familiarity remains
intact in rats with lesions of
the fornix. Hippocampus 19,
837–843.

Eichenbaum, H., Dudchenko, P.,
Wood, E., Shapiro, M., and Tanila,
H. (1999). The hippocampus,
memory, and place cells: is it spa-
tial memory or a memory space?
Neuron 23, 209–226.

Eichenbaum, H., Yonelinas, A. P.,
and Ranganath, C. (2007). The
medial temporal lobe and recogni-
tion memory. Annu. Rev. Neurosci.
30, 123–152.

Ennaceur, A., and Delacour, J. (1988).
A new one-trial test for neurobio-
logical studies of memory in rats.
1, Behavioral data. Behav. Brain Res.
31, 47–59.

Fenton, A. A., Lytton, W. W., Barry,
J. M., Lenck-Santini, P. P., Zinyuk,
L. E., Kubik, S., Bures, J., Poucet,
B., Muller, R. U., and Olypher,
A. V. (2010). Attention-like mod-
ulation of hippocampus place
cell discharge. J. Neurosci. 30,
4613–4625.

Fenton, A. A., Wsierska, M., Kaminsky,
Y., and Bures, J. (1998). Both here
and there: simultaneous expression
of autonomous spatial memories in
rats. Proc. Natl. Acad. Sci. U.S.A. 95,
11493–11498.

Fortin, N. J., Agster, K. L., and
Eichenbaum, H. B. (2002). Critical
role of the hippocampus in mem-
ory for sequences of events. Nat.
Neurosci. 5, 458–462.

Fortin, N. J., Wright, S. P., and
Eichenbaum, H. B. (2004).
Recollection-like memory retrieval
in rats is dependent on the
hippocampus. Nature 431, 188–191.

Gold, J. I., and Shadlen, M. N. (2000).
Representation of a perceptual
decision in developing oculo-
motor commands. Nature 404,
390–394.

Gold, J. I., and Shadlen, M. N. (2002).
Banburismus and the brain: decod-
ing the relationship between sen-
sory stimuli, decisions, and reward.
Neuron 36, 299–308.

Gold, J. I., and Shadlen, M. N. (2003).
The influence of behavioral context
on the representation of a percep-
tual decision in developing oculo-
motor commands. J. Neurosci. 23,
632–651.

Granon, S., and Poucet, B. (1995).
Medial prefrontal lesions in the rat
and spatial navigation: evidence for
impaired planning. Behav. Neurosci.
109, 474–484.

Gupta, A. (2011). Behavioral Correlates
of Hippocampal Neural Sequences.
Ph.D. thesis, Pittsburgh, PA:
Carnegie Mellon University.

Guthrie, E. R. (1952). The Psychology of
Learning, 2nd Edn. New York, NY:
Harper.

Hartley, T., Maguire, E. A., Spiers, H.
J., and Burgess, N. (2003). The
well-worn route and the path less
traveled: distinct neural bases of
route following and wayfinding in
humans. Neuron 37, 877–888.

Hassabis, D., Kumaran, D., and
Maguire, E. A. (2007a). Using
imagination to understand the
neural basis of episodic memory. J.
Neurosci. 27, 14365–14374.

Hassabis, D., Kumaran, D., Vann, S.
D., and Maguire, E. A. (2007b).
Patients with hippocampal amne-
sia cannot imagine new experiences.
Proc. Natl. Acad. Sci. U.S.A. 104,
1726–1731.

Hasselmo, M. E. (1993). Acetylcholine
and learning in a cortical associa-
tive memory. Neural Comput. 5,
32–44.

Hok, V., Save, E., Lenck-Santini, P., and
Poucet, B. (2005). Coding for spatial
goals in the prelimbic/infralimbic
area of the rat frontal cortex.
Proc. Natl. Acad. Sci. U.S.A. 102,
4602–4607.

Hu, D., and Amsel, A. (1995). A simple
test of the vicarious trial-and-error
hypothesis of hippocampal func-
tion. Proc. Natl. Acad. Sci. U.S.A. 92,
5506–5509.

Hu, D., Xu, X., and Gonzalez-Lima,
F. (2006). Vicarious trial-and-
error behavior and hippocampal
cytochrome oxidase activity during
Y-maze discrimination learning
in the rat. Int. J. Neurosci. 116,
265–280.

