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Abstract

Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing

countries. Although the drug pipeline is constantly improving, available treatments are costly

and live-threatening side effects are not uncommon. Moreover, an approved vaccine

against human leishmaniasis does not exist yet. Using whole antigens from Leishmania

donovani promastigotes (LdAg), we investigated the protective potential of a novel adju-

vant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intra-

nasal route prior to infection decreases the parasitic burden in primary affected internal

organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is

more efficient than the intradermal route, leading to better parasite clearance and remark-

able induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro

restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by

splenocytes; therefore, exemplifying specificity of the adaptive immune response. To

improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used

polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation

is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed

by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-

LdAg does not improve the parasite clearance in our experimental timeline; however, it does

increase the percentage of effector and memory T helper cells in the spleen, suggesting a

potential induction of long-term memory. Altogether, this study provides a simple and cost-

effective vaccine strategy against visceral leishmaniasis based on LdAg administration via

the intranasal route, which could be applicable to other parasitic diseases.

Author summary

Visceral leishmaniasis is a neglected tropical disease caused by specific species of Leish-
mania parasites that affect internal organs including spleen, liver, and bone marrow. The
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infective stage called promastigote, is transmitted into the host skin via sandfly bites. Vis-

ceral leishmaniasis is usually associated with high mortality rate in poor and developing

countries, lacking proper health assistance. Moreover, treatments are expensive while no

approved vaccines exist to prevent infection and avoid disease outbreaks. This study sug-

gests an affordable and adjuvant-free vaccine formulation made from the total lysate of

promastigotes. Vaccine administration via the intranasal route, ensures a remarkable

clearance of Leishmania parasites from the internal organs of infected experimental mice.

In particular, intranasal route known to be not invasive, is efficient in inducing adequate

immune response against the infective form of the parasite. Further studies are now

required to improve this prophylactic vaccine and provide therefore the basis for a prom-

ising translational approach.

Introduction

Visceral leishmaniasis (VL) is a parasitic disease that could be fatal in the absence of appropri-

ate medical treatment. According to the World Health Organization, outbreaks and re-emer-

gences were reported in 83 countries in 2018, including east Africa, India, Bangladesh and

Brazil [1]. Leishmania donovani and Leishmania infantum are the causative agents, with female

phlebotomine sandflies considered to be the principal vectors. The promastigote flagellar form

of the parasite is inoculated into the skin during a blood meal. Once in the dermis of the host,

the parasite primarily infects antigen-presenting resident cells, including dendritic cells (DCs),

and transforms within macrophages into a proliferative aflagellar form, known as amastigote.

This promotes the dissemination of the parasite via the vascular and lymphatic systems, lead-

ing to the infiltration of the bone marrow (BM), liver, spleen and several lymph nodes [2,3].

Although treatments against VL exist, their use is limited by adverse effects, emerging resis-

tance and unaffordability in developing countries. Therefore, there is an urgent need for effec-

tive vaccines that sufficiently controls leishmaniasis and decreases the leishmaniasis-associated

death toll.

Leishmania is an opportunistic parasite that highjacks the weakened immune system of vul-

nerable individuals. In contrast, adapted antileishmanial immunity is the frontline response

against Leishmania in immunocompetent individuals [4–6]. First, classical activation of

infected macrophages promotes their oxidative burst that is associated with superoxide pro-

duction, leading to the elimination of intracellular parasites [7–9]. DC-Leishmania interactions

are also essential in driving adaptive immunity towards the activation of T helper 1 (Th1) cell

subtype to the detriment of Th2 phenotype. Failure to induce a sustained Th1 response with

elevated levels of interferon gamma (IFN-γ) alters the control of Leishmaniasis infection and

leads to progressive immune tolerance. The resulting tolerogenic microenvironment drives

the alternate activation of macrophages; therefore, enhancing the intracellular proliferation

and dissemination of the parasite [10–13]. Although the Th1/Th2 paradigm may shape disease

progression, host-Leishmania interactions are very complex and implicates other immune

players such as Th17 and neutrophils. In particular, IL-17 secretion correlates with better

recovery from VL in humans and protects against re-exposure to the parasite [14,15]. Thus, a

successful vaccine against Leishmania should ensure long-term memory with preferential

Th1/Th17 immune response.

Although there are no approved vaccines against VL in humans, several candidates have

been developed and tested over the last decades, ranging from inactivated or live attenuated

Leishmania parasite (first generation) to recombinant Leishmania antigens (second
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generation) and deoxyribonucleic acid (DNA)-based vaccines (third generation) [4,16]. The

common limitation of these strategies is the identification of immunogen-specific antigens

that are able to elicit appropriate cellular immune responses. While first generation vaccines

may be associated with toxicity, they are advantageous with regard to their ability to largely

mimic the natural infection and are cost-effective compared to the other generations. To

improve the efficacy of first generation vaccines, recent studies have suggested the use of

radio-attenuated parasites, the addition of potent adjuvