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Continuous control of classical-quantum crossover
by external high pressure in the coupled chain
compound CsCuCls

Daisuke Yamamoto® 2%, Takahiro Sakurai®®, Ryosuke Okuto?, Susumu Okubo®, Hitoshi Ohta® >,
Hidekazu Tanaka® & Yoshiya Uwatoko® ’

In solid materials, the parameters relevant to quantum effects, such as the spin quantum
number, are basically determined and fixed at the chemical synthesis, which makes it chal-
lenging to control the amount of quantum correlations. We propose and demonstrate a
method for active control of the classical-quantum crossover in magnetic insulators by
applying external pressure. As a concrete example, we perform high-field, high-pressure
measurements on CsCuCls, which has the structure of weakly-coupled spin chains. The
magnetization process experiences a continuous evolution from the semi-classical realm to
the highly-quantum regime with increasing pressure. Based on the idea of "squashing” the
spin chains onto a plane, we characterize the change in the quantum correlations by the
change in the value of the local spin quantum number of an effective two-dimensional model.
This opens a way to access the tunable classical-quantum crossover of two-dimensional spin
systems by using alternative systems of coupled-chain compounds.
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ince the inception of quantum mechanics, it was recognized

that the apparent dichotomy between quantum and classical

physics was to be resolved, in the sense that any consistent
quantum theory should retrieve the predictions of the classical
theory in the limit of large quantum numbers!. It just so happens
that unique quantum phenomena, such as quantum super-
position and quantum correlation, generally become unobser-
vable when such regime is approached. This fundamental aspect
carries over to the second quantum revolution, given that
quantum information and quantum technologies are based on
the theory of quantum decoherence, which studies nothing but
the interactions of a quantum system with a system with a large
number of degrees of freedom (the environment)?. External
control of the classical-quantum crossover would be not only
intriguing, but of primary theoretical and experimental interest. A
certain degree of success has been obtained in this direction with
photonic® or optomechanical systems*. This work aims to
demonstrate a way to achieve such control in much less flexible
systems, namely a class of solid-state materials.

High-pressure application is one of the few experimental tools
that can drastically change the microscopic physical parameters
of materials. Effects of high pressure on material characteristics
have recently been studied with considerable interest in the
broad area of condensed-matter physics, having led to intriguing
phenomena including pressure-driven  room-temperature
superconductivity®, topological phases®’, and the softening of
Higgs mode in spin-dimer magnets®°. In particular, frustrated
quantum many-body systems are promising examples expected to
feel significant pressure effects since the frustration due to com-
peting interactions gives rise to a large number of low-energy
states with small energy differences, which enhance the relative
impact of external pressure!0-12, Besides, even small quantum
fluctuations could also play an essential role in determining the
physical properties!3-1>. Therefore, operating with external
pressure on frustrated quantum materials could pave the way to
actively control the amount of quantum correlations across the
classical and quantum-mechanical regimes and explore exotic
phenomena taking place in the crossover.

One exciting yet challenging example of frustrated quantum
systems is the class of triangular-lattice antiferromagnets
(TLAFs)!6, The lattice geometry based on triangle units prohibits
the standard antiferromagnetic order with an antiparallel align-
ment of neighboring spins. Owing to the geometrical frustration
combined with magnetic anisotropy, external magnetic fields,
fluctuations effects, etc., TLAF compounds exhibit a rich variety
of magnetic phases!3-23, A schematic ground-state phase diagram
of two-dimentional (2D) TLAFs with exchange (or single-ion)
anisotropy of easy-plane type under the magnetic field H applied
perpendicular to the easy plane is shown in Fig. 1a, which sum-
marizes the well-established!4-1 and the recently predicted?0-23
theoretical results. The reciprocal of the spin quantum number, 1/
S, of magnetic ions in the material usually serves as a good
indicator of the quantum correlation strength; specifically, 1/S =
2 is the most quantum while 1/S — 0 is classical.

