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SUMMARY

Protein-protein interaction (PPI) prediction is essential to understand the func-
tions of proteins in various biological processes and their roles in the develop-
ment, progression, and treatment of different diseases. To perform economical
large-scale PPI analysis, several artificial intelligence-based approaches have
been proposed. However, these approaches have limited predictive perfor-
mance due to the use of in-effective statistical representation learning methods
and predictors that lack the ability to extract comprehensive discriminative
features. The paper in hand generates statistical representation of protein
sequences by applying transfer learning in an unsupervised manner using
FastText embedding generation approach. Furthermore, it presents ‘‘ADH-PPI’’
classifier which reaps the benefits of three different neural layers, long short-
term memory, convolutional, and self-attention layers. Over two different spe-
cies benchmark datasets, proposed ADH-PPI predictor outperforms existing ap-
proaches by an overall accuracy of 4%, and matthews correlation coefficient of
6%. In addition, it achieves an overall accuracy increment of 7% on four indepen-
dent test sets. Availability: ADH-PPI web server is publicly available at https://
sds_genetic_analysis.opendfki.de/PPI/

INTRODUCTION

Proteins are large and complex biomolecules that perform a multitude of crucial functions within living or-

ganisms mostly by interacting with other proteins (Berggård et al., 2007). Protein-protein interaction (PPI)

analysis is important to understand diverse biological processes including cell proliferation (Nooren and

Thornton, 2003), signal transduction (Pawson and Nash, 2000), DNA transcription, replication (Zhang

et al., 2012; Vickers, 2017), hormone regulation (Zhao, 2015), cycle control (Kulminskaya and Oberer,

2020), and neuro-transmission (Südhof, 1995). It also helps to identify disease-related signaling pathways

and symbolize unfamiliar targets for therapeutic intervention (You et al., 2010). In-depth exploration of

PPIs is critical for a thorough understanding of protein functionalities, genetic mechanisms (Wang et al.,

2007; Alberts, 1998), discovery of new drug targets (Andrei et al., 2017), and development of effective pre-

ventive or therapeutic strategies to combat diseases (Petta et al., 2016).

A number of experimental approaches including tandem affinity purification (Gavin et al., 2002), mass

spectrometric protein complex identification (Ho et al., 2002), protein chips (Zhu, 2003), and yeast

two-hybrid (Y2H) (Ito et al., 2000; Krogan et al., 2006) have been utilized to infer PPIs. However, these

experimental methods are expensive and time-consuming (Schoenrock et al., 2014). Furthermore,

because of high specificity between proteins, these experimental approaches produce significant false

positive results which marks the need of additional methodologies to cross-check the obtained results.

Due to slow sequence analysis process, these approaches have been typically applied to identify intra-

species PPIs, whereas inter-species interactome remained comparatively understudied (Schoenrock

et al., 2014). Advancements in high-throughput approaches and the influx of PPI data related to different

species have given rise to many databases including the Database of Interacting Proteins (DIP):

RRID:SCR_003167; https://dip.doe-mbi.ucla.edu/dip/Main.cgi (Salwinski et al., 2004), the Molecular Inter-

action Database (MINT): RRID:SCR_003546; http://integrativebiology.org (Licata et al., 2012), and the Hu-

man Protein References Database (HPRD): RRID:SCR_007027; http://www.hprd.org (Peri et al., 2004). The
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public availability of such humongous annotated data has opened new horizons for the development of

computational approaches for economical, fast, and more accurate analysis of PPIs.

In order to predict PPIs, to date, a plethora of computational approaches have been developed (Joshi et al.,

2004; Qi et al., 2005) which can be broadly segregated into three classes: 1) Structure based, 2) Network

based, and 2) Sequence based. Structure-based approaches estimate the likelihood of PPIs by leveraging

primary and higher level spatial structures like secondary, tertiary, or quarternary structures (Northey et al.,

2018). Those proteins are more likely to interact in which compatibility levels of interacting regions are high

or in which spatial structures more oftenly appear on protein-protein binding-motif regions (Northey et al.,

2018; Espadaler et al., 2005; Singh et al., 2010). Following this principle, (Hue et al., 2010) performed the

pioneer work to predict PPIs in which they fed structural information of protein pairs to support vector ma-

chine (SVM) classifier. (Zhang et al., 2012) performed similar work by using protein structural information

and Bayesian classifier for PPI interaction prediction. (Hosur et al., 2012) utilized protein structural informa-

tion to compute the interaction confidence score for each protein pair using a boosting classifier. Structural

information-based PPI predictors neglect the mutual influence of local structures (Fu et al., 2019; Asim

et al., 2020a). Such approaches are more vulnerable to overlook important information for accurate PPI

prediction which might be present in primary sequences and likely to get lost while extracting structural

information (Fu et al., 2019; Asim et al., 2020a).

Network-based PPI prediction approaches utilize the link information present in existing PPI networks. PPI

networks are hierarchical illustrations of interacting proteins and exist in form of ontologies where each

node represents a particular protein and interaction of two different proteins is represented by an associ-

ation link. Proteins resided in upper hierarchy act as parents and their attached interacting partners of lower

hierarchy act as child’s. Network-based PPI prediction approaches extract the names of proteins from ex-

isting ontologies to find their biological characteristics in other resources and heterogeneous relations be-

tween proteins in order to predict interactions between new proteins on the basis of prior learning. Initial

network-based approaches considered that those proteins are more likely to interact which share more

common interacting partners in PPI network (Kovács et al., 2019). However, these approaches have become

obsolete after the discovery of (Kovács et al., 2019) that two proteins aremore likely to interact if at least one

of them is very similar to other’s interacting partners. But (Kovács et al., 2019) approach has limited practical

significance as it lacks to determine the interactions between the long distant proteins. To address this

problem, (Wang et al., 2020b) predicted PPIs without defining the length of different network paths in

advance; however, their approach heavily relies on the quality of PPI network. Most recent paradigm of

network-based approaches considers that proteins of same functional module are more likely to interact

as compared to the proteins of different functional module (Hu et al., 2021b). Using the already known in-

formation of the functional modules, (Hu et al., 2021a) integrated biological information of proteins, partic-

ularly Gene Ontology into PPI network to predict PPIs. Likewise, Ioan et el. (Ieremie et al., 2022) proposed

attention-based deep learning model which used graph-based embeddings to learn deep semantic rela-

tions of Gene Ontology to distinguish interactive and non-interactive protein sequence pairs. A closer look

at different network-based PPI prediction approaches reveals that these approaches completely rely on

pre-computed PPI networks and biological information, both of which need periodic updates to cater

huge proteins-related data produced by high-throughput technologies. Furthermore, such resources

are characterized by high false-positive as well as false negative rates which eventually hamper the perfor-

mance of PPI predictors. Therefore, raw sequence-based PPI prediction approaches are widely considered

more appropriate to perform large-scale PPI analysis.

To date, several raw sequence-based machine and deep learning-based approaches have also been pro-

posed (Yu et al., 2021; Jiang et al., 2020; Wang et al., 2020a) for PPI prediction. For example, most recently,

(Yu et al., 2021) proposed amachine learning-based PPI predictor GcForest-PPI. It utilized residues compo-

sition information and physicochemical characteristics to generate statistical representation of protein se-

quences. It used elastic net (Zou and Hastie, 2005) to extract discriminative set of features that were passed

to an ensemble classifier based on three different models namely XGBoost, Random Forest, and Extra-

Tree. GcForest-PPI achieved the accuracy of 95.44% and 89.26% on benchmark Saccharomyces cerevisiae

(S.cervisiae) and Helicobacter pylori (H.pylori) datasets. (Kong et al., 2020) presented another machine

learning approach namely FCTP-WSRC. They utilized amino acid physicochemical properties, composi-

tion, and transition information to generate statistical representations of protein sequences. They utilized

principal component analysis to reduce redundant features and generate better feature space. Using
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reduced statistical representations and WSRC (Kong et al., 2020) classifier, they managed to achieve the

accuracy of 86.73% and 78.70% on 2 benchmark S.cervisiae and H.pylori datasets. (Jia et al., 2015) also pro-

posed a machine learning-based PPI predictor namely ‘‘iPPI-Esml’’. They combined residue composition

information, physicochemical characteristics, and protein chain-specific wavelet transform information to

generate statistical representations of protein sequences which were passed to a deep forest classifier.

The iPPI-Esml approach achieved the accuracy of 95% on benchmark S.cervisiae and 90% on H.pylori

datasets.

Apart from machine learning-based PPI predictors, (Yao et al., 2019) proposed a deep learning-based pre-

dictor namely DeepFE-PPI. They utilized Word2vec-based embedding generation approach (Mikolov

et al., 2013) to generate statistical representations of protein sequences which were passed to a multilayer

perceptron model for PPI prediction. DeepFE-PPI achieved the accuracy of 95% on benchmark S.cerevisiae

dataset. (Du et al., 2017) presented DeepPPI which utilized residues physicochemical properties to

generate statistical representations of protein sequences. They utilized a multilayer perceptron model

which extracted the high-level discriminative features from statistical vectors to make accurate PPI predic-

tion. DeepPPI achieved the accuracy of 94% and 86% on 2 benchmark S.cervisiae and H.pylori datasets.