Hyman, J. M., Zilli, E. A., Paley, A.
M., and Hasselmo, M. E. (2005).
Medial prefrontal cortex cells show
dynamic modulation with the hip-
pocampal theta rhythm dependent
on behavior. Hippocampus 15,
739–749.

Frontiers in Human Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 216 | 14

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Johnson et al. Information foraging in the hippocampus

Hyman, J. M., Zilli, E. A., Paley, A.
M., and Hasselmo, M. E. (2010).
Working memory performance cor-
relates with prefrontal-hippocampal
theta interactions but not with
prefrontal neuron firing rates.
Front. Integr. Neurosci. 4:2. doi:
10.3389/neuro.07.002.2010

Jackson, J., and Redish, A. D. (2007).
Network dynamics of hippocam-
pal cell-assemblies resemble multi-
ple spatial maps within single tasks.
Hippocampus 17, 1209–1229.

Johnson, A., Fenton, A. A., Kentros, C.,
and Redish, A. D. (2009). Looking
for cognition in the structure within
the noise. Trends Cogn. Sci. 13,
55–64.

Johnson, A., and Redish, A. D. (2007).
Neural ensembles in CA3 tran-
siently encode paths forward of
the animal at a decision point. J.
Neurosci. 27, 12176–12189.

Jones, M., and Wilson, M. (2005).
Theta rhythms coordinate
hippocampal-prefrontal inter-
actions in a spatial memory
task. PLoS Biol. 3:e402. doi:
10.1371/journal.pbio.0030402

Kaesermann, H. P. (1986). Stretched
attend posture, a non-social form
of ambivalence, is sensitive to a
conflict-reducing drug action.
Psychopharmacology (Berl.) 89,
31–37.

Kelemen, E., and Fenton, A. A. (2010).
Dynamic grouping of hippocam-
pal neural activity during cognitive
control of two spatial frames. PLoS
Biol. 8:e1000403. doi: 10.1371/jour-
nal.pbio.1000403

Kumaran, D., and Maguire, E.
A. (2006). An unexpected
sequence of events: mismatch
detection in the human hip-
pocampus. PLoS Biol. 4:e424. doi:
10.1371/journal.pbio.0040424

Kyd, R. J., and Bilkey, D. K. (2003).
Prefrontal cortex lesions modify
the spatial properties of hippocam-
pal place cells. Cereb. Cortex 13,
444–451.

Li, L., Miller, E. K., and Desimone, R.
(1993). The representation of stim-
ulus familiarity in anterior inferior
temporal cortex. J. Neurophysiol. 69,
1918–1929.

Loewenstein, G. (1994). The psychol-
ogy of curiosity: a review and
reinterpretation. Psychol. Bull. 116,
75–98.

Maviel, T., Durkin, T. P., Menzaghi, F.,
and Bontempi, B. (2004). Sites of
neocortical reorganization critical
for remote spatial memory. Science
305, 96–99.

Mazurek, M. E., Roitman, J. D.,
Ditterich, J., and Shadlen, M. N.
(2003). A role for neural integrators

in perceptual decision making.
Cereb. Cortex 13, 1257–1269.

Metcalfe, J. (2009). Metacognitive
judgments and control of
study. Curr. Dir. Psychol. Sci. 18,
159–163.

Metcalfe, J., and Kornell, N. (2005). A
region of proximal learning model
of study time allocation. J. Mem.
Lang. 52, 463–477.

Morris, R. G. M. (2006). Elements of
a neurobiological theory of hip-
pocampal function: the role of
synaptic plasticity, synaptic tagging
and schemas. Eur. J. Neurosci. 23,
2829–2846.

Morris, R. G. M., Garrud, P., Rawlins, J.
N. P., and O’Keefe, J. (1982). Place
navigation impaired in rats with
hip pocampal lesions. Nature 297,
681–683.

Muenzinger, K. F. (1938). Vicarious
trial and error at a point of choice:
a general survey of its relation to
learning efficiency. J. Genet. Psychol.
53, 75–86.

Mumby, D. G., Gaskin, S., Glenn, M.
J., Schramek, T. E., and Lehmann,
H. (2002). Hippocampal damage
and exploratory preferences in
rats: memory for objects, places,
and contexts. Learn. Mem. 9,
49–57.