Whereas the ground state of TLAFs at some fixed parameter
planes is being revealed, much less is known about what happens
inside the three-variable phase diagram of Fig. la. There also
remain other open problems, especially on essential differences
between the classical (small 1/S) and quantum (large 1/S) regime.
For example, it should be interesting if one can examine the
continuous change in the nature of magnetic collective excitations
from the semi-classical regime of “magnons” carrying spin-1 to
the highly quantum regime of “spinons” carrying spin-1/224-31,
Note that the latter is expected to appear only with additional
factors, such as a deformation of triangular lattice?”-28 and
longer-range couplings®Y, beyond the regular TLAF with nearest-
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Fig. 1 Ground state of easy-plane triangular-lattice antiferromangets. a
Schematic ground-state phase diagram in the space of the magnetic field H
scaled by the saturated field strength H, the reciprocal of spin quantum
number S, and easy-plane anisotropy LH. The phase boundaries on the
plane of no anisotropy (on the back face) are obtained by the 1/S expansion
method with the “cutting-at-1/3" procedure'® (solid lines) and coupled-
cluster method'® (red dots). Those on the planes of S=1/2 and H/Hs — 1
(on the right and top faces, respectively) are sketches based on the
predictions of ref. 20 and refs. 21-23, respectively. The approximate locations
of some relevant materials®9-73 are indicated by the filled circles. b-e
Illustrations of the sublattice spin moments in each phase appearing in a.

neighbor interactions. Whereas “1/S” has been often treated as a
continuous variable in the widely used analysis method, called the
1/S expansion!®1>18, in real materials, however, the spin S is
basically fixed to a certain integer or half-integer value at the
chemical synthesize. This makes it difficult to study the con-
tinuous change in the nature of materials from the classical to
quantum regime.

Here we propose the concept of actively controlling the
amount of quantum correlations, or more specifically, the value of
“1/S,” in a continuous manner by applying external pressure in
the laboratory. The main idea is the use of materials with a
coupled-chain structure, such as ABX;-type hexagonal per-
ovskites (A = Rb, Cs, B=V, Cr, Mn, Fe, Co, Ni, Cu, and X=F,
Cl, Br, 1),32-34. Introducing a “squash” mapping, we show that the
magnetic properties of coupled spin chains can be phenomen-
ologically described by a single-layer TLAF model with effective
spin S. The crucial experimental step is a series of precise mag-
netic measurements conducted under high pressure up to P=
1.21 GPa on a CsCuCl; single crystal>>-41, which allows us to
determine the exchange couplings to great accuracy and, conse-
quently, extract the parameters of the effective model. We thus
demonstrate that the value of effective spin S can be actually
controlled by external pressure through the change in the mate-
rial parameters. This idea of controlling the classical-quantum
crossover via the squash mapping is expected to be applicable also
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Fig. 2 Squash mapping. Illustration of the concept of mapping from
coupled-chain model with spin S, intrachain coupling Jo, and interchain
coupling J; to an effective single-layer model with spin S and coupling J.

to other platforms, including cold atoms in optical lattices??,
trapped ions*3, and Rydberg atoms in arrays of optical tweezers*4,
as well as directly to the other materials of the ABX;-type, such as
CsNiF;33 and RbCuCl;34, and to the other coupled-chain com-

pounds with different lattice geometries.

Results

Coupled-chain TLAF and its squash mapping. The hexagonal
antiferromagnets of the ABX; type32-3* have spin chains along
the ¢ axis, which form triangular lattices on the ab planes (see
Fig. 2). We describe the magnetic properties of the coupled-chain
TLAFs under magnetic fields parallel to the ¢ axis by the following
Hamiltonian with spin-$ operators §;, on site i of the n-th tri-
angular layer:

~ A - ~Z ~Z
H= =2], %‘(szxn St — Aosimsi.,nﬂ)
’ . o (1)
+2J, <.Z>: Si,n . Sj,n — HZSM7
ij),n in

where the intrachain and interchain exchange couplings are
assumed to be ferromagnetic and antiferromagnetic, respectively
(Jo»J1 > 0). Here, we took into account the possible existence of
easy-plane anisotropy perpendicular to the ¢ axis (Ay>0) in the
intrachain coupling, which is the case for CsCuCl;3>-41:4,

The key of the squash mapping is the following intuitive idea.
In weakly coupled spin chains (J; < Jp), the time scale of the
intrachain spin-spin correlations along the ¢ axis is expected to be
much shorter than that of the interchain correlations in the ab
plane. The difference in the time scales may be characterized by
the ratio of the intrachain to interchain coupling, &; = Jo/J;, which
is ~5.5-6.5 for CsCuCl;30-3840, From the standpoint of the
interchain interactions, therefore, the spins along each chain may
appear to move together to make up a single “large” spin S,— with
an effective spin quantum number S>S, as illustrated in Fig. 2.
From this intuitive idea, one could introduce the following
phenomenological spin model:

X ~ -~ ~z\2 ~Z
H=21§5i-sj+Az(si) ~HY.S @)
1 1 1

with spin § > § on a “single layer” of triangular lattice. It is
natural to take into account the uniaxial two-ion exchange
anisotropy along the chains by introducing uniaxial single-ion
anisotropy in the effective model, given that the spins along each
chain i are squashed into S,. The effective coupling constant J and
the effective anisotropy A should be related to the ones in the
original model as

N 48

J==J],and A=—

—— Ty, 3
S 51 )

such that the two models share the same value of the saturation
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Fig. 3 Magnetization processes. Sketches of the magnetization possesses
of the coupled-chain compound CsCuCls a in the semiclassical regime
under ambient or low pressure and b in the highly quantum regime under
high pressure. The phase transition points (His, Ho, Hez) and the saturation
field (Hs) are marked on the horizontal axis.

magnetic field:
H, = (18], + 4J,A,)S = 18]S + A(2S — 1). (4)

The fitting method for the remaining parameter S will be
discussed later for a specific case.

The above squash mapping constitutes effective dimensional
reduction and spin transmutation for coupled-chain models. The
effective spin quantum number S will serve as a more suitable
indicator of quantum correlation strength in weakly coupled spin
chains, rather than the bare value of S.

Pressure dependence of magnetic couplings in CsCuCl;.
Hereafter, we take the S=1/2 coupled-chain TLAF compound
CsCuCl; as a specific example to pursue the subject. In CsCuCls,
the intrachain coupling possesses extra Dzyaloshinskii-Moriya
(DM) interaction, which causes a long-wavelength helical spin
structure along the ¢ axis*®. However, one can eliminate the DM
interaction by performing a proper twist of the local spin
coordinates!® (see Supplementary Note 1 for details). When
viewed in the twisted spin space, the intrachain helical spin
structure appears as uniform (ferromagnetic) spin alignment
along the ¢ axis, allowing us to use the model Hamiltonian in the
form of Eq. (1) and to apply the squash-mapping picture shown
in Fig. 2. This transformation is effectively applicable for the
magnetic field H]|c, since the form of the Zeeman term is not
affected by the twist along the ¢ axis.

It is well known!# that the magnetization curve of TLAFs with
strong quantum correlations exhibits a plateau structure at one-
third of the saturation magnetization M; in a certain field range,
H. <H < H,,. The previous high-field experiments for CsCuCl;
had reported only the existence of a first-order phase transition
with no plateau for H||c at low temperatures3>3%41:45 which has
been interpreted as the transition from the “umbrella” to “V-
coplanar” state!>#> (Fig. 3a). The transition point H, is shifted
towards lower fields as the temperature increases; specifically,
Hi=125T at 1.5K and H i = 6 T at 10 K!1045, Recently, it has
been reported that applying high hydrostatic pressure P> 0.7
GPa has induced the appearance of the one-third magnetization
plateau!?, which has suggested the stabilization of the collinear
“UUD” state and possibly the “Y-coplanar” state (Fig. 3b). The
sublattice spin moments in each state are illustrated in Fig. 1c, d.
The plateau formation indicates that the quantum correlations in
CsCuCl; are drastically enhanced by external pressure. However,
the specific pressure dependence of the Hamiltonian parameters
and the microscopic origin of the plateau formation have not
been revealed yet.

To quantify the pressure effects, we first perform magnetic
measurements on a single crystal of CsCuCl; under hydrostatic
pressure conditions up to P=1.21 GPa for the temperature
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dependence (below 100K) of the magnetic susceptibility at
magnetic field 1 T and the low-temperature (1.8 K) magnetization
curve up to 5 T. Using the measured data shown in Fig. 4 as well
as the previously reported values of the first-order transition
points Hy at the lowest temperature (1.5 K) available in ref. 10,
we quantitatively estimate the pressure dependence of the
magnetic coupling parameters Jo, A, and J; in the original
model, Eq. (1), through the fittings with theoretical predictions
for the ground state. For the fittings, we employ the tenth-order
high-temperature expansion®” for the magnetic susceptibility and
the 1/S-expansion method!® for the magnetization curve and the
first-order transition points. In the latter, the energy is expressed
in power series of 1/S and anisotropy A, as

