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Abstract: The adsorption and sensing behavior of three typical industrial toxic gases NO, NO2 and
SO2 by the Pd modified C3N monolayer were studied in this work on the basic first principles theory.
Meanwhile, the feasibility of using the Pd doped C3N monolayer (Pd-C3N) as a sensor and adsorbent
for industrial toxic gases was discussed. First, the binding energies of two doping systems were
compared when Pd was doped in the N-vacancy and C-vacancy sites of C3N to choose the more stable
doping structure. The result shows that the doping system is more stable when Pd is doped in the N-
vacancy site. Then, on the basis of the more stable doping model, the adsorption process of NO, NO2

and SO2 by the Pd-C3N monolayer was simulated. Observing the three gases adsorption systems,
it can be found that the gas molecules are all deformed, the adsorption energy (Ead) and charge
transfer (QT) of three adsorption systems are relatively large, especially in the NO2 adsorption system.
This result suggests that the adsorption of the three gases on Pd-C3N belongs to chemisorption.
The above conclusions can be further confirmed by subsequent deformable charge density (DCD)
and density of state (DOS) analysis. Besides, through analyzing the band structure, the change in
electrical conductivity of Pd-C3N after gas adsorption was studied, and the sensing mechanism
of the resistive Pd-C3N toxic gas sensor was obtained. The favorable adsorption properties and
sensing mechanism indicate that the toxic gas sensor and adsorbent prepared by Pd-C3N have great
application potential. Our work may provide some guidance for the application of a new resistive
sensor and gas adsorbent Pd-C3N in the field of toxic gas monitoring and adsorption.

Keywords: Pd-C3N monolayer; first-principles calculation; toxic gas; adsorption

1. Introduction

Nowadays, with the progress of the economy and the acceleration of industrialization,
the problem of industrial waste gases is becoming more and more serious. The industrial
production process produces a large number of industrial waste gases, and these waste
gases’ emission into the air will spread with the flow of the atmosphere, causing great harm
to the environment and threatening the physical and mental health of the people [1,2]. NO,
NO2 and SO2 are several typical toxic industrial waste gases. Hence, finding an effective
method of detecting and adsorbing these toxic gases is of great significance to protect our
living environment.

Since the typical two-dimensional (2D) material graphene was successfully synthe-
sized, 2D nanomaterial, such as transition metal dihalogen compounds [3–5], silicene [6,7],
germanene [8,9], and stannene [10,11], have attracted extensive attention in academia. The
excellent properties of these 2D materials make them have broad application prospects
in many areas [12–15]. Whereas, the zero-band gap characteristic of graphene limits its
application in the nanoelectronics field [16,17]. Thus, researchers began to explore novel
two-dimensional graphene-like materials, such as metal nitrides and carbides [18], III-V
nitrides [19–21], etc. Among these new graphene-like materials, a planar honeycomb C3N
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monolayer which can be thought of as a 2 × 2 graphene supercell substituted by two N
atoms is emerging [22,23]. C3N is a semiconductor, and one of its characteristics compared
to graphene is its indirect band gap. Owing to the substitution of N atoms, compared
with grapheme, the C3N monolayer has higher chemical activity and carrier mobility
as well as better structural stability [24,25]. Therefore, C3N may have great application
potential in gas sensing and adsorption fields [26,27]. Previous studies have shown that
intrinsic C3N is inert to many toxic gases [28]. The adsorption capacity of nanomaterial
with transition metal (TM) doping on gas molecules can be significantly improved due to
significant electron hybridization between the TM atom and gas molecule [29–31]. Zhu
et al. [32] found that the InN monolayer doped with Pd has a good application prospect in
detecting and removing toxic gases CO and NO. Ma et al. [33] found that the Au, Pt, Pd
and Ni modified MoS2 monolayers have good sensing performance for CO and NO gases.
Therefore, the doping of Pd may enhance the adsorption capacity of C3N to toxic gases NO,
NO2 and SO2. However, so far, few research has been executed in the adsorption properties
of the TM doped C3N (TM-C3N) monolayer for toxic gases such as NO, NO2 and SO2.