Nadel, L., and Moscovitch, M. (1997).
Memory consolidation, retrograde
amnesia and the hippocampal
complex. Curr. Opin. Neurobiol. 7,
217–227.

O’Keefe, J., and Nadel, L. (1978). The
Hippocampus as a Cognitive Map.
Oxford: Clarendon Press.

Ostlund, S. B., and Balleine, B. W.
(2005). Lesions of medial pre-
frontal cortex disrupt the acquisi-
tion but not the expression of goal-
directed learning. J. Neurosci. 25,
7763–7770.

Packard, M. G., and McGaugh, J. L.
(1996). Inactivation of hippocam-
pus or caudate nucleus with lido-
caine differentially affects expres-
sion of place and response learning.
Neurobiol. Learn. Mem. 65, 65–72.

Redish, A. D. (1999). Beyond the
Cognitive Map: From Place Cells to
Episodic Memory. Cambridge, MA:
MIT Press.

Rich, E. L., and Shapiro, M. (2009). Rat
prefrontal cortical neurons selec-
tively code strategy switches. J.
Neurosci. 29, 7208–7219.

Rich, E. L., and Shapiro, M. L. (2007).
Prelimbic/infralimbic inactivation
impairs memory for multiple task
switches, but not flexible selection
of familiar tasks. J. Neurosci. 27,
4747–4755.

Rolls, E. T., Cahusac, P. M.,
Feigenbaum, J. D., and Miyashita, Y.

(1993). Responses of single neurons
in the hippocampus of the macaque
related to recognition memory. Exp.
Brain Res. 93, 299–306.

Santos, L. R. (2004). Core knowl-
edges: a dissociation between
spatiotemporal knowledge and
contact-mechanics in a non-human
primate? Dev. Sci. 7, 167–174.

Schacter, D. L., and Addis, D. R.
(2007). The cognitive neuroscience
of constructive memory: remem-
bering the past and imagining the
future. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 362, 773–786.

Schacter, D. L., Addis, D. R.,
and Buckner, R. L. (2007).
Remembering the past to imagine
the future: the prospective brain.
Nat. Rev. Neurosci. 8, 657–661.

Shadlen, M. N., and Newsome, W. T.
(2001). Neural basis of a percep-
tual decision in the parietal cortex
(area lip) of the rhesus monkey. J.
Neurophysiol. 86, 1916–1936.

Siapas, A. G., Lubenov, E. V., and
Wilson, M. A. (2005). Prefrontal
phase locking to hippocampal
theta oscillations. Neuron 46,
141–151.

Spelke, E. S., and Kinzler, K. D. (2007).
Core knowledge. Dev. Sci. 10, 89–96.

Squire, L. R., and Alvarez, P. (1995).
Retrograde amnesia and memory
consolidation: a neurobiological
perspective. Curr. Opin. Neurobiol.
5, 169–177.

Squire, L. R., Stark, C. E. L., and Clark,
R. E. (2004). The medial tempo-
ral lobe. Annu. Rev. Neurosci. 27,
279–306.

Summerfield, J. J., Hassabis, D., and
Maguire, E. A. (2010). Differential
engagement of brain regions within
a ‘core’ network during scene
construction. Neuropsychologia 48,
1501–1509.

Teng, E., and Squire, L. R. (1999).
Memory for places learned long ago
is intact after hippocampal damage.
Nature 400, 675–677.

Tolman, E. C. (1939). Prediction of
vicarious trial and error by means of
the schematic sowbug. Psychol. Rev.
46, 318–336.

Tolman, E. C. (1948). Cognitive maps
in rats and men. Psychol. Rev. 55,
189–208.

Tolman, E. C. (1954). Freedom and
the cognitive mind. Am. Psychol. 9,
536–538.

Tse, D., Langston, R. F., Kakeyama, M.,
Bethus, I., Spooner, P. A., Wood,
E. R., Witter, M. P., and Morris,
R. G. M. (2007). Schemas and
memory consolidation. Science 316,
76–82.

Tse, D., Takeuchi, T., Kakeyama, M.,
Kajii, Y., Okuno, H., Tohyama,

C., Bito, H., and Morris, R. G. M.
(2011). Schema-dependent gene
activation and memory encod-
ing in neocortex. Science 333,
891–895.

