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ABSTRACT We deeply sequenced two pairs of widely used infectious clones (4
plasmids) of the bipartite begomoviruses African cassava mosaic virus (ACMV) and
East African cassava mosaic Cameroon virus (EACMCV). The ACMV clones were quite
divergent from published sequences. Raw reads, consensus plasmid sequences, and
the infectious clones themselves are all publicly available.

Infectious clones are a central tool of molecular virology. Circular single-stranded
DNA viruses such as begomoviruses are often cloned in a two-step process to create

partial tandem dimers containing two copies of the virus origin of replication, a config-
uration that enhances infection (1). Cloned isolates of African cassava mosaic virus
(ACMV) and East African cassava mosaic Cameroon virus (EACMCV) provided conclu-
sive proof of synergy between two major clades of cassava begomoviruses (2), which is
a defining feature of the epidemic of mosaic disease that has devastated cassava pro-
duction in sub-Saharan Africa (3, 4). Here, we announce new sequence resources for
these frequently used clones, which confirm the EACMCV clones and clarify the iden-
tity of the ACMV clones.
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TABLE 1 GenBank and Addgene identifiers for the four previously described infectious
clones and corresponding virus (monomer) sequencesa

Virus
segment

Data for viruses Data for plasmids

GenBank
accession no.

Segment
length (nt)b

G+C
content (%)

GenBank
accession no.

SRA accession
no.

Addgene
ID

ACMV
DNA-Ac

MT858793 2,781 44.7 MT856193 SRX8853831 159134
SRX8853832
SRX8853835

ACMV
DNA-Bd

MT858794 2,725 40.8 MT856194 SRX8853836 159135
SRX8853837
SRX8853838

EACMCV
DNA-Ae

AF112354 2,800 45.1 MT856195 SRX8853839 159136
SRX8853840
SRX8853841

EACMCV
DNA-Bf

FJ826890 2,732 44.1 MT856192 SRX8853833 159137
SRX8853834
SRX8853842

a Six complete sequences are described for the first time here, whereas AF112354 and FJ826890 were previously
described (2, 5, 6).

bnt, nucleotides.
cpBluescript II KS(+) ACMV DNA-A 1.4mer.
dpUC19 ACMV DNA-B 1.5mer.
epBluescript II KS(+) EACMCV DNA-A 1.6mer.
fpSL1180 EACMCV DNA-B 1.6mer.
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Complete and accurate plasmid sequences considerably simplify the molecular
analysis of infectious clones and the design of new constructs. To confirm the sequen-
ces of the four plasmids listed in Table 1, we grew transformed Escherichia coli DH5a
cultures overnight at 37°C with ampicillin selection and purified each plasmid with the
Qiagen plasmid maxi kit. Libraries were prepared from Covaris-sheared plasmid DNA in
triplicate with the NEBNext Ultra II kit and sequenced on the Illumina NextSeq 500 plat-
form in the 150-bp paired-end read configuration.

These plasmids have been described (2, 5, 6) but not fully sequenced, so we
deduced sequence maps (including partial tandem dimer virus segment inserts) based
on the restriction sites used for cloning. Reads were trimmed with Cutadapt v1.16 (7)
and aligned to these sequences, listed in Table 1, with the Burrows-Wheeler Aligner
MEM algorithm (BWA-MEM) v0.7.13 (8). Variants relative to each reference sequence
were identified with SAMtools v1.8 (9) and VarScan v2.4.4 (10). We corrected each plas-
mid sequence and aligned reads to it a second time.

The EACMCV DNA-A and DNA-B clones had four and two single-nucleotide differences,
respectively, relative to their corresponding sequences in GenBank (accession numbers
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FIG 1 Plots of Illumina read depth across the length of the four infectious clone plasmids. One of three libraries is shown for each
plasmid (Sequence Read Archive accession numbers SRR12354432, SRR12354427, SRR12354424, and SRR12354421). The region in
each plasmid corresponding to each virus segment partial tandem dimer unit is indicated with a black line under each graph. Vertical
white lines demarcate the boundaries of the unique and duplicated regions of each concatemer. Each virus segment monomer unit
(between two replication origin nick sites) is shown in blue. Canonical virus genes are indicated with gray arrows, left to right for
virus sense (AV1, AV2, and BV1) and right to left for complementary sense (AC1 to AC4 and BC1). The uneven read depth for the
ACMV DNA-B plasmid is due to instability (truncation), which is evident in single-cut restriction digests (not shown). Such partial
deletion of tandem duplicated regions in E. coli is not uncommon (24).
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AF112354.1 and FJ826890.1, respectively). Relative to the new sequences (in the standard
coordinate system starting from the virus replication origin nick site), these differences
were T139A, G161R, T181TC, and A206AC for DNA-A and T1671G and A2724AT for DNA-B.
The consensus sequences of the ACMV clones, however, were 3.1% and 5.8% divergent
from the sequences (GenBank accession numbers AF112352.1 and AF112353.1) originally
reported by Fondong et al. (2), as calculated with Sequence Demarcation Tool v1.2 (11).
This difference was not entirely unexpected, because of the parallel history of two sets of
ACMV clones; infectious partial tandem dimer clones were made via restriction digestion/
ligation from sap-inoculated Nicotiana benthamiana plants, whereas the monomer seg-
ment unit clones were cloned with PCR from the same original cassava field sample (2).
We expect that these complete infectious clone sequences will be of great utility to the
community, given that many follow-up publications (12–23) specifically referenced the
related but nonidentical monomer sequences (AF112352.1 and AF112353.1).

We obtained deep coverage, over 18,000-fold across all positions for all four plas-
mids, with an average of 157,000-fold coverage (Fig. 1). This read depth was consistent
across three separate libraries for each plasmid and ensures the correctness of the par-
tial tandem dimer sequences. Our results underscore the value of confirming the
sequences of molecular clones.

Data availability. Plasmids are available from Addgene, and sequences for full plas-
mids and ACMV segments are available in GenBank (Table 1). The raw Illumina data are
available from the NCBI Sequence Read Archive (PRJNA649777; Table 1). Data process-
ing code has been archived as Zenodo record 4075362 (https://zenodo.org/record/
4118067).
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