Critical analysis of machine and deep learning-based PPI predictors (i.e GcForest-PPI (Yu et al., 2021)

WSRC (Kong et al., 2020), DeepFE-PPI (Yao et al., 2019)) reveals that residue composition or physico-

chemical properties-based protein sequence encoding methods overlook the relationships that exist be-

tween different amino acid segments as a function of context of long protein sequences (Jia et al., 2015;

Yu et al., 2021). Furthermore, selecting an optimal set of physicochemical properties from a huge avail-

able collection requires extensive empirical evaluation (Jia et al., 2015; Yu et al., 2021). Besides, concat-

enation of statistical representations generated through different types of encoding methods also gives

birth to redundant features. To remove redundant features, existing PPI predictors (Kong et al., 2020; Yu

et al., 2021) utilize dimensionality reduction or feature selection approaches to generate an effective

feature space. However, dimensionality reduction approaches generally prove in-efficient for large and

weakly nonlinear data (Sorzano et al., 2014; Chao et al., 2019). Also, determining the number of principal

components for the generation of compressed representation varies across different datasets, indicating

that optimal principal components are found through comprehensive empirical evaluation. Similarly, ma-

jor disadvantage of using elastic net as a feature selection approach (Yu et al., 2021) is the high compu-

tational cost as one needs to cross validate the relative weights of L1 and L2 penalty. Elastic-net lever-

ages a combination of L1 and L2 penalty in order to shrink coefficient of un-important features to near

zero, which is a computationally expensive and a time-consuming process (Sanchez-Pinto et al., 2018).

Furthermore, Word2vec (Mikolov et al., 2013)-based PPI prediction approaches (Yao et al., 2019) also lack

to generate effective statistical representation of protein sequences. Because, Word2vec (Mikolov et al.,

2013) treats k-mers as atomic entities to generate their distinct vectors in which it neglects the distribution

of amino acids within each k-mer. FastText (Bojanowski et al., 2017) is an extension of Word2vec (Mikolov

et al., 2013) where vector of each k-mer is computed by considering the distribution of k-mers and distri-

bution of amino acids inside the k-mers. Also, our previous work (Asim et al., 2020b) found that among three

different neural embedding generation approaches namely Word2Vec, FastText, and Glove, FastText

approach most effectively captures semantic information of k-mers.

We use FastText approach to generate comprehensive contextual information aware statistical vectors for

k-mers present in protein sequences. Furthermore, we generate fixed length protein sequences using six

traditional and four robust fixed length generation approaches. We propose a robust attention-based

deep hybrid model namely ADH-PPI which makes best use of different neural network layers and optimi-

zation strategies for accurate PPI prediction. ADH-PPI makes use of long short-term memory, convolu-

tional, and attention layers to find most discriminative features along with their short- and long-range de-

pendencies important to effectively distinguish interactive protein sequence pairs from non-interactive

protein sequence pairs. To avoid under-fitting and over-fitting, training of the ADH-PPI is optimized using

different kinds of dropout, normalization, and learning rate decay strategies.

A comprehensive empirical evaluation indicates that proposed ADH-PPI approach outperforms several

machine and deep learning-based PPI predictors across 6 different species benchmark datasets with a

decent margin. To better describe the decisions of proposed ADH-PPI approach, we map the weights
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of statistical feature space to potential k-mer distributions which contribute the most for accurate PPI pre-

diction through the reverse engineering strategy.

RESULTS

Key idea

We generate an effective statistical representation of protein sequences which is based on comprehensive

local and global contextual information of sequence residues captured by applying transfer learning in an

unsupervised manner using FastText-based embedding generation approach. To generate fixed length

proteins sequences without losing residues distributions important for protein-protein interaction predic-

tion, we use six traditional and four robust fixed length generation methods. Using optimized fixed length

protein sequences, we develop a robust classifier which makes best use of heterogeneous neural layers

such as long short-term memory layer, convolutional layer, and attention layer to capture most informative

hidden features and their long-range dependencies essential to effectively distinguish interactive proteins

from non-interactive proteins.

Summary of results

We comprehensively describe the performance produced by 6 traditional pre-processing strategies used

to generate fixed length sequences. Furthermore, we compare the performance of 4 distinct settings

based on subsequences to showcase which region of protein sequences contains most crucial information

about PPI prediction. We perform a performance comparison of proposed predictor using traditional pre-

processing strategies and proposed subsequence generation settings. We quantify the performance

impact of CNN layer in proposed predictor. Finally, we compare the performance of proposed ADH-PPI

approach with existing PPI predictors using two core datasets and four independent test sets.

A comprehensive performance analysis of traditional sequence pre-processing strategies

Figure 1 illustrates the performance values produced by proposed ADH-PPI predictor under the hood of 6

traditional copy padding and sequence truncation approaches used to generate fixed length sequences

across two benchmark core datasets.

Performance analysis of 6 commonly used pre-processing strategies over Saccharomyces cerevisiae (S.cer-

evisiae) dataset indicates that mapping protein sequence to maximum possible length and applying copy

padding at the end of protein sequencesmarks best performance of 92% in terms of accuracy and F1-score.

Mapping protein sequences to average length and applying padding or sequence truncation trick at the

end of protein sequences achieve second best performance. Among all 3 settings which applies copy

padding or sequence truncation at the end of protein sequences, mapping protein sequences to minimum

Figure 1. Comparison of the performance of proposed ADH-PPI approach across 2 different S.cerevisiae and H.pyloir datasets using 6 traditional

sequence fixed length generation approaches
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possible length attains lowest performance across both evaluation measures. On the other hand, from 3

settings where copy padding or sequence truncation trick is applied at the start of protein sequences,

once again mapping protein sequences to maximum possible length achieves overall third best and

slightly better performance than other 2 settings based on average and minimum length.

Contrarily, over Helicobacter pylori (H.pylori) dataset, mapping protein sequences to average sequence

length and applying copy padding or sequence truncation at the ending region of protein sequence marks

best performance followed by the performance produced by maximum sequence length setting where

copy padding is applied at the starting region of protein sequences across both evaluation metrics. Setting

based on maximum length where copy padding is applied at the end of protein sequence and setting

based on minimum length where sequence truncation is applied at the end of sequence length achieve

almost similar performance of around 87% in terms of accuracy and F1-score. Whereas, average sequence

length-based setting where copy padding or sequence truncation is applied at starting region of protein

sequences marks slightly better performance than minimum sequence length-based setting.

Among all 6 traditional copy padding or sequence truncation approaches, sequence fixed length genera-

tion approaches which apply copy padding or sequence truncation at the ending regions of protein se-

quences using average or maximum sequence length mark better performance across both core datasets.

Performance analysis of proposed subsequence-based pre-processing approaches

To showcase the impact of 4 different subsequence-based fixed length generation strategies on the per-

formance of proposed classifier, Figure 2 illustrates which protein regions contain most informative distri-

bution of residues for PPI predictions across core datasets of 2 distinct species.

A critical analysis indicates that over S.cerevisiae dataset, performance of 2 settings where amino acids

taken from the start of protein A are combined with the amino acids taken from the end of protein B,

and amino acids of starting region of protein A are combined with amino acids of starting region of protein

B marks similar performance trends across different thresholds of residues. While former setting achieves

the performance of 95.5%, latter setting attains the performance of 94% until 20 residues. With the increase

of amino acids, performance of both settings slightly fluctuates before finishing at 95% and 93.5%, respec-

tively, at 70 residues across both evaluation metrics. Former setting achieves the peak performance using

Figure 2. Proposed classifier performance analysis under the hood of 4 different subsequences-based strategies

used to generate fixed length sequences

Here PA represents protein A and PB refers to protein B, whereas S indicates the starting amino acids of protein sequence

and E represents the ending amino acids of protein sequence.

ll
OPEN ACCESS

iScience 25, 105169, October 21, 2022 5

iScience
Article



40 amino acids whereas latter setting marks the best performance with 10 amino acids. Performance of

setting-5 which explores the start-end regions of protein A and protein B almost gradually declines until

30 amino acids, increases up to 94% with 40 amino acids before flattening off across rest of amino acids

thresholds. Likewise, performance of setting-3 which selects amino acids from the ending regions of pro-

tein A and protein B also progressively decreases from the peak of 93.5% until 30 amino acids before

leveling off until 50 amino acids and finishing at 93% at 70 amino acids in terms of accuracy and F1-score.

Among all 4 settings, setting-4 which selects amino acids from starting region of protein A and ending re-

gion of protein Bmarks best performance followed by setting-5 which explores the start-end region of both

proteins. Whereas, setting-3 marks the lowest performance among all settings based on protein discrim-

inative subsequences.

Over H.pylori dataset (Figure 2), performance of setting-4 remains around 86% until 30 residues before

jumping to the peak of 91% with 40 amino acids which declines afterward and finished at 87% with 70 amino

acids. Here, performance of setting-2 slightly fluctuates until 40 amino acids before declining and leveling

off at 87%. Performance of setting-2 almost gradually decreases from 86% to 84% until 30 amino acids,

jumps to the peak of 88.5% until 50 amino acids before decreasing and ending around 86%. Setting-5 per-

formance shows upward trend at most amino acids thresholds and finishes around 86% across both eval-

uationmetrics. Like S.cerevisiae dataset, once again, setting-4 which explores the starting region of protein

A and ending region of protein B marks best performance in terms of accuracy and F1-score. However, for

H.pylori dataset, peak performances of all 4 setting are comparatively lower than the figures achieved over

S.cerevisiae dataset across both evaluation metrics.

Overall, among all protein subsequence-based settings, setting-4 which selects amino acids from starting

region of protein A and ending region of protein Bmarks best performance across both core PPI datasets in

terms of accuracy and F1-score.

Performance comparison of proposed subsequence approaches with traditional sequence

fixed length generation approaches

In order to compare the performance of traditional copy padding or sequence truncation-based settings

with 4 other settings which explores the performance potential of distinct regions of protein sequences by

selecting different number of residues, Figure 3 indicates area under receiver operating characteristics

(AU-ROC) produced by 5 different settings over S.cerevisiae and H.pylori datasets. As is indicated by

the Figure 3, over S.cerevisiae dataset, in setting-1, applying traditional copy padding or sequence trunca-

tion approaches at the ending region of protein sequence slightly achieve better degree of separability as

compared to those approaches which pad or truncate starting region of protein sequence. Former ap-

proaches attain the peak of 95% and latter approaches acquire the peak of 94%. Among all 6 approaches,

mapping protein sequences to average length and applying copy padding or sequence truncation at the

end of protein sequences mark best performance followed by another ending region-based setting which

maps protein sequences to minimum length.

Furthermore, in setting-2 based on partial protein sequences, with the influx of residues, ADH-PPI degree

of separability gets improved up to the peak of 98% until 30. Afterward, ADH-PPI performance fluctuates

across different residue thresholds before finishing at 97%. However, all setting-2 residue variants achieve

better performance than traditional copy padding or sequence truncation approaches (setting-1), indi-

cating the prime performance potential of protein subsequences.

In setting-3 which explores the performance potential of merely ending region of protein pairs, varying the

residues from 10 to 70, performance of ADH-PPI remains almost constant at 96% which is still better than

the performance attained by most commonly used sequence fixed length generation approaches

(setting-1). Likewise, in setting-4 which selects different residues from starting region of protein A and

ending region of protein B, ADH-PPI achieves the degree of separability of 98% across 7 different residue

thresholds, showing best AU-ROC among all 5 settings. Whereas setting-5 based on start-end region of

protein pairs attains the performance of 97% across all 7 residue thresholds, indicating degree of separa-

bility comparable to setting-2.

On the other hand, over H.pylori dataset, applying copy padding or sequence truncation approaches at the

starting region of protein pairs attain slightly superior degree of separability as compared to approaches
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based on ending region of protein sequences. However, unlike S.cerevisiae dataset, here, both kind of ap-

proaches mark better performance by mapping the protein sequences to minimum length. In setting-2,

performance of ADH-PPI declines from 93% to 91% until 30 residues however jumps to 95% until 50

residues before finishing at 93%. Overall, it outperforms traditional copy padding or sequence truncation

approaches by 2% in terms of AU-ROC. In setting-3 which merely selects residues from ending region of

protein pairs, performance of ADH-PPI fluctuates by the figure of 1%. ADH-PPI attains the degree of sepa-

rability of 93% with 40 residues, indicating overall better performance than setting-1 but slightly lower per-

formance than setting-2. Like S.cerevisiae dataset, here once again, setting-4 based on starting region of

protein A and ending region of protein B achieves best degree of separability among all 5 settings. With

the influx of residues, ADH-PPI performance jumps to 96% until 40 residues before slightly fluctuating and

ending at 93%. Whereas, performance of setting-5 based on start-end region of protein pairs increases

upto 92% until 30 residues and gets flatten afterward across rest of the residue thresholds.

In a nutshell, prime objective of developing artificial intelligence-based predictors is to make best use of

raw protein sequences, and extract distinct distribution of amino acids in the sequences in order to discrim-

inate interactive protein sequences from non-interactive protein sequences. However, protein sequences

are highly variable in length and deep learning models require fixed length input sequences. Commonly

used sequence fixed length generation approaches are copy padding and sequence truncation. In copy

Figure 3. Impact of 5 different settings on the performance of proposed ADH-PPI approach across 2 different S.cerevisiae and H.pyloir datasets

for the task of PPI prediction in terms of area under receiver operating characteristics

Setting 1 is based on traditional copy padding, sequence truncation, and hybrid approaches. Setting 2, 3, 4, and 5 are based on subsequences criteria where

x number of amino acids from staring and ending regions of Protein A and Protein B are taken. The value of x varies from 10 to 70 amino acids with the

difference of 10 amino acids. Setting 2 takes x number of amino acids from starting region of Protein A and ending region of Protein B. Setting 3 takes x

number of amino acids from ending region of Protein A and Protein B. Setting 4 takes x number of amino acids from starting region of Protein A and Protein

B. Setting 5 takes x number of amino acids from starting and ending region of Protein A and starting and ending region of Protein B.
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padding approach, all sequences are mapped to maximum sequence length by padding certain letter to

shorter sequences, whereas in sequence truncation approach, all sequences are mapped to minimum

sequence length by eliminating extra amino acids from longer sequences. Distribution of amino acids

varies in different sub regions of sequences and the performance of deep learning algorithms primarily re-

lies on the extraction of discriminative distribution of amino acids. Copy padding approach creates unnec-

essary bias through the repetition of same padding letter which make sequences quite similar to each

other; similarly, sequence truncation approach is vulnerable to loose most informative distribution of

amino acids. Subsequences-based fixed length generation is more effective as it does not insert any hypo-

thetical letter. Furthermore, it skips constant regions that usually lie in center of the sequences and does

not loose informative distribution because it takes both starting and ending regions of the sequences

into account. Experimental results reveal that most discriminative distribution of amino acids lies in first

40 amino acids of protein A and last 40 amino acids of protein B, indicating the success of subse-

quence-based setting for capturing the informative and discriminative essence of protein sequences.

Performance impact of CNN layer

To better illustrate the necessity of convolutional (CNN) layer in proposed ADH-PPI predictor, we have per-

formed experimentation on H.pylori dataset under the hood of two different settings. In first setting, we

take long short-term memory (LSTM), CNN, and Attention layers, whereas in second setting, we only

take LSTM and attention layers. Table 1 illustrates the predictive performance of both settings in terms

of five different evaluation measures namely accuracy, precision, recall, F1-score, and MCC.

Among different subsequence-based settings, using 40 residues from starting region of protein A and 40

residues from ending region of protein B, proposed model with LSTM and attention layers achieves the

accuracy of 0.919, recall of 0.945, precision of 0.921, F1-score of 0.912, and MCC of 0.848. However, this

performance is less than the performance achieved using LSTM, CNN, and attention layers in proposed

predictor by the F1-score of 3%, accuracy of 2%, precision, recall, and MCC of 1%. Overall, exclusion of

CNN layer slightly drops the predictive performance, and better performance is achieved when LSTM,

CNN, and attention layers are used in proposed predictor. This proves the necessity of CNN layer in pro-

posed predictor that essentially captures local dependencies and translational invariance of amino acids

present in protein subsequences which complement predictive performance.

Performance assessment of ADH-PPI robustness for different order protein sequence pairs

Empirical evaluation reveals that proposed ADH-PPI achieves the highest performance on 2 core bench-

mark datasets and 4 independent test sets on account of protein sequence pairs generated by combining

the subsequence of protein A with subsequence of protein B. Among different subsequence generation

settings, setting-4 (Figure 11) which focuses on the starting region of protein A and ending region of pro-

tein B develops most informative residue distribution-based protein sequence pairs. However, it is impor-

tant to note that we have randomly chosen one protein as protein A and other protein as protein B. Building

on the equal possibility of generating conversely ordered protein sequence pairs, here we validate the idea

that regardless of protein sequence order, starting region of one protein and ending region of other pro-

tein contains the most informative residue distribution for PPI prediction.

Mainly, experimentation is performed with optimal subsequence generation setting across 2 core datasets

and 4 independent test sets by treating one protein subsequence as protein A, other protein subsequence

as protein B, and exchanging the the order of protein subsequences. Furthermore, we use same

Table 1. Performance analysis of proposed model using LSTM, CNN, and attention layers and only LSTM and attention layers over H.pylori species

dataset to quantify the impact of CNN layer

Evaluation measures

Proposed model with LSTM,

CNN, and attention layers

Proposed model with only

LSTM and attention layers Performance difference

Accuracy 0.926 0.919 Around 1%

Precision 0.928 0.921 Around 1%

Recall 0.961 0.945 Around 2%

F1-score 0.944 0.912 Around 3%

MCC 0.855 0.848 Around 1%
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parameters (e.g subsequence window size, model parameters (Table 1) values described in previous sec-

tions 2.5 for each dataset across both kind of paradigms in order to accurately reveal the robustness of

ADH-PPI approach.

Figures 4 and 5 illustrate the performance produced by setting-4 using protein sequence pairs generated

by treating one protein as protein A and other protein as protein B as well as reversing the order on 2 core

benchmark datasets and 4 independent test sets, respectively. As is indicated by the Figures 4 and 5,

ADH-PPI achieves almost same performance across all datasets with protein sequence pairs generated us-

ing 2 different protein subsequence orders. This indicates that although changing the combination order of

protein-subsequences changes the characteristic of protein-sequence pairs, however, proposed ADH-PPI

is robust enough to capture most informative distribution of protein sequences important for PPI

prediction.