Based on first principles, the doping behavior of Pd on C3N and the adsorption
properties of Pd-C3N for NO, NO2 and SO2 were studied in this study. Further, to study
the adsorption properties and sensing mechanism of Pd-C3N for three kinds of toxic gases,
the Ead, QT, DCD, DOS and band structure were analyzed. The results show that NO, NO2
and SO2 can be stably adsorbed by Pd-C3N, which can be recognized as chemisorption.
The adsorption properties and sensing mechanism of Pd-C3N for toxic gases obtained in
this work provide a theoretical basis for further study of the toxic gas resistive sensor and
adsorbent prepared by Pd-C3N.

2. Computation Methods

All the theoretical calculations on the basic density functional theory (DFT) in this
paper were carried out in the dispersion-corrected DMol3 package [34,35]. The exchange-
correlation between electrons was handled by the Perdew–Burke–Ernzerhof (PBE) function
under the generalized gradient approximation (GGA) to better describe the non-uniform
electron density of the system which was closer to the experimental situation [36–38]. The
DFT-D method, which was customized by Grimme, was used to understand van der Waals
force and long-range interactions better [39]. We used DFT semi-core pseudopotential
(DSSP) to handle the effects of core electron relativity and chose double numerical plus
polarization (DNP) to calculate the density function of each model [40–42]. In terms of
the setup of Monkhorst-Pack k-point mesh, 7 × 7 × 1 was set for geometric optimization
and 10 × 10 × 1 for the calculation of static electronic structure [43]. The energy tolerance
accuracy, maximum force, and displacement were severally set as 10−5 Ha, 0.002 Ha/Å
and 0.005 Å [44].

A 2 × 2 × 1 C3N supercell with 28 C atoms and 13 N atoms was built. In order to
prevent the adjacent layers from interacting with each other, the vacuum region was set
to 15 Å [45]. The lattice constant of the fully optimized C3N monolayer was calculated as
4.92 Å, which was basically consistent with the previous report (4.9 Å [46]). The Hirsh-
feld method was adopted to study the electronic behavior of atoms and molecules [47].
Meanwhile, charge transfer (QT) is defined to describe the electronic behavior of Pd doping
and gas adsorption systems. A positive QT value means the analyte acts as an electron
donator, on the contrary, a negative QT value means that the analyte acts as an electron
acceptor [48].

3. Results and Discussions
3.1. Isolated Gas Molecules and Pd-C3N Monolayer

Figure 1 displays the optimized structural models of the intrinsic C3N monolayer and
three gas molecules NO, NO2 and SO2. At the same time, Table 1 lists the geometrical
parameters of the optimized three kinds of gas molecular configurations and Table 2 lists
the single atom charges of gas molecules in the gas phase.
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Figure 1. Optimized configuration of (a) C3N monolayer, (b) NO, (c) NO2 and (d) SO2.

Table 1. Geometrical parameters of NO, NO2 and SO2.

Gas Bond Length (Å) Bond Angle (◦)

NO N-O 1.164 - -
NO2 N-O 1.210 O-N-O 133.487
SO2 S-O 1.480 O-S-O 119.970

Table 2. Single atom charges of gas molecules in the gas phase.

Gas N O S

NO 0.035 −0.035 -
NO2 0.375 −0.188 -
SO2 - 0.454 −0.227

According to previous report, the metal atom can be stably adsorbed by the C3N
monolayer with one C atom or one N atom deficiency (simplified as VC-C3N and VN-C3N
below) due to the strong electrostatic attraction where electronic localization occurs [49].
Therefore, to obtain the most stable doping structure, priority was given to the Pd atom
doping at the C-vacancy or N-vacancy site on the C3N monolayer. The two optimized
doping configurations are shown in Figure 2. When Pd is doped at the C-vacancy site, the
length of Pd-C and Pd-N is significantly different, which are 1.979 and 2.518 Å, respectively.
However, when Pd is doped at the N-vacancy site, the three Pd-C bonds have basically
the same length, 2.004, 2.006 and 2.008 Å, respectively. This result shows that the doping
system with Pd doping at the N-vacancy site has better central symmetry. In this paper,
the stability of the doping system is evaluated by binding energy (Eb), and the calculation
formula is as follows:

Eb= EPd−C3 N − Evacancy−C3 N − EPd (1)

In the above formula, EPd−C3 N denotes the energy of the Pd-doped system, and
Evacancy−C3 N and EPd denote the energy of the defective C3N and Pd atom, respectively.
The binding energies of Pd doping at the C-vacancy site and N-vacancy site are −4.080 and
−5.023 eV, respectively. This result indicates that Pd tends to be doped at the N-vacancy
site, because the doping system at this time is more stable.