Voss, J. L., Galvan, A., and Gonsalves,
B. D. (2011a). Cortical regions
recruited for complex active-
learning strategies and action
planning exhibit rapid reactiva-
tion during memory retrieval.
Neuropsychologia 49, 3956–3966.

Voss, J. L., Gonsalves, B. D., Federmeier,
K. D., Tranel, D., and Cohen, N.
J. (2011b). Hippocampal brain-
network coordination during
volitional exploratory behavior
enhances learning. Nat. Neurosci.
14, 115–120.

Voss, J. L., Warren, D. E., Gonsalves,
B. D., Federmeier, K. D., Tranel,
D., and Cohen, N. J. (2011c).
Spontaneous revis-itation dur-
ing visual exploration as a
link among strategic behavior,
learning, and the hippocampus.
Proc. Natl. Acad. Sci. U.S.A. 108,
E402–E409.

Warburton, E. C., and Aggleton, J. P.
(1999). Differential deficits in the
morris water maze following cyto-
toxic lesions ofthe anterior thalamus
and fornix transection. Behav. Brain
Res. 98, 27–38.

Wesierska, M., Dockery, C., and
Fenton, A. A. (2005). Beyond
memory, navigation, and inhi-
bition: behavioral evidence for
hippocampus-dependent cognitive
coordination in the rat. J. Neurosci.
25, 2413–2419.

Winters, B., and Bussey, T. (2005).
Transient inactivation of perirhi-
nal cortex disrupts encoding,
retrieval, and consolidation of
object recognition. J. Neurosci. 25,
52–61.

Winters, B., Forwood, S., Cowell, R.,
Saksida, L., and Bussey, T. (2004).
Double dissociation between the
effects of peri-postrhinal cor-
tex and hippocampal lesions
on tests of object recognition
and spatial memory: hetero-
geneity of function within the
temporal lobe. J. Neurosci. 24,
5901–5908.

Xiang, J. Z., and Brown, M. W. (1998).
Differential neuronal encoding of
novelty, familiarity and recency in
regions of the anterior tempo-
ral lobe. Neuropharmacology 37,
657–676.

Yang, T., and Shadlen, M. N. (2007).
Probabilistic reasoning by neurons.
Nature 447, 1075–1080.

Yonelinas, A. P. (2001). Components
of episodic memory: the contribu-
tion of recollection and familiarity.

Frontiers in Human Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 216 | 15

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Johnson et al. Information foraging in the hippocampus

Philos. Trans. R. Soc. Lond. B Biol.
Sci. 356, 1363–1374.

Zhou, W., and Crystal, J. D. (2009).
Evidence for remembering when
events occurred in a rodent model
of episodic memory. Proc. Natl.
Acad. Sci. U.S.A. 106, 9525–9529.

Zhu, X. O., Brown, M. W., and
Aggleton, J. P. (1995). Neuronal
signalling of information important
to visual recognition memory
in rat rhinal and neighbouring

cortices. Eur. J. Neurosci. 7,
753–765.

Zola-Morgan, S., and Squire, L. R.
(1990). The primate hippocampal
formation: evidence for a time-
limited role in memory storage.
Science 250, 288–290.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 15 October 2011; accepted: 04
July 2012; published online: 25 July 2012.
Citation: Johnson A, Varberg Z,
Benhardus J, Maahs A and Schrater P
(2012) The hippocampus and explo-
ration: dynamically evolving behavior
and neural representations. Front. Hum.

Neurosci. 6:216. doi: 10.3389/fnhum.
2012.00216
Copyright © 2012 Johnson, Varberg,
Benhardus, Maahs and Schrater. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 216 | 16

http://dx.doi.org/10.3389/fnhum.2012.00216
http://dx.doi.org/10.3389/fnhum.2012.00216
http://dx.doi.org/10.3389/fnhum.2012.00216
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Johnson et al. Information foraging in the hippocampus

APPENDIX
INFORMATION GAIN COMPUTATIONS: SAMPLING ACROSS SPACE
In this section we formalize the basic set of Bayesian computations
discussed in the main text. In this case, a rat makes a decision
about where to sample x in order to identify an observation
(reward) source h based on observations y. The animal is assumed
to have an observation function p(y|h, x) that generates expecta-
tions about the relative likelihood of a new observation y at a loca-
tion x given an observation source h. The animal also maintains a
prior for each observation source p(h|x, I), that incorporates past
experience from T observations I = {o1, · · · , oT}. The distribu-
tion across potential observation sources is updated according to
Bayes’ rule:

p(h|x, y, I) = p(y|h, x)p(h|x, I)∑
h p(y|h, x)p(h|x, I)

(4)

Now the term in the denominator p(y|x, I) =∑
h p(y|h, x)p(h|x, I) is a predictive distribution that describes

how surprising a new observation is relative to previous experi-
ence. The entropy of this distribution is the sample surprise—it
indicates how much diversity to expect in a new observation—
and forms a baseline against which the informativeness of an
observation can be assessed.