Performance comparison of proposed ADH-PPI predictor with existing PPI predictors using

two benchmark core datasets

In order to prove the integrity of proposed ADH-PPI predictor, rich performance comparison with existing

PPI predictors is performance using two core datasets in terms of 4 different evaluation metrics.

Table 2 compares the performance of proposed ADH-PPI predictor with 12 machine and deep learning-

based predictors over S.cerevisiae dataset. As indicated by the Table 2, proposed ADH-PPI predictor

outperforms auto co-variance and SVM-based PPI prediction methodology (Guo et al., 2008a) by 7%,

5%, and 7%, and KNN-based methodology (Guo et al., 2008a) by 10%, 13%, and 6% in terms of accuracy,

recall, and precision, respectively. It outperforms WSRC classifier (Kong et al., 2020) by 9%, 4%, and 14%

in terms of accuracy, recall, and MCC and ippi-esml (Jia et al., 2015) approach by 3%, 5%, 3%, and 4% in

terms of accuracy, recall, precision, and MCC, respectively. Multi-scale continuous and discontinuous

feature representation and SVM classifier-based approach (You et al., 2014) takes the previous best ac-

curacy of 89%–91%, amino acid substitution matrix-based feature representation and RF classifier-based

approach (You et al., 2017) attains the accuracy of 94%. RF classifier achieves the accuracy of 95% using

multivariate mutual information of protein feature representation (Ding et al., 2016) and 94% using multi-

scale local descriptor (MLD)-based feature representation (You et al., 2015a). Proposed ADH-PPI predic-

tor outperforms SVM and random forest-based PPI prediction methodologies by the comparable

margin. From existing machine learning-based PPI predictors, GcForest-PPI (Yu et al., 2021) achieves

top performance in terms of most evaluation metrics. Proposed ADH-PPI predictor surpasses the perfor-

mance of GcForest-PPI (Yu et al., 2021) by 1% in terms of accuracy and recall and equalizes the MCC per-

formance value.

Figure 4. Performance assessment of optimal most informative subsequence generation setting using 2

differently ordered protein sequence pairs over S.cerevisiae and H.pyloir core datasets

Here P_A represents the Protein A and P_B refers to Protein B, whereas start and end represent the starting and ending

region of respective protein.
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Turning toward existing deep learning-based PPI prediction methodologies, DeepPPI (Du et al., 2017) and

DeepFE-PPI (Yao et al., 2019) achieve almost similar performance on S.cerevisiae dataset in terms of four

different evaluationmetrics. Proposed ADH-PPI predictor outperforms deep learning-based PPI predictors

by 1% in terms of accuracy, recall, and MCC.

Moreover, performance produced by proposed ADH-PPI predictor and ten existing PPI predictors on

H.pylori dataset is shown in Table 3. Analysis of Table 3 reveals that proposed ADH-PPI predictor

achieves even more promising figures than existing PPI predictors across all evaluation metrics. Pro-

posed ADH-PPI predictor outshines best performing machine learning-based PPI predictor namely

GcForest-PPI (Jia et al., 2015) by 7%, 7%, 4%, and 4% in terms of recall, MCC, precision, and accuracy,

respectively. It outperforms another top performing MIMI and Random forest-based PPI predictor

(Ding et al., 2016) by Matthews correlation coefficient of 13%, recall of 10%, precision of 5%, and accuracy

of 6%. In comparison to deep learning-based PPI predictors, proposed ADH-PPI predictor outperforms

DeepPPI (Du et al., 2017) predictor by 7%, 7%, 9%, and 12% in terms of accuracy, recall, precision, and

MCC.

Figure 5. Performance assessment of optimal most informative subsequence generation setting using 2

differently ordered protein sequence pairs over C.elegans, H.sapiens, M.musculus, and E.coli independent test

sets after training the model on core S.cerevisiae dataset

Table 2. Performance comparison of proposed ADH-PPI predictor with 12 existing PPI predictors on benchmark S. cerevisiae dataset, where results

of existing PPI predictors are taken from (Yu et al., 2021) paper

Method ACC (%) Recall (%) Precision (%) MCC

ACC+SVM (Guo et al., 2008a) 0.8933 G 2.67 0.8993 G 3.68 0.8887 G 6.16 N/A

Code4+KNN (Guo et al., 2008a) 0.8615 G 1.17 0.8103 G 1.74 0.9024 G 1.34 N/A

MCD+SVM (You et al., 2014) 0.9136 G 0.36 0.9067 G 0.69 0.9194 G 0.62 0.8421 G 0.0059

MLD+RF (You et al., 2015a) 0.9472 G 0.43 0.9434 G 0.49 0.9891 G 0.33 0.8599 G 0.0089

PR-LPQ+RF (You et al., 2015b) 0.9392 G 0.36 0.9110 G 0.31 0.9645 G 0.45 0.8856 G 0.0063

MIMI + NMBAC+

RF (Ding et al., 2016)

0.9501 G 0.46 0.9267 G 0.50 0.9716 G 0.55 0.9010 G 0.0092

LRA+RF (You et al., 2017) 0.9414 G 1.8 0.9122 G 1.6 0.9710 G 2.1 0.8896 G 0.026

DeepPPI (Du et al., 2017) 0.9443 G 0.30 0.9206 G 0.36 0.9665 G 0.59 0.8897 G 0.0062

ippi-esml (Jia et al., 2015) 0.9515 G 0.25 0.9221 G 0.36 0.9797 G 0.60 0.9045 G 0.0053

WSRC (Kong et al., 2020) 0.8673 0.8993 NA 0.7693

DeepFE-PPI (Yao et al., 2019) 0.9478 0.9299 0.9645 0.8962

GcForest-PPI (Yu et al., 2021) 0.9544 0.9272 0.9805 0.9102

ADH-PPI 0.9573 0.9394 0.9575 0.9144
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To summarize, proposed ADH-PPI predictor outperforms both machine and deep learning-based PPI pre-

diction methodologies by decent margin for S.cerevisiae and by significant margin for H.pylori dataset. It is

important to mention that (Kong et al., 2020) proposed FCTP-WSRC predictor results are not comparable

to proposed ADH-PPI predictor. Generally, dimensionality reduction approaches such as principal compo-

nents analysis (PCA) is applied on training data to learn the reduced matrix and the transformation is

applied on testing data where test data is projected to reduce feature space. However, (Kong et al.,

2020) applied PCA on training and testing data separately which introduces biaseness. In our experimen-

tation, to find the valid performance figures of FCTP-WSRC predictor (Kong et al., 2020), we have applied

the PCA in correct manner and reported the valid results on 2 core benchmark datasets (Tables 2 and 3) and

independent test sets (Figure 6).

Performance comparison of ADH-PPI with existing PPI predictors using four independent

test sets

To further prove the effectiveness of proposed ADH-PPI predictor, comparison between 6 existing PPI pre-

dictors and proposed ADH-PPI predictor is performed. Following experimentation criteria of existing pre-

dictors, we train the proposed predictor over core S.cerevisiae dataset and perform evaluation over 4

different independent test sets belonging to C.elegans, E.coli, H.sapiens, and M.musculus species (Yu

et al., 2021; Huang et al., 2015a). Figure 6 compares the accuracy of proposed ADH-PPI predictor with

Table 3. Performance comparison of proposed ADH-PPI predictor with 10 existing predictors on benchmark H. pylori dataset, where results of

existing PPI predictors are taken from (Yu et al., 2021) paper

Method ACC (%) Recall (%) Precision (%) MCC

SVM [6] 0.8340 0.7990 0.8570 N/A

WSR (Nanni, 2005) 0.8370 0.7900 0.8700 N/A

Ensemble of

HKNN (Nanni and Lumini, 2006)

0.8660 0.8670 0.8500 N/A

DCT+WSRC (Huang et al., 2016) 0.8674 0.8643 0.8701 0.7699

MCD+SVM (You et al., 2014) 0.8491 0.8324 0.8612 0.7440

MIMI+

NMBAC+RF (Ding et al., 2016)

0.8759 0.8681 0.8823 0.7524

DeepPPI (Du et al., 2017) 0.8623 0.8944 0.8432 0.7263

ippi-esml (Jia et al., 2015) 0.9047 G 0.84 0.9115 G 1.42 0.8999 G 2.06 0.8100 G 0.0163

WSRC (Kong et al., 2020) 0.7870 0.7321 NA 0.7693

GcForest-PPI (Yu et al., 2021) 0.8926 0.8971 0.8895 0.7857

ADH-PPI 0.9263 0.9609 0.9284 0.8547

Figure 6. Accuracy comparison of ADH-PPI and recent PPI predictors on four independent test sets
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existing predictors. As shown by the Figure 6, proposed ADH-PPI predictor achieves best performance

across all four independent test sets which is higher than the peak performance achieved by deep

learning-based PPI predictor DeepPPI (Du et al., 2017) by 4% for C.elegans, 6% for E.coli, 5% for H.sapiens,

and 9% for M.musculus species test sets.

Furthermore, proposed ADH-PPI predictor outperforms machine learning-based state-of-the-art PPI pre-

dictor namely GCForest-PPI (Yu et al., 2021) by 3%, 2%, 1%, and 1%, achieving more than 98% performance

over all four different species independent test sets.