To further study the electronic behavior of Pd-C3N, we calculated DCD and DOS, as
displayed in Figures 2 and 3, respectively. In the DCD of Figure 2, the areas with increased
charge density are shown in red, while the areas with decreased charge density are shown
in blue. As shown in Figure 2b, in the doping system where Pd doped is in the N-vacancy
site, the charge density around Pd and C atoms decreases, while the charge density around
N atoms increases. This result implies the electron-losing property of the Pd atom. In other
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words, the Pd atom transfers electrons to the VN-C3N monolayer. Meanwhile, the electron
density between the Pd atom and C atom is very high, which suggests that a stable chemical
bond in Pd-C is formed, so Pd can be stably adsorbed by VN-C3N. As can be seen from
the total DOS of Pd-C3N, the spin up and spin down curves are highly symmetrical. This
phenomenon shows that the doping system is not magnetic. Besides, the doping of Pd
induces several impurity states, leading to some new peaks of total DOS after doping in
the vicinity of −5.5, −4.0, 0.2, 1.0 and 2.0 eV. New peaks can be observed at the top of
the valence band and at the bottom of the conduction band, indicating that Pd doping
contributes greatly to the states near the Fermi energy. According to Figure 3b, huge
hybridization occurs between Pd 4d orbital and C 2p orbital at multiple energy levels, such
as −5.5, −2.7, −2 and 0.2 eV. This phenomenon confirms the previous conclusion that Pd
can form a stable chemical bond with C and can be stably adsorbed by VN-C3N. Through
the analysis of DCD and DOS, it can be concluded that the electronic behavior of VN-C3N
has a significant change after doping with the Pd atom.
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3.2. Adsorption Analysis of Pd-C3N Monolayer to NO, NO2, SO2

In order to fully compare various possible configurations of the three gas adsorption
systems and find the most stable one for analysis, NO, NO2 and SO2 were placed in
different directions on top of the Pd-C3N monolayer. Adsorption energy (Ead) can describe
the energy change of each adsorption structure, so it can be used to assess the stability of
the system after adsorption of gas. The calculation formula of Ead is as below:

Ead= EPd−C3 N/gas − EPd−C3 N − Egas (2)

In the above formula, EPd−C3 N/gas and EPd−C3 N respectively represent the energy
before and after the adsorption of gas by Pd-C3N, and Egas represents the energy of the
isolated gas molecule. The adsorption energies of the three gas adsorption systems are
all negative, suggesting that the gas adsorption process of Pd-C3N is accompanied by the
release of heat. Choose the structure with the lowest Ead, that is, the most stable config-
uration for subsequent works (as displayed in Figure 4). To understand the mechanism
of charge transfer better, deformed charge density (DCD) is also described in Figure 4.
Meanwhile, Tables 3 and 4 show the specific characteristic parameters of the three gas
adsorption systems.
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Figure 4. The steadiest adsorption configuration of gas on the Pd-C3N monolayer and the DCD of this configuration (a) NO;
(b) NO2 and (c) SO2 adsorption systems.

In the NO adsorption system, the NO molecule is adsorbed on top of the Pd atom
and perpendicular to the C3N plane. When NO is adsorbed, the N-O bond elongates from
1.164 to 1.188 Å, indicating that the NO molecule has certain activity during the adsorption
process. The Ead of the NO adsorption system is −1.83 eV, so the adsorption of NO by the
Pd-C3N monolayer can be identified as chemisorption. Meanwhile, according to the DCD
in Figure 4a, the charge density near N atoms and O atoms increases. From the molecular
point of view, NO has a 0.122 e negative charge, indicating the electron-receiving property
of NO. During the interaction with the Pd-C3N monolayer, NO obtains 0.122 e from it.
According to Figure 4b,c, NO2 and SO2 tend to be adsorbed on one side of the Pd dopant
in the Pd-C3N monolayer rather than on the top. In addition, the adsorbed NO2 and SO2
molecules are negatively charged, which means that they both act as electron acceptors to
absorb 0.407 e and 0.177 e from the Pd-C3N monolayer, respectively. In the NO2 adsorption
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system, the N-O bond elongates to 1.281 Å compared to the 1.210 Å in the isolated phase.
At the same time, the O-N-O bond angle of the NO2 molecule in the adsorption system
decreases from 133.487◦ in the gas phase to 111.674◦. This significant deformation indicates
that NO2 has obvious geometric activation during its interaction with the Pd dopant.
Besides, the charge density near the N atom in the NO2 adsorption system decreases, while
the charge density near the O atom increases. In addition, the Ead of the NO2 adsorption
system is −2.74 eV, which indicates that NO2 has an ideal chemisorption on the surface
of Pd-C3N, which is supported by large QT (−0.407 e) and geometric deformation. In the
SO2 adsorption system, the S-O bond elongates from 1.480 to 1.495 Å, while the O-S-O
bond angle decreases from 119.970◦ to 119.932◦, suggesting that SO2 is activated when
interacting with the surface of Pd-C3N. The Ead of the SO2 adsorption system is −1.61 eV,
QT is −0.177 e, which can be used to identify the adsorption as chemisorption.

Table 3. The geometrical parameters of three gas adsorption systems.

System The Length of Bond (Å) Bond Angle (◦) Adsorption
Distance (Å)

Pd-C3N +
NO

N-O 1.188 - 1.904
Pd-C 2.046, 2.046,

2.050

Pd-C3N +
NO2

N-O 1.281
O-N-O 111.674 2.202

Pd-C 1.978, 1.979,
2.016

Pd-C3N +
SO2

S-O 1.495
O-S-O 119.932 2.261

Pd-C 2.046, 2.044,
1.990

Table 4. The characteristic parameters of three gas adsorption systems.

System Atom Mulliken
Charge (e) QT (e) Ead (eV)

Pd-C3N + NO
N −0.033 −0.122 −1.83O −0.089

Pd-C3N + NO2

N 0.270
−0.407 −2.74O1 −0.338

O2 −0.339

Pd-C3N + SO2

S 0.457
−0.177 −1.61O1 −0.303

O2 −0.331

Previous reports have shown that Ead of the intrinsic C3N monolayer adsorption sys-
tem for NO, NO2 and SO2 is −0.248, −0.840 and −0.584 eV, respectively [28]. Comparing
to the results in this study, it can be found that the adsorption capacity of Pd-C3N for NO,
NO2 and SO2 was significantly higher than that of intrinsic C3N. At the same time, the ad-
sorption process of three kinds of gas molecules by the Pd-C3N monolayer is accompanied
by a relatively large charge transfer, which indicates that the adsorption of gas will lead
to the redistribution of electrons in the whole system and change the electronic behavior
of Pd-C3N. To further explore the electronic behavior of Pd-C3N during the adsorption of
NO, NO2 and SO2, DOS is analyzed in the following.

3.3. DOS Analysis of NO, NO2 and SO2 Adsorption Systems

DOS is an important parameter for studying the electronic behavior of the interaction
between gas and the Pd-C3N surface. According to Figure 5, the total DOS (TDOS) of
the three adsorption systems shift to the right in different degrees compared with the
Pd-C3N monolayer, and some new peaks appear nearby the Fermi level. In the TDOS of
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NO adsorption system, novel peaks appear in the vicinity of −1, −0.1 and 2 eV, while in
NO2 and SO2 adsorption systems, the new peaks appear in the vicinity of −1.5, −0.3 and
0.3 eV. Besides, there are multiple activated states in the gas molecules due to the interaction
between it and the surface of the Pd dopant. Then, the orbital hybridization of these activated
states with Pd 4d results in new peaks in the TDOS of the three adsorption systems. In
particular, the activated states of gas molecules lead to a certain degree of deformation of
the states at the top of the conduction band and the bottom of the valence band, which
indicates that the adsorption of gas will affect the electronic behavior of Pd-C3N.
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Atomic DOS (PDOS) is shown in Figure 5. In the NO adsorption system, the N 2p
and O 2p orbitals of activated NO have certain hybridization with Pd 4d orbitals at −8,
−7, 0 (Fermi level) and 2.2 eV. According to the atomic DOS of the NO2 adsorption system,
the Pd 4d orbital is strongly hybridized with N 2p and O 2p orbitals around −8, −7.2 and
2 eV, resulting in a relatively large charge transfer between NO2 and Pd-C3N. In the atomic
DOS of SO2 adsorption system, S 2p, O 2p and Pd 4d orbital have strong hybridization at
energy levels of −6.3, −2.5, −0.2 and 2 eV, indicating that there is a good orbital interaction
between SO2 and Pd dopant. The strong hybridization between the atomic orbitals of the
three gas molecules and Pd 4d orbital again confirms that NO, NO2 and SO2 can be stably
adsorbed by Pd-C3N.