(©)

where S2E, is the classical energy for the isotropic system. Here,
we take into account up to the leading order corrections from the
anisotropy, SZEAO, and quantum effects within the linear spin-

wave theory, SE;sw!#1°. The magnetization curve is obtained by
M(H) = — dE(H)/dH'8. The theoretical values of the magnetic
field H and the magnetization M are converted into T (tesla) and
p/Cu?t, respectively, using the g factor, which has been
estimated to be 2.11 by the ESR measurements at room
temperature, almost independently of pressure within the
experimental precision*8. The saturation magnetization per spin
is thus given as M= gupS=1.055pp. See Methods for more
details.
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Fig. 4 Magnetic susceptibility and magnetization curves under pressure.
a Longitudinal susceptibilities ; at H=1T and b magnetization curves at
T=18K for a CsCuCls crystal under different pressures, P=0, 0.14, 0.34,
0.49, 0.82, 1.05, 1.21 GPa (from top to bottom) when a magnetic field is
applied along the ¢ axis. The magnetization M is scaled by the saturation
value M.
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Figure 5a, b shows the values of J,, Ao, and Jj, giving the best
fits between experiment and theory. Applying the least squares
fittings to the values obtained at each pressure, we determine the
following model functions Jo(P), Ag(P), and J;(P) for pressure P in
GPa:

Jo(P)/kg = 28.45 — 10.49P [K], (6)
Ay(P) = 0.014 + 0.005P 4 0.005P2, )
J,(P)/ky = 4.86 + 2.03P [K]. (8)

The values of the model functions at P =0, Jo/kg = 28.45 K, Ay =
0.014, and Ji/kg=4.86 K, are consistent with the previous
estimates at ambient pressure30-3840, In Fig. 5c, d, we plot the
intrachain-to-interchain coupling ratio «;(P) = Jo(P)/];(P) and
the rescaled anisotropy parameter A(P) = a;(P)A¢(P),!>4° which
characterize well the change of the material property. The
parameter ay(P) is strongly reduced (by half at P~ 1 GPa), which
indicates that a CsCuCl; crystal with weakly coupled quasi-1D
spin chains turns into a more 3D system by applying hydrostatic
pressure. On the contrary, the rescaled anisotropy A(P)
experiences only a 20 percent reduction.

Phase diagram and magnetization curve. Using the model
parameters of Egs. ((6)-(8)) and evaluating the energies of dif-
ferent phases up to the leading order corrections from anisotropy
and quantum effects [Eq. (5)], we obtain the theoretical ground-
state phase diagram in the plane of magnetic field H and pressure
P as shown in Fig. 6. The previous experimental observations by
Sera et al.l¥ on the anomalies in the magnetization curves are
plotted together. Note that in the experimental data, the values of
the pressure P are reevaluated using the calibration scheme
that we use in the current work (see Methods). The plateau
endpoints for P=0.83 and 0.9 GPa are unclear within the
experimental precision in ref. 10 or out of the experimental field
window H<15T.

From the comparison between experiment and theory, the
positions of the observed anomalies are well identified as the
transition points from Y to UUD (H;), UUD to V (H), and
umbrella to the other phases (Hy), respectively. In particular,
although a narrow field range where the magnetization curve
shows an almost linear increase between the first-order jump and
the 1/3-plateau has not been fully identified as the Y-coplanar
state only from the experiments of ref. 10, the agreement with
the theoretical prediction strongly supports its existence. On the
upper axis of Fig. 6, we mark the corresponding values of
the effective spin S in the 2D squashed model (2) (which will be
addressed in the Discussion).
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Fig. 5 Pressure dependence of the coupling parameters in CsCuCls. a The estimated values of the intrachain coupling constant J, and the anisotropy
parameter Ag. b The estimated values of the intrerchain coupling constant J;. The error bars reflect six standard deviations for Jo and are smaller than the
symbol size in the min-max values for Ag and J;. The model functions for each quantity, Jo(P), Ag(P), and J;(P), are shown by the solid curves. ¢, d The ratio
of the intrachain to interchain coupling, a,(P) = Jo(P)/J;(P), and the rescaled anisotropy parameter A(P) = a;(P)Ao(P). The reduction rate from the value at

P =0 is plotted for each with the dashed curves.
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We also compare the theoretical and experimental magnetiza-
tion curves at P =0, 0.75, 0.83, and 0.9 GPa in Fig. 7a-d. It can be
seen that the pressure-induced change in the magnetization
processes are well reproduced by the model calculations with Egs.
((6)-(8)). While the agreement is excellent for P <0.75 GPa (and
still good for P=0.83 GPa), it seems to get slightly worse for
larger values of pressure. Especially, looking at Fig. 7d, we see that
the plateau width is somewhat wider and the slope of the low-
field magnetization curve is smaller than the theoretical
prediction for the estimated pressure value. This might indicate
that the pressure values of the experiments were slightly
underestimated due to pressure inhomogeneity in the sample
(see Supplementary Note 2 for a more detailed discussion).

Mechanism for the plateau formation by applied pressure. The
width of the magnetization plateau associated with the UUD
phase can be expressed as

Wp =H,—H,= W1(Dd) + Wl(un) ©)

with
W;cl) — —16]18A7 (10)
Wi =12, (n(ay) — §(ay)), (n

classical S quantum
— —
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Fig. 6 H-P phase diagram. Theoretical ground-state phase diagram of the
model for CsCuCls in the plane of magnetic field H and external pressure
P. We mark the points at which the magnetization anomalies have been
observed in the experiments of ref. 10 at temperature T=1.5K by the filled
circles with error bars (blue: magnetization jump; orange: kink in between
the jump and plateau; green: end point of the plateau). The corresponding
values of the effective spin S in the squashed model are indicated on the
upper axis.

following the method used in a seminal work by Chubukov and
Golosov!4. Here, 1 = _<a"¢af¢> (resp. & = (&ITT ‘%)) indicates the
anomalous (resp. normal) quantum correlations between the
magnons d; on the neighboring “up” and “down” sites (resp. on
the two neighboring “up” sites) in a unit triangle (see Fig. 8a).
Since the relation # —&>0 always holds, the quantum term
ng“) >0 contributes to the emergence of the magnetization
plateau whereas the classical term Wifl) < 0 works in the opposite
way, reflecting the easy-plane anisotropy in the classical interac-
tions between spins. The separation between the two lines,
ng“) — (—W{fl)), in Fig. 8b, indicates the estimation of the
potential plateau width. The pressure dependence of W;Dq“) and

W;d) shows that the emergence of the plateau in CsCuCl; by
applying pressure is predominantly attributed to the enhance-
ment of quantum correlations rather than the reduction of ani-
sotropy, reflecting the behaviors of a; and A shown in Fig. 5¢, d.
The above result shows an essential difference from the
previous study? in the understanding of the mechanism
underlying the pressure-induced plateau formation. In the
analysis of ref. 4%, the intrachain coupling J, was assumed to be
constant with the applied pressure, and the plateau formation was
explained as resulting from the reduction of the effective
anisotropy A. Our present analysis based on the parameter
fittings with the experimental data has revealed that the change in
A is not enough to explain the emergence of the plateau, but the
enhancement of the quantum effects associated with the strong
reduction of ], plays a key role as mentioned above. This finding
leads us to the concept of the pressure-induced classical-quantum
crossover, which we will discuss in the Discussion section.

Discussion

We have studied the pressure effects on the magnetization pro-
cess of the 3D material CsCuCl; with weakly coupled spin chain
structure. Let us connect the results to the physics of the 2D
TLAF model, Eq. (2), via the squash mapping illustrated in Fig. 2.
The energy of the squashed 2D model is also expanded in power
series of 1/S and anisotropy A as

(12)

in a similar fashion to Eq. (5). Substituting the correspondence
relations (3), one can easily see that the classical part of the energy
(scaled by the spin length) is identical for the original and
effective models apart from a constant shift, that is, S(E, +
Ey)= S(E, + E,) + const. for any S. Therefore, the effective
spin S should be determined in such a way that it reflects the
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Fig. 7 Magnetization curves. Theoretical magnetization curves obtained by the 1/S expansion method!> with the “cutting-at-1/3" procedure'® using the
model parameters Jo(P), Ao(P), and J;(P) at temperature T=0 for P=0, 0.75, 0.83, 0.9 GPa, together with the corresponding experimental data of the
present measurements at T=1.8 K, Miyake et al. at T=1.4 K (for increasing fields)#!, and Sera et al. at T=1.5K10. In a the curves are vertically shifted by
0.1 from one another to avoid overlapping. The inset shows the enlarged view of the transition region with no vertical shift. In b-d, the magnetization scaled
by the saturation value M is plotted. Correspondingly, the curves of Sera et al. are scaled such that the plateaux are located at M = M/3.

| (2021)12:4263 | https://doi.org/10.1038/s41467-021-24542-6 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

strength of quantum correlation effects. The stabilization of
Y/UUD/V orders against the classical umbrella order is the most
significant role of quantum correlations in TLAFs!4. Therefore, it
should be reasonable to find the value of S such that the energy
difference between the umbrella and Y/UUD/V states,

SE, g = Eymbrella @ZS/VL\I/UD/ V. is well reproduced by the corre-
sponding quantity 0E; gy, of the effective model (2). This is done

by minimizing the quantity

Hs -~
/ |OE gy (H) — 0E, gy (H)|*dH. (13)
0

A similar procedure has been used to mimic quantum fluctuation
effects in 2D TLAF models by a classical-spin biquadratic
coupling®0.

Before showing the result, let us comment on the difference of
the squash-mapping procedure from the Weiss-field treatment in
which the interactions of the spin on a given layer (ab plane) with
its neighbors on adjacent layers are replaced by effective magnetic
fields. Whereas such a treatment may give a reasonable

b 4o
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Fig. 8 Two contributions to the plateau width. a Quantum fluctuation
measures i and £ in the UUD state. b Classical and quantum contributions,
Wfod) and Wg‘“), to the plateau width as functions of pressure P. We plot
W(pd) with the negative sign for convenience.
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description for quasi-2D materials with small interlayer
coupling®!, it fails to capture the quantum correlations in the
intrachain couplings of the coupled-chain materials. The squash
mapping takes into account the quantum correlations through
the value of S, and more importantly, the 2D squashed model (2)
is written in the same form as the model for a realistic 2D TLAF
material, while the Weiss-field model includes extra terms of
effective local magnetic fields with the strength and direction
determined in a self-consistent fashion.

The fitting of 8E;gw and 0E;g, in the same scale of J; with
respect to S/S only depends on the intrachain/interchain coupling
ratio a; [under the correspondences (3)]. As expected, the value of
S/S is larger (more classical) for larger a;=Jo/J; as shown in
Fig. 9a. Figure 9b are typical examples of the comparison between
0Ersw and OE g, with the optimized S/S at several values of
showing a good agreement between the original (3D) and effec-
tive (2D) models. Of course, the spin operator S; in Eq. (2) is
properly defined only when S is an integer or half-integer value in
a strict sense beyond the 1/S expansion. Nevertheless, the value of
S can still be taken as an indicator for the strength of quantum
fluctuations existing in the coupled-chain compound under
consideration. For example, a material with the intrachain cou-
pling J, being five times larger than the interchain coupling J; is
expected to exhibit the same extent of quantum effects as the
corresponding 2D material with the spin being about two times
larger than the original one.

Using the result of Fig. 9a with the original spin value S = 1/2,
we can translate the pressure dependence of the intrachain/
interchain coupling ratio &; for CsCuCls, shown in Fig. 5¢, into
continuous change of the effective spin § in terms of the 2D TLAF
model. The obtained values of S are indicated on the upper axis of
the phase diagram in Fig. 6. Now let us discuss the extension of
the model calculations beyond the parameter range of the current
experiments, with the caveat that the extrapolation is in general
less reliable. Figure 10 shows the predicted phase diagram in an
extended parameter space, where the horizontal axis is converted
from P to 1/S. The corresponding values of a; are indicated on
the upper axis. When a; = 0, the model is trivially reduced to the
spin-1/2 Heisenberg model for a purely 2D TLAF with isotropic
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Fig. 9 Quantum correlation measure for coupled spin chains. a Increase rate of the effective spin S in the squashed model from the original value S as a
function of the ratio of the intrachain to interchain coupling, a,=Jo/J;. b Energy differences between the umbrella and Y/UUD/V states, S6E sw for the
original model with a;=1, 5,10, 15 (blue-solid lines) and dE sy for the squashed model with S/S =1.24,2.02,2.69, 3.23 (orange-dashed lines), within the

leading 1/S (linear spin-wave) corrections.
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Fig. 10 Phase diagram in an extended parameter space. Theoretical
ground-state phase diagram of the model for CsCuCls in the plane of
magnetic field H scaled by the saturation value Hg and the reciprocal of the
effective spin S. The solid and dashed curves in the left panel are the phase
boundaries obtained for the original model of CsCuCls with the ratio of
the intralayer to interlayer interaction, a; and the effective 2D model with
the corresponding values of the effective spin S, respectively. The range
of the pressure application in the current experiments is indicated by the
vertical red dashed-dotted lines. The right illustration schematically shows
the corresponding parameter plane in the three-variable phase diagram for
2D easy-plane triangular-lattice antiferromangets, shown in Fig. 1.

exchange coupling. Therefore, the pressure-induced stabilization
of the magnetization plateau can be interpreted by means of the
effective 2D TLAF model as a consequence that the pressure
pushes the value of 1/S from the semi-classical (1/S < 1) regime
towards the highly quantum (1/S =2) regime. Although the
change in 1/S was not significantly large in the current experi-
ment with a piston cylinder cell, it was fortunate that the mag-
netic parameters of CsCuCl; at ambient pressure were located in
the vicinity of the crossover regime between the semi-classical
and highly quantum magnetization processes, which are shown in
Fig. 3a, b, respectively.

Note that, as shown in Fig. 10, whereas the effective 2D model
reproduces well the phase boundaries H., and Hj in low fields,
the value of H, is somewhat overestimated. This is caused by the
fact that the fitting of the zero-point energies, 6E;sw and SE; g»
is relatively less satisfactory in the high-field region, as seen in
Fig. 9b, which could be improved by considering the H depen-
dence of the effective spin S but with extra complexity.

To conclude, through high-pressure magnetic measurements
and theoretical investigations on a CsCuCl; crystal, we have
developed a scientific concept for the control of quantum-
mechanical correlations in weakly-coupled spin chain materials
by applying external pressure. The parameter fitting for the model
Hamiltonian of CsCuCl; has shown that the ratio of the intra-
chain to interchain spin coupling, aj, is strongly reduced by
hydrostatic pressure application. From an intuitive idea of map-
ping the spins along each chain into a single large spin $>S, we
introduce an effective spin model that is “squashed” onto a 2D
plane and establish the correspondence between the parameters
of the original and effective model Hamiltonians. Since the spin
quantum number can take only an integer or half-integer value in
nature, one can in principle access the phase diagram only with
discrete values of S in experiments. Our observations open up an
interesting possibility of performing quantum simulation studies
that can interpolate the properties of 2D spin models at discrete
spin values by performing high-pressure experiments on coupled-
chain compounds. Moreover, the spin value S has been actually
treated as a continuous variable in theoretical studies using
analytical methods such as the 1/S expansion and the Schwinger-
boson mean-field theory (with parameter x = 2S13->2-5%). The
interpretation based on the squash mapping opens a way for

high-pressure experiments on coupled-chain compounds to
directly realize a huge variety of the theoretical phase diagrams
that has been predicted so far (and will be obtained in the future)
for 2D models with continuous S.

Considering the variety of coupled-spin-chain compounds,
including the other materials in the ABX;-type hexagonal per-

ovskite family?2-34 and those with different lattice geometries, this

concept also provides us with a unique opportunity to study the
continuous classical-to-quantum crossover of the ground state and
the elementary excitations in a wide variety of 2D frustrated
quantum antiferromagnets. For example, the spatially anisotropic
TLAF model has been extensively studied in the literature28->6-62
as a model showing a rich phase diagram including quantum spin
liquids. High-pressure experiments on a coupled-chain com-
pound, e.g., RbCuCls, in which spin-1/2 chains form a spatially
anisotropic triangular lattice’4, could enable us to simulate the
theoretical phase diagram with active and continuous control of
effective spin S. Such an experiment may allow access to the spin
liquid quantum critical point via the melting of magnetic long-
range order by tuning pressure (or the value of S). Future research
in such a direction would be promising to shed new light into the
connection between the semi-classical “magnon” and highly
quantum “spinon” descriptions of magnetic quasiparticles*4-31,
Finally, note that although not a few compounds in the family of
ABX;-type hexagonal perovskites have antiferromagnetic intra-
chain coupling®?, there is still every chance that the pressure
application changes it to ferromagnetic one, allowing for the
squashed model description we proposed here.

Methods

Sample setting and magnetization measurements under pressure. Single
crystal samples of CsCuCl; were prepared by following the procedure described in
ref. ©3. A clamp-type piston—cylinder pressure cell made of CuBe alloy with an
outer diameter of 8.7¢, an inner diameter of 2.7¢ and a cylinder length of 72 mm
was used®®. A sample is enclosed in a Teflon capsule with a pressure medium
Daphne 7373 (Idemitsu Kosan Co., Ltd.). A plate-like CsCuCl; sample with the
long axis along the c-axis was prepared. The dimension was 2 mm x 6 mm and the
thickness was about 1 mm (~18 mg). The pressure was calibrated by the change of
the superconducting transition temperature of tin®. A tin foil with a thickness of
0.2 mm was formed into a tube shape (~30 mg), and the sample was placed in
this tube.