In a nutshell, over two core datasets and four independent test sets, among all existing PPIs predictors,

machine learning-based PPI predictors perform better than deep learning-based predictors. Proposed

ADH-PPI predictor outshines state-of-the-art PPI predictor across all 6 datasets of different species

including humans, Drosophila, Yeast, Bacterium, Caenorhabditis elegans, and Escherichia coli in terms

of most evaluation metrics. The paradigm of considering both k-mer distribution as well as amino acid dis-

tributions within k-mer best characterizes the protein sequences. Furthermore, the utilization of LSTM,

CNN, and attention ensures the extraction of comprehensive discriminative features along with long-range

dependencies which are essential to accurately predict PPIs across different species. The best utilization of

multiple strategies not only enhances the predictive power of proposed ADH-PPI approach but also makes

the decisions of proposed ADH-PPI predictor interpretable. Therefore, we believe ADH-PPI will prove a

great computational asset for biological researchers and practitioners which can be used to find pro-

tein-protein interactions, protein non-coding RNA interactions, or even interaction between different

biomolecules.

Explainability of the proposed ADH-PPI model

With an aim to overcome a very common black box modeling issue of deep neural networks by decoding

the importance of individual amino acids and k-mers, we analyze the attention weights associated with

different k-mers to illustrate which k-mers contribute the most in making accurate PPI predictions.

To more precisely demonstrate the explainability of the proposed ADH-PPI approach, we arbitrarily take

two protein sequence pairs from test sets of benchmark S.cerevisiae and H.pylori datasets. Following

the working paradigm of proposed ADH-PPI predictor, we generate 5-mers of both test protein sequence

pairs and feed both test protein sequence pairs 5-mers along with pre-trained embeddings to two different

classifiers trained on S.cerevisiae and H.pylori training sets. These classifiers decide whether given protein

sequence pairs are interactive or non-interactive. Classifiers make decisions based on the attention weights

associated with 5-mers. We extract attention weights and feed these attention weighs to decision explain-

able module which performs reverse engineering to map these attention weights to different 5-mers. To

illustrate better, decision explainable module categorizes different 5-mers into five different groups based

on different thresholds applied at attention weights ranging from 0 to 1. Each group is represented with a

unique shade of red color, the higher the intensity of red color is the higher the attention weight is for

particular k-mer, indicating darkest red color 5-mers and their inherent amino acids contribute the most

in making accurate PPI predictions and lightest red color 5-mers and their inherent amino acids make least

contributions in making accurate PPI predictions. The attention weights range of five different groups of

5-mers is shown on the x axis of the bar graph (Figure 7) whereas y axis of the bar graph shows the count

of 5-mers in each group.

It is evident in the Figure 7, for S.cerevisiae dataset, only two 5-mers GGKAG and SAAKA fall in first

group which has best range of attention weights 0.90–1.0. Two 5-mers fall in second group which has

second best range of attention weights 0.70–0.89. Similarly, one 5-mer falls in third group and three

k-mers fall in fourth group which have attention weight ranges of 0.50–0.69 and 0.20–0.49, respectively.

Among all groups, fifth group has most eight 5-mers, attention weights of which falls in range of 0.1–0.20.

Furthermore, it can be seen that starting 5-mers distribution has the top attention weights where amino

acids G and A are most frequent, which contribute the most in making accurate PPI predictions on S.cer-

evisiae dataset.

Unlike S.cerevisiae dataset, on H.pylori dataset, eighteen 5-mers fall in fifth group, fourteen 5-mers in sec-

ond group, and four 5-mers in third group. Once again, very few 5-mers fall in first and second group. More
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specifically, three 5-mers LIFYYF, IFYFL, LDFKG, individual amino acids F and L of central regions of sub-

sequence contribute the most in making accurate PPI predictions on H.pylori dataset.

These attention weight distribution patterns at the k-mer level and amino acid level are quite consistent

across most sequences. Furthermore, this is quite consistent with our unique hypothesis of predicting

PPIs using only most discriminative subsequences. The starting or central k-mers distribution within subse-

quences gets the higher attention weight and serves as most influential regions, and the surrounding

k-mers distribution gets lower attention weights and exists as supportive and auxiliary information regions.

In a nutshell, we validate the ADH-PPI suitability to discover useful patterns in protein sequences, their

dependencies, and explainable associations for PPI prediction.

An interactive and user-friendly ADH-PPI web server

We have developed a user-friendly web server for ADH-PPI approach which can be accessed at https://

sds_genetic_analysis.opendfki.de/PPI/. Proteomics researchers and practitioners can leverage this web

server to determine interactions between proteins solely using raw sequences related to human andmouse

species. Researchers can also use this web server to validate experimentally identified PPIs using raw

sequences, train and optimize the model from scratch for new species, and perform inference on new

sequences belonging to existing or new species.

Conclusion

This paper can be considered a huge milestone toward the accurate prediction of PPIs for a variety of

species solely using raw sequences. First, unlike previous methods, it captures comprehensive amino acids

order, occurrence, and contextual information by generating k-mer of protein sequences, distributed

representations of which are computed as the sum of their embeddings and the embeddings of their

inherent amino acid sub-mers using FastText (Bojanowski et al., 2017) approach. Second, instead of

feeding entire protein sequences to deep learning models, it explores the discriminative aptitude of

multifarious regions of protein sequences to obtain highly informative amino acid distribution-based

subsequences. Third, it develops an attention-based deep hybrid neural network which makes best use

of heterogeneous layers (LSTM, CNN, and Attention) to make accurate and interpretable PPI predictions.

Figure 7. Most informative and least informative amino acid and K-mers patterns identified by attention layer of

proposedADH-PPI predictor in two testprotein sequencesbelonging tobenchmarkS.cerevisiae andH.pyloriDatasets
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A stringent benchmarking performance comparison of ADH-PPI with existing computational predictors

proves that ADH-PPI outperforms existing machine and deep learning-based PPI predictors by decent

margin. A compelling future line of current would be to assess the performance potential of ADH-PPI

approach for interaction prediction tasks related to other biomolecules.

Limitations of the study

The limitation of current work is that it only identifies key k-mers which contributes the most in making

accurate PPI prediction. However, to more comprehensively explain the decisions of proposed ADH-

PPI approach, identifying which k-mer distributions map to which hidden features as well as which

hidden unit gets activated at what point in time and input scenarios, would further fine-grained the ex-

plainability and interpretability of proposed ADH-PPI predictor for biomedical researchers and

practitioners.
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by lead contact, Muhammad Nabeel Asim (Muhammad_Nabeel.Asim@dfki.de).

Materials availability

In this study, no new materials are generated.

Data and code availability

d This paper performs PPI prediction over existing benchmark datasets and independent test sets given by

(Guo et al., 2008b), (Martin et al., 2005), and (Zhou et al., 2011). All benchmark protein sequences datasets

used to predict PPIs are available at https://sds_genetic_analysis.opendfki.de/PPI/Download_PPI/.

These datasets are also available on a general-purpose open repository Zenodo https://doi.org/10.

5281/zenodo.6973538.

d A Public web server that allows the users to train predictive pipeline from scratch as well as utilize pre-

trained predictive pipeline can be publicly accessed at https://sds_genetic_analysis.opendfki.de/PPI/.

d The complete source code of proposed ADH-PPI predictor is available at https://sds_genetic_analysis.

opendfki.de/PPI/Download_PPI/.

d Any further information needed to reanalyze the data reported in current study is available from lead

contact upon the request.
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S.cerevisiae Dataset (Guo et al., 2008b) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

H.pylori Dataset (Martin et al., 2005) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

E.coli Test Set (Zhou et al., 2011) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

C.elegans Test Setdata (Zhou et al., 2011) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

Homo Sapiens Test Set (Zhou et al., 2011) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

Mus Musculus Test Set (Zhou et al., 2011) Database of Interacting Proteins (DIP): RRID:SCR_003167; https://dip.doe-

mbi.ucla.edu/dip/Main.cgi

Software and algorithms

Sub-Sequence Generation

Paradigm

This Study https://sds_genetic_analysis.opendfki.de/PPI/

Protein Sequence

Embeddings (FastText)

Open Source https://fasttext.cc/

Python Open Source https://www.python.org/

Pytorch Open Source https://pytorch.org/

Grid Search (Bergstra et al., 2011) http://tinyurl.com/54phrd33
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METHOD DETAILS

Data sources benchmark protein-protein interaction prediction datasets

In order to prove the integrity of proposed ADH-PPI approach and to perform a fair comparison

with existing PPIs prediction approaches, we evaluate ADH-PPI performance over PPIs datasets of 6

different species including humans, Drosophila, Yeast, Bacterium, Caenorhabditis elegans, and Escher-

ichia coli.