In summary, the strong interaction between three gases and Pd-C3N during gas
adsorption process significantly affects the electronic behavior of Pd-C3N.

3.4. Band Structure Analysis of NO, NO2 and SO2 Systems

To further study the change in electrical conductivity of Pd-C3N after adsorbing gas,
we calculated and analyzed the band structure of three adsorption systems (Figure 6). In the
band structure, the energy interval with zero energy state density between the conduction
band and the valence band is called the band gap [50,51]. The narrower the band gap, the
more easily the electron can be excited across the band gap, the higher the conductivity.
According to Figure 6a, the band gap of the Pd-C3N monolayer is 0.203 eV, which is much
narrower than that of C3N (0.44 eV [52]). Besides, the band structure of the doping system
does not have an impurity state beyond the Fermi level. Thus, C3N doped with the Pd atom
still has semiconductor property. In the band structure of NO and SO2 adsorption systems
(Figure 6b,d), the new impurity level surpassing the Fermi energy appears at the top of the
valence band, causing a zero band gap for both systems. Therefore, the adsorption of NO
and SO2 can be deemed to strong p-type doping for Pd-C3N [53]. According to Figure 6,
the band gap of NO and SO2 adsorption system is 0 eV, while that of NO2 adsorption
system is 0.091 eV. It can be seen that the band gaps of these three adsorption systems are
much narrower than that of Pd-C3N. This result shows that the conductivity of Pd-C3N is
observably improved after adsorbing gas, especially after adsorbing NO and SO2. Through
calculating and analyzing the band structure of the three adsorption systems, it is helpful
to further understand the sensing mechanism of the resistive chemical sensor prepared
by Pd-C3N.
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4. Conclusions

The adsorption performance and sensing mechanism of the Pd-C3N monolayer for
three kinds of industrial toxic gases NO, NO2 and SO2 were explored based on first
principles. The DCD, DOS and band structure were considered to study the change in
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electronic behavior and conductivity of Pd-C3N after adsorbing gas. The main conclusions
of this study are listed as below:

1. The Pd dopant is more likely to be adsorbed on the N-vacancy site of the C3N than
the C-vacancy site, because the lower binding energy (Eb = −5.023 eV) of this doping
system implies a more stable structure.

2. NO, NO2 and SO2 can be stably adsorbed by the Pd-C3N monolayer and the adsorp-
tion can be identified as chemisorption. Besides, the adsorption energy (Ead) of the
Pd-C3N/gas system is much higher than that of the C3N/gas system. Among three
gas adsorption systems, Ead and QT of the NO2 system are the largest, which indicates
that Pd-C3N has the strongest adsorption performance for NO2.

3. Through the analysis of DOS, it is found that the gas molecules are activated during
the interaction with the Pd dopant surface. The orbital hybridization of these activated
states with Pd 4d give rise to new peaks in the TDOS of the three adsorption systems,
which influences the electronic behavior of Pd-C3N.

4. Through analyzing the band structure, it can be discovered that the band gap of
Pd-C3N becomes narrower after adsorbing NO, NO2 and SO2, which significantly
improves the conductivity of Pd-C3N, especially after adsorbing NO and SO2.

To sum up, the calculation in this paper can offer some theoretical basis for the further
study of Pd-C3N as a resistive sensor and gas adsorbent for the monitoring and adsorption
of typical industrial toxic gases in the environment.
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