Hsurprise(x) =
∑

y

p(y|x, I) log
(
p(y|x, I)

)
(5)

If we are given an observation, we can evaluate the surprise for
that sample using the surprise formula without the expectation.
Ssurprise(y|x) = p(y|x, I) log

(
p(y|x, I)

)
. This quantity can be used

to assess how much we recognize the current sample as typical or
familiar.

Now we can define the sample information in terms of
how much the posterior distribution over observation (reward)
sources is expected to change after obtaining another sample.

KLsample info(x) = Ey

[∑
h

p(h|x, I) log

(
p(h|x, y, I)

p(h|x, I)

)]
(6)

Now this computation simplifies into the difference between
two terms:

KLsample info(x) =
∑

y

∑
h

p(y|h, x)p(h|x, I)

× log

(
p(y|h, x)p(h|x, I)/p(y|x, I)

p(h|x, I)

)
(7)

=
∑

y

∑
h

p(y|h, x)p(h|x, I)

× (
log(p(y|h, x)) − log(p(y|x, I))

)
(8)

= Hsurprise(x) − H(y|h, x) (9)

This computation can be interpreted as the expected informa-
tion in an observation given a specific set of observations sources
H(y|h, x) relative to the information we gain about observations
when observation sources are averaged Hsurprise(x). In other

words, sampling from a particular location is worthwhile only to
the extent that the information derived from an observation pro-
vides more information about specific observation sources than if
we simply ignored the different observation functions. This is, as a
result, hierarchical rather than simple associative learning. When
these computations are restricted to the animal’s current position
within an environment, we call it the sample information. When
the computations are applied to new spatial locations, we call it
the expected sample information.

INFORMATION GAIN COMPUTATIONS: SAMPLING ACROSS
REFERENCE FRAMES
In this case, a rat makes a decision about which reference frame
h to sample from in order to identify its location within a task
x based on observations y. The animal is assumed to have an
observation function p(y|h, x) that generates expectations about
the relative likelihood of a new observation y at a location x
given a reference frame h. The animal also maintains a spatial
prior p(x|h, I), that incorporates past experience from T obser-
vations I = {o1, · · · , oT}. An animal can infer its location x given
a particular map h using Bayes’ rule:

p(x|h, y, I) = p(h|y, x)p(y|x, I)∑
x′ p(h|y, x′)p(y|x′, I)

(10)

We now apply the same information gain computations to the
inference across reference frames that we previously applied to
inferences across space. The sample information is again a mea-
sure of of how much the posterior distribution changes following
a sample; in this case the posterior is computed across space x.

KLsample info(h) = Ey

[∑
x

p(x|y, I) log
p(x|h, y, I)

p(x|h, I)

]
(11)

=
∑

y

∑
x

p(y|h, x)p(x|y, I) log
p(x|h, y, I)

p(x|h, I)
(12)

= Hsurprise(h) − H(y|h, x) (13)

The term Hsurprise(h) describes how surprising an observation
is given a particular map, regardless of the animal’s location.
This computation allows an animal to determine which reference
frame is likely to provide the most information about an animal’s
current location.

Notably, the only differences between the expected sampling
information for reference frames and the expected sampling
information for space is (1) the expectation across space, rather
than conditioning on space, and (2) the comparison with a differ-
ent baseline, Hsurprise(h) rather than Hsurprise(x). More generally,
sampling across reference frames can be construed as an attempt
to acquire an observation to make an inference about location—
within either a simple physical or conceptual space—while sam-
pling across spatial locations can be construed as an attempt to
acquire an observation to make an inference about observation
sources—within either a simple physical or conceptual space. The
consistency of these computations and their support of directed
information foraging across a range of representational substrates
appears to be a hallmark of hippocampal processing.
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