From Yeast specie, performance of ADH-PPI is evaluated on a well known public benchmark dataset

namely Saccharomyces cerevisiae (S.cerevisiae), which is extensively utilized by several researchers for

PPI prediction (Yu et al., 2021; Jiang et al., 2020; Wang et al., 2020a). PPIs of Saccharomyces cerevisiae

(S.cerevisiae) were first extracted by (Guo et al., 2008b) from Database of Interacting Proteins (DIP):

RRID:SCR_003167; https://dip.doe-mbi.ucla.edu/dip/Main.cgi (Xenarios et al., 2002). Authors eliminated

those protein pairs where any one of the protein was comprised of less than 50 residues and obtained

a dataset of 5,943 protein pairs with positive interactions. To eliminate redundancy, researchers utilized

a renowned program CD-HIT (Fu et al., 2012). From 11,188 PPIs, a total of 5,594 PPIs were retained

considering that they had less than 40% pairwise sequence similarity with each other. An equal

number of negative PPIs were generated using 3 different approaches. In first approach, non-interacting

protein pairs were generated by random pairing of proteins which were not present in the positive

dataset. In second approach, negative dataset was generated by combining proteins having similar

sub-cellular localization patterns extracted from Swiss-Prot database (Bairoch and Apweiler, 1996). In

third approach, negative dataset was generated using data augmentation approach. Another widely

used PPI prediction dataset (Yu et al., 2021; Jiang et al., 2020; Wang et al., 2020a) Helicobacter pylori

belongs to Bacterium specie, which was compiled by (Martin et al., 2005). It contained 2,916 protein pairs

out of which 1,458 protein pairs were positive and 1,458 protein pairs were negative. From a collection of

protein pairs which were not explicitly declared as interactive, a bunch of protein pairs were selected as

non-interacting proteins. Statistics of both core datasets S.cerevisiae and H.pylori are described in

Figure.

In order to perform a fair performance comparison with existing PPI predictors and to further prove the

versatility of proposed methodology ADH-PPI, we also evaluate ADH-PPI over 4 independent test sets

developed by (Zhou et al., 2011). These datasets have been extensively used in literature (Yu et al.,

Statistics of 2 core protein-protein interaction prediction datasets
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2021; Huang et al., 2015b; Hashemifar et al., 2018). As the procedure used to develop 4 different inde-

pendent test sets has been described in existing studies (Zhou et al., 2011; Yu et al., 2021; Huang et al.,

2015a; Hashemifar et al., 2018), here we only shed light on the statistics of 4 independent test sets. E.coli

consists of 6,954 protein pairs with positive interactions, C.elegans contains 4,103, Homo sapiens

(H. sapiens) consists of 1,412, and Mus musculus (M. musculus) is composed of 313 protein pairs with

positive interactions.

Model architecture

ADH-PPI: An Attention based Deep Hybrid Model for Protein Protein Interaction Prediction

The working of the proposed ADH-PPI predictor can be categorized into three different modules. First

module generates effective statistical representations of k-mers present in protein sequences by

applying transfer learning in an unsupervised manner. Second module generates fixed length protein se-

quences using traditional and robust sequence fixed length generation methods. Using fixed length

protein sequences and k-mer embeddings, third module trains a robust attention based deep hybrid

neural network for PPI prediction. A brief description of each module is provided in the following sub-

sections.

K-mer embedding generation using unsupervised transfer learning

To generate k-mer embeddings, first step is to divide the protein sequences into k-mers. Overlapping

k-mers are generated by rotating a fixed-size window over a protein sequence where the stride size is al-

ways less than the size of window. On the other hand, non-overlapping k-mers are generated by rotating a

window with a stride size equal to window size. Figure illustrates the process of generating overlapping and

non-overlapping k-mers of a hypothetical protein sequence.

Protein sequences are made up of 20 distinct amino acids. Hence, in both overlapping or non-overlapping

k-mer generation, the unique vocabulary size is equal to 20k . The value of k determines the size of vocab-

ulary which impacts model complexity, memory cost, run time cost, as well as up to what extent amino acid

contextual information is taken into account, hence the choice of k is very crucial. Following the work of (Le

et al., 2019) and (Asim et al., 2020a), we generate different overlapping and non-overlapping k-mers by

varying the window size from 2-to-7 and stride size from 1-to-7.

For different sizes overlapping and non-overlapping k-mers, we generate k-mers embeddings of different

dimensions using FastText embedding generation model, working of which is graphically illustrated in

Figure.

Overlapping and non-overlapping K-mers generation for protein sequences
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With an aim to capture comprehensive information of amino acids distributions, we take two

benchmark S.cerevisiae, H.pylori datasets and four independent test sets in order to most effectively

train the FastText model over large dataset of 26,886 protein sequences. For all 26,886 protein

sequences, we generate overlapping and non-overlapping k-mers by varying the window size from

2-to-7 and stride size from 1-to-7. This produces number of different k-mers=6 3 maximum possible

different stride size =6 equal to 36 different versions of protein sequences corpus based on different

overlapping k-mers and 6 versions of protein sequences corpus based on different non-overlapping

k-mers. For each version of protein sequences corpus, we train the FastText model to generate

k-mer embeddings of different dimensions d ranging from 100, 120, 240, to 300. For example, by consid-

ering non-overlapping 3-mers, 26,886 protein sequences are divided in 3-mers which generates a vocab-

ulary of 203 unique 3-mers and FastText generates d-dimensional statistical vectors for each 3-mer.

FastText embedding generation model is an extension of Skipgram model (Mikolov et al., 2013). Given

a training k-mer sequence k1; k2; k3; .:kT , objective function of Skipgram model can be defined as

follows:

J = max
1

T

XT
1

X
c ˛Ct

logpðkc jktÞ (Equation 1)

Where Ct represents the collection of surrounding k-mers of current k-mer kt , given current k-mer kt ,

pðkc jktÞ denotes the probability of observing its surrounding k-mer kc .

pðkc jktÞ =
esðkt ;kc ÞPW
j = 1e

sðkt ;kjÞ (Equation 2)

Here sðkt ; kcÞ represents the scoring function. Skipgram model considers the scoring function as scalar

product sðkt ; kcÞ = uTktvkc , where ukt and vkc represent the vectors of two k-mers kt and kc respectively.

However, SkipGram can only generate a distinct vector for each k-mer without exploiting their sub-kmer

information. To overcome this problem, FastText represents a k-mer as a bag of sub-kmers. For instance,

k-mer ‘‘HGDTP’’ will be represented by sub-kmers such as<#HGD, HGDT, GDTP, DTP#> and k-mer itself<

HGDTP>. Unlike Skigpgram model, FastText defines the scoring function sðkt ; kcÞ as the
P

g˛ ð1;.:GÞzTg vc
where

ð1;.:GÞ denotes the sub-kmers collection of kt , zg represents the vector of sub-kmer, and vc represents the

vector of k-mer kc . In this manner, FastText learns the embeddings of sub-kmers. Using sub-kmers embed-

dings, a k-mer embedding is learned as the sum of distributed representations of its sub-kmers. Major

Workflow of unsupervised transfer learning applied using 6 datasets of distinct species to learn distributed

representation of higher order sequence residues
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advantage of FastText embedding generation model is that it takes k-mer distributions as well as distribu-

tions of amino acids within k-mers into account to generate effective distributed representation of k-mers.

Another advantage is that it shares the distributed representation of sub-kmers across all the k-mers which

is extremely useful to generate optimal embeddings for less frequent k-mers. FastText embedding gener-

ation model is trained with an objective to maximize the probability of target k-mer over all k-mers present

in the vocabulary using a softmax layer. Embedding matrix along with output layer parameters are learned

by back propagating the error using stochastic gradient descent and negative sampling approach. Using

FastText, we generate effective d-dimensional vectors for k-mers where the value of d is varied from 100,

120, 240, to 300.

Fixed length generation of Protein sequences

Exploratory analysis of 2 core PPI datasets (Figure) indicates that minimum sequence length for both S.cer-

evisiae and H.pylori datasets is 10 residues, average protein sequence length for S.cerevisiae dataset is

around 1100 residues and for H.pylori dataset, average sequence length is around 734 residues. It is

evident that protein sequences have high length variability. Considering machine learning approaches

require fixed length protein sequences, existing PPI prediction approaches transform variable length pro-

tein sequences into fixed length sequences using traditional copy padding or sequence truncation ap-

proaches (Yu et al., 2021; Jiang et al., 2020; Wang et al., 2020a). We perform experimentation with 6

different variations of copy padding and sequence truncation approaches in order to quantify their efficacy

for PPI prediction. Furthermore, we present a unique way to generate fixed length protein sequences by

finding and retaining only most informative amino acids distributions. This section briefly summarizes

five different settings to generate fixed length sequences.

In 1st setting, performance of 6 traditional copy padding and sequence truncation is evaluated. In copy

padding approach, first maximum length of sequence is computed by comparing corpus sequences.

Then, all the sequences having length less than maximum length are extended to make them equal to

maximum length by adding certain constant. Sequence truncation is another way to make fixed length se-

quences where minimum sequence length is computed by comparing corpus sequences. Residues from all

those sequences whose length is larger than minimum length are truncated to make them equal to mini-

mum sequence length. Another trend is to utilise both copy padding and truncation approaches where

average length is computed by comparing corpus sequences. Certain constant is added in those se-

quences which are shorter than the average length, whereas, sequences that are larger than the average

length are truncated.

In copy padding trick, it is an important question whether the start of the sequences is an ideal location for

the addition of constant or the end of the sequences. Likewise, in the sequence truncation approach, it is

questionable whether extra residues need to be truncated from start of the sequences or end of the

A variety of settings based on traditional copy padding or sequence truncation, and proposed bag of most informative amino acids distribution-

based tricks used to generate fixed length sequences

ll
OPEN ACCESS

iScience 25, 105169, October 21, 2022 21

iScience
Article



sequences. For copy padding trick, we first add constant at the start of sequences, and in another variation,

we add constant at the end of the sequence to find out which approach is more appropriate. Similarly, for

the sequence truncation approach, we truncate sequences from the start of corpus sequences and from the

end of sequences in other variation. In hybrid sequence fixed length generation paradigm based on

average length, we also extend or truncate corpus sequences from the start of sequences or end of the se-

quences. A graphical representation of all 6 strategies is presented in Figure under the the hood of

setting-1.

Considering the vulnerability of traditional copy padding approach to create unnecessary bias through

the addition of too many constants and sequence truncation to loose important k-mer distribution

while handling flexible protein sequences. Here we propose a unique idea to optimize fixed

length sequence generation process where fixed length sequences are generated using only the few

residues from different regions of protein sequences which contains the most informative distribution

of amino acids for the task of PPI prediction. More specifically, in Figure, under the hood of 2nd

setting, ADH-PPI selects X residues solely from the starting region of one protein A and Y residues

solely from starting region of Protein B. In 3rd setting, performance of X residues taken only from

the ending region of protein A and Y residues taken merely from the ending region of protein B is eval-

uated. Whereas, in setting 4th, X residues of protein A taken from the starting region of protein

sequence are combined with Y residue of protein B taken from the ending region of protein sequence

to assess the discriminative aptitude of start-end region. In last setting, performance is assessed by

combining X residues taken from start-end regions of protein A with Y residue taken from start-end

region of protein B. To identify up to what number of residues can capture the discriminative essence

of protein sequences, in all 4 proposed sub-sequence based fixed length generation settings, we select

as minimum number of residues as possible (e.g 10, depending on the minimum sequence length of

the benchmark dataset) and iteratively increments this number with a step size of 10 residues up to

50% of average sequence length of benchmark core PPI prediction datasets. In all 4 settings, X and

Y range from 10-to-70 residues taken with the difference of 10 residues. By fusing protein A sequences

with protein B sequences, the fixed length protein sequence generated through traditional and robust

pre-processing strategies are passed to an attention based deep hybrid neural network for PPI

prediction.

An attention based deep hybrid neural network (ADH-PPI)

In the marathon of developing robust and precise deep learning based end-to-end frameworks for diverse

Genomics and Proteomics sequence analysis tasks, we are witnessing the explosion of deep learning ap-

proaches, core architectures of which are mainly formed by deep feed forward neural networks (Li et al.,

2019), deep belief networks (Zou et al., 2019), convolutional neural networks (Li et al., 2019), autoencoders

(Meyer, 2021), and long short-termmemory networks (Meyer, 2021). Predominantly, efforts are being made

under the hood of two different paradigms to develop more efficient deep learning models for diverse

sequence analysis tasks (Zou et al., 2019; Li et al., 2019; Meyer, 2021). The main focus of one paradigm is

to develop deep neural networks based on series of neural layers (i.e convolutional layer, recurrent layer)

to effectively capture the non-linearity of genomic and proteomic sequences (Zou et al., 2019; Li et al., 2019;

Meyer, 2021; Nusrat and Jang, 2018; Lydia and Francis, 2019). Whereas, other paradigm pays more atten-

tion to develop shallow or ensemble neural networks which utilize neural layers (i.e convolutional layer,

recurrent layer) in different parallel channels and combine the features extracted by different channels

to perform target prediction. The paper in hand develops an attention based deep hybrid model (ADH-

PPI) for PPI prediction following the structure of first paradigm. Workflow of proposed ADH-PPI approach

is illustrated in Figure, a brief description of different components of ADH-PPI approach is given in the

following subsections.
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Stochastic embedding layer

Stochastic embedding layer takes k-mers of protein sequences and unsupervisedly learned k-mer

embeddings (generation of which is explained in section ADH-PPI: An Attention based Deep Hybrid

Model for Protein Protein Interaction Prediction) to generate an embedding weight matrix E˛
Rjunique kmersj3embedding size, where the number of rows are equal to unique k-mers and number of columns

are equal to k-mers embedding size. To fine-tune embedding matrix in a more generic way, we apply two

different kinds of dropouts on the embedding matrix, where there is a probability pembeddings to fully

replace k-mer embedding vectors with zero and probability pembeddings dim to replace individual continuous

values with zero in remaining k-mer embedding vectors. First kind of dropout drops few k-mer embedding

vectors whereas second kind of dropout drops few continuous values of remaining k-mer embedding vec-

tors (Gal and Ghahramani, 2016; Merity et al., 2017). This regularization avoids model over-fitting by

ensuring that model does not over-specialize certain k-mers to extract most informative features for various

classes. The k-mer embedding vector pembeddings and dimension pembeddings dim dropout probabilities are

varied from 0.002-to-0.008 where we find that pembeddings of 0.004 and pembeddings dim of 0.005 performs

better.

The optimized embedding matrix containing 120-dimensional embedding vectors for unique k-mers is

passed to a Long Short Term Memory layer.

Optimized long short term memory layer

Long short-term memory (LSTM) layer is a special kind of recurrent layer which avoids gradient explosion

and gradient disappearance issues faced by the neural network during the modeling of long sequences

(Huang et al., 2015a). Furthermore, LSTM is really effective for the extraction of long dependencies of fea-

tures which is very critical for accurate PPI prediction (Huang et al., 2015b). Unlike a traditional recurrent

Workflow of proposed attention-based deep hybrid methodology ADH-PPI for protein-protein interaction prediction
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neural network, LSTM makes use of multiple gates described in following equations to control the flow of

comprehensive k-mers information provided by optimized embedding layer.

Input GateðIuÞ = sigmoid
�
Wi:xt + Ui:ht� 1 + bu

�
(Equation 3)

Forget GateðIf Þ = sigmoid
�
Wf :xt + Uf :ht� 1 + bf

�
(Equation 4)

Output GateðIoÞ = sigmoidðWo:xt + Uo:ht� 1 + boÞ (Equation 5)

cint = tanhðWc :xt + Uc :ht� 1Þ (Equation 6)

memory cell stateðctÞ = ðIu1cint + If1ct� 1 (Equation 7)

hidden stateðhtÞ = ðIo 1 tanhðctÞÞ (Equation 8)

The input, forget, and output gates get activated or deactivated mainly on the basis of their weigh

matrices and biases, and work on the basis of their activation functions (sigmoid, tanh) to determine which

information need to be retained or discarded frommemory cell states (ct , ct� 1). In order to preserve k-mers

information for a longer period of time, hidden state h of each cell is saved at every time step t.

To most effectively regularize recurrent layer, unlike existing approaches which arbitrarily drop the hidden

states during the update to the memory state ct , we use DropConnect (Wan et al., 2013) which applies

dropout with the probability of 0.4 on the recurrent [Ui, Uf , Uo] and non-recurrent weight matrices [Wi ,

Wf ,Wo] of the LSTM layer before the forward and the backward pass to enhance LSTM aptitude to extract

informative features along with their long range dependencies. Using LSTMwith 120 hidden units, ADH-PPI

model extracts the short and long range dependencies of features which are important to distinguish inter-

active protein sequence pairs from non-interactive protein sequence pairs. The 120-dimensional feature

vectors produced by the LSTM layer are passed to the convolutional layer.

Convolutional layer

The convolutional layer has been widely applied in Natural Language Processing and Bioinformatics tasks

(Alzubaidi et al., 2021) due to two unique charateristics, local perception as well as parameter sharing

(Goodfellow et al., 2016). Like simulating the cells with local receptive fields within human brain, the con-

volutional layer performs an operation known as convolution which uses local connection and shared

weights to extract hidden informative features and reduce the overall complexity of neural network (Good-

fellow et al., 2016). Convolution operation applied at a particular lth layer produces a feature map A½l� that
can be mathematically expressed as:

A½l� = f
�
A½l� 5W ½l� + b½l�

�
(Equation 9)

WhereW ½l� represents the weight matrix of convolutional kernel of the lth layer, symbol5 denotes the con-

volutional operation, b½l� represents the off-set vector, and f(x) denotes the activation function. We use ReLu

as an activation function to sparse the final output of convolutional layer which leads to speed up the

training process and maintain the steady convergence rate to prevent vanishing gradient issue. CNN layer

use 50 kernels of size 3 to produce 50-dimensional feature vectors which are passed to an attention layer.

Attention layer

Attention layer is widely used to adjust the weights of feature vectors in such a manner that most crucial

features are emphasized and less important features are penalized (Goodfellow et al., 2016). Attention

function can be considered a mapping from a Query vector (Q), and Key-Value vectors (K-V) to an output

vector. Here Q, K, and V are linear projection of given protein sequence statistical representation and

output is the new protein sequence statistical representation of same dimensions incorporating compre-

hensive mutual association of k-mers present in protein sequences. The entire process involves three steps:

acquiring Query, Key, and Value linear projections, estimating the weight through placing Query and Key

into a certain compatibility function, and obtaining the output by estimating the weighted sum of Value

using the pre-computed weight. There are many types of compatibility functions which produces many fla-

vors of attention mechanism. Considering the long length of protein sequences (thousands of k-mers), we
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use the least space and time efficient version of the compatibility function namely Scaled Dot-Product

Attention (SDPA). The SDPA computes the dot product of Query and Key which is divided by
ffiffiffiffiffiffi
dk

p
where

dk denotes the Key dimension, and finally applies the softmax over it to obtain the weight.