Magnetization was measured by a commercially available magnetometer
equipped with a superconducting quantum interference device (MPMS-XL,
Quantum Design, Inc.). The measurement was performed using the option
“background subtraction” of MultiVu software attached to MPMS. First, to obtain
the background data, temperature variation and magnetic field variation sequences
were run at ambient pressure for the pressure cell including tin without sample.
Then, the magnetization of CsCuCl; at each pressure was obtained by subtracting
the background from the total magnetization including CsCuCl; sample in the
same sequences. The background data at ambient pressure was used for all
measurements. The magnetic field is applied parallel to the c-axis. The temperature
variation measurements were done at 1 T below 100 K, and the field variation
measurements were done at 1.8 K up to 5T.

In temperature variation measurement, the temperature range was limited
below 100K to avoid change in pressure. The clamp-type pressure cell has a
relatively large pressure drop when the temperature is decreased, especially
between the room temperature and 100 K (at most 0.2 GPa), whereas it hardly has
change in pressure below 100 K.

In this study, the pressure was calibrated using the relationship between the
pressure and the superconducting transition temperature of tin given in ref. 9. In
the magnetization measurement under pressure by Sera et al.!0, the pressure was
also calibrated by the superconducting transition temperature of tin, but by a
different formula given in ref. ¢7. The pressure values stated when we referred to
the data of Sera et al.!%, including Figs. 6 and 7, were the ones recalibrated by the
former calibration formula; specifically, P = 0.25, 0.50, 0.68, 0.75, and 0.81 GPa in
Sera et al. were reevaluated as P = 0.27, 0.55, 0.75, 0.83, and 0.90 GPa, respectively,
and P = 0.1 MPa was regarded as P=0.

Parameter fitting of magnetic susceptibility data. Figure 4a shows the tem-

perature dependence of the magnetic susceptibility parallel to the ¢ axis, y;, mea-
sured at H=1T under different pressures, P =0, 0.14, 0.34, 0.49, 0.82, 1.05, and
1.21 GPa. The core diamagnetic (Y4i, = — 1.09 X 10~* emu/mole) and Van-Vleck
paramagnetic (x, = 0.48 x 10~* emu/mole) contributions*® are already subtracted.
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As can be seen, the overall value of y; decreases considerably as the pressure
increases, which indicates that the dominant coupling parameter for the magnetic
energy scale, namely the intrachain coupling strength Jo, significantly decreases.
The peak of each curve is located at the Néel temperature Ty.

To quantify the pressure dependence of ], we perform a fitting of the
experimentally measured x;(T) in the temperature range 50-100 K to the
expression

T Qe 2 Jo \"

E)(H(T) = Padé(4, 5) [1 + ngl a, (kB_T> } ,
where, C = Nog*u3 /4ky is the Curie constant with N, being the Avogadro number
and Padé(4,5)[ - - ] means the Padé approximant of order [4/5]. The coefficients a,,,
which are (lengthy) functions of «j, are obtained by the tenth-order high-
temperature expansion method*’ (see Supplementary Fig. 1). Here, we ignored the
small contributions from A,. In Fig. 5a, the values of ], obtained by the fittings were
shown. Note that the values of J; fitted to the magnetic susceptibility data strongly
vary depending on the temperature range used for the fittings. Therefore, we adopt
only the model function of Jo(P), which is the most dominant parameter for the
susceptibility measurements, from the above fittings.

(14)

Parameter fitting of magnetization curves. Figure 4b shows the scaled magne-
tization curves M/Mj, which are measured under static magnetic field up to 5T at
temperature T = 1.8 K for different pressures, P =0, 0.14, 0.34, 0.49, 0.82, 1.05, and
1.21 GPa. It can be seen that the curves are almost linearly proportional to H in this
field range. The magnetization curves have also been measured by Miyake et al.4!
(at P=0) and Sera et al.1% (up to P=0.90 GPa in our calibration). There is a little
variability in the slope of M(H) among the experiments.

The model functions of A and J; [Egs. (7) and (8)] were determined such that
the low-temperature magnetization curves obtained by the different experiments
could be all reasonably reproduced (see Fig. 7 and Supplementary Fig. 2). The
theoretical calculations were based on the evaluation of the energy up to the leading
orders of the anisotropy and 1/S. Each term in Egs. (5) and (12) is obtained by
following the procedure of ref. !° for each phase (umbrella, Y, or V). It should be
noted that the magnetic field H and single-ion-type anisotropy A have to be treated
as order of S and S/(2S — 1), respectively, to obtain the correct expression for the
saturation field. The slope of the magnetization curve in low fields can be calculated
from the thermodynamic relation M = — dE/dH'8 with E for the umbrella phase.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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