Weight = softmax
QKTffiffiffiffiffi
dk

p (Equation 10)

In Equation 10, Weight represents a square matrix having number of rows/columns equivalent to length of

protein sequences calculated in terms of number of k-mers. Each ith row jth column value denotes the inter-

action intensiveness among ith k-mer and jth k-mer. After computing weight, every row of output that rep-

resents the statistical vector of a k-mer, can be estimated as the weighted sum of all k-mers. This is primarily

implemented through a single-matrix multiplication which can be mathematically expressed as follows:

Output = Weight � V = softmax
QKTffiffiffiffiffi
dk

p V (Equation 11)

Given, 50-dimensional statistical vectors of protein sequences, attention layer updates the values of statis-

tical features on the basis of their usefulness for PPI prediction.

Normalization layer

Neural network faces the issue of internal co-variance shift which de-stabilizes the neural network due to

change in input distribution to hidden layers of neural network when model weights are updated after

the execution of every batch (Ioffe and Szegedy, 2015). Internal co-variance shift makes the optimal weights

learned by the network during previous iterations obsolete (Ioffe and Szegedy, 2015), disturbs the conver-

gence and generalizability of the model (Ioffe and Szegedy, 2015).

Normalization addresses this issue by standardizing the input before feeding to a hidden layer for every

batch. It ensures that input-to-output mapping of a neural network does not over-specialize one particular

region of protein sequences, resulting in faster training, convergence and improved generalizability (Ioffe

and Szegedy, 2015).

Equation 12 describes the overall paradigm of normalization which normalizes each sequence xi by tuning 2

parameters g and b.

Yi = BNg;bðxiÞ (Equation 12)

Equation 13 illustrates the way mean of a given batch is computed where xi represents the current

sequence from m sequences present in a given batch b.

ub = 1
�
m

Xm
i = 1

ðxiÞ (Equation 13)

Equation 14 describes the way variance of every batch b is computed where each sequence xi is subtracted

from the mean of entire batch (ub) before aggregating and computing average using m number of se-

quences present in given batch b.

02
b = 1

�
m

Xm
i = 1

ðxi � uÞ2 (Equation 14)

Equation 15 subtracts each sequence xi frommean of the batch ub and takes fraction by standard deviation

to normalize the values between 0 and 1, which is represented with bxi .
bxi =

xi � ubffiffiffiffiffiffiffiffiffiffiffiffi
02
b + e

q (Equation 15)

In order to enable the network to adaptmean and variance of distribution, 2 parameters g and b are learned

and updated along with biases and weights during training. Final, normalized, scaled, and shifted version

of hidden distribution can be represented using Equation 16.

yi = g � bxi + b (Equation 16)
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Standard dropout layer

Dropout is a de-facto standard to regularize neural networks, which generally improves the quality of

the hidden features by alleviating the likelihood of hidden units co-adaptations problem. More specif-

ically, for every hidden unit, dropout avoids co-adaptation by iteratively tweaking the presence and

absence of other hidden units to ensure that a hidden unit can not rely on other hidden units to fix its

mistakes.

In proposed ADH-PPI methodology, each hidden unit has the probability p to be dropped where the value

of p falls in range of of 0.01-to-0.4. Mathematically (Equation 17), likelihood of omitting a hidden unit is

done according to the Bernoulli distribution with probability p. Through an element wise product of hidden

unit vector with a mask where each element is randomly sampled from Bernoulli distribution, hidden units

are dropped during training. Whereas, for testing (Equation 18), instead of dropping the hidden unit, prob-

ability for a hidden unit not to be dropped 1 � p% is estimated.

y = f ðWxÞ$m;mi � Bernoulli
�
p
�

(Equation 17)

y =
�
1 � p

�
f ðWxÞ (Equation 18)

Softmax layer

Using dense 50-dimensional representation of protein sequences, softmax layer discriminates interactive

protein pairs from non-interactive protein pairs. Categorical cross-entropy also known as softmax loss

is used as a loss function which is a simple softmax activation plus a cross entropy loss. Working of

softmax activation and categorical cross entropy are described in Equation 19 and Equation 20

respectively.

f ðsiÞ =
es
iPC
j e

s
j

(Equation 19)

CE = �
XC
i

ti logðf ðsiÞÞ (Equation 20)

In these equations, t represents one-hot encoded ground truth, si represents probability score for each

class in C and f ðsiÞ refers to softmax activation applied before the computation of cross-entropy loss.

Model training optimization

Proposed ADH-PPI model is implemented using Pytorch (Paszke et al., 2019). To perform a fair perfor-

mance comparison of proposed ADH-PPI approach with existing PPI predictors on two benchmark core

S.cerevisiae and H.pylori datasets, 10-fold cross validation is performed. ADH-PPI is trained on complete

core S.cerevisiae dataset to evaluate its performance on four independent test sets belonging to E.coli,

C.elegans, H.sapiens, and M. musculus species. To optimize the training of ADH-PPI model, learning

rate is the most crucial hyperparameter which controls how much model weights need to be updated in

response to error estimated after the execution of every batch. Choosing a learning rate is really

challenging as very small value may lead to longer training, a very large value may destabilize the training

process or learn a sub-optimal collection of weights quickly, and constant learning rate leads to saturation

where validation loss of the model stops improving. To find an optimal learning rate, we use a learning rate

or weight decay strategy which iteratively changes the learning rate if validation loss does not improve for

specific number of epochs. In this manner, model converges to optimal weights which largely reduce the

generalization error. The ADH-PPI approach is trained using the batch size of 64 and ADAMW tweaks initial

learning rate defined as 0.01-to-0.07 using decay rate defined as 0.00001-to-0.01 if categorical cross en-

tropy loss on 1% validation sequences stops improving. To facilitate the reproduceability of experimental

results, best values of different hyperparameters found through Grid search (Shekar and Dagnew, 2019;

Liashchynskyi and Liashchynskyi, 2019) with respect to two core benchmark datasets and 4 independent

test sets are provided in Table.
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Model evaluation criterion

Following the evaluation criterion of previous PPI predictors (Yu et al., 2021; Jiang et al., 2020; Wang et al.,

2020a), to perform a fair performance comparison of proposed ADH-PPI approach with existing PPI predic-

tors, we use 6 different evaluation measures namely accuracy (ACC), precision, recall, matthews correlation

coefficient (MCC), F1-score, and area under receiver operating characteristics (AU-ROC).

f ðxÞ =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Accuracy ðACCÞ = TP + FP

TP +TN+ FP + FN

Precision ðPREÞ = TP

TP + FP

Recall ðRECÞ = TP

TP + FN

MCC =
ðTP3TNÞ � ðFP3 FNÞ

ðTP + FPÞ3 ðTP + FNÞ3 ðTN+ FPÞ3 ðTN+ FNÞ

F1 � score =

�
23

½PRE3REC�
½PRE +REC�

	

(Equation 21)

In Equation 21, TP, FP, TN, FN indicate the true positives, false positives, true negatives, and false

negatives.

Accuracy (ACC) is the ratio of correctly predicted interactive and non-interactive instances with total pre-

dictions. It does not accurately measure the performance of the classifier if the dataset has unbalanced clas-

ses. Recall true positive rate, whereas precision computes upto what extent positive predictions are fully

correct. F1-score takes the harmonic mean of precision and recall. Evaluation criterion such as (PRE,

REC, F1-score) do not take true negatives into account. Whereas, matthews correlation coefficient

(MCC) takes all four TP, FP TN, FN into account to compute the performance. High value of MCC shows

that classifier is effectively distinguishing all corpus classes even when a class is under or over represented.

Area under receiver operating characteristic curve (AU-ROC) measures degree of separability of the model

at different thresholds. A high degree of separability indicates that model accurately distinguishes interac-

tive protein sequence pairs from non-interactive protein sequence pairs.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical tests are performed by making use of a python package namely Scipy (version: 1.8.0).

Optimal values of different hyperparameters of proposed ADH-PPI methodology for 2 core datasets and 4 independent test sets for the task of PPI

prediction

PPI Dataset

Degree of higher

order

residue (K-mer)

Stride

size

Sequence

embedding

dimension

Learning

rate

Weight

decay

Dropout

rate

Subsequence

regions

S.Cerevisiave 5 5 FastText-120 0.03 0.1 0.3 P-A_S-40, P-B_E-40

H.Pyloir 5 1 FastText-120 0.05 0.01 0.01 P-A_S-40, P-B_E-40

C.elegans 5 5 FastText-120 0.05 1.00 3 10�5 0.1 P-A_S-40, P-B_E-40

H.sapiens 5 5 FastText-120 0.05 1.00 3 10�5 0.1 P-A_S-40, P-B_E-40

M.musculus 5 5 FastText-120 0.05 1.00 3 10�5 0.1 P-A_S-40, P-B_E-40

E.coli 5 5 FastText-120 0.05 1.00 3 10�5 0.1 P-A_S-40, P-B_E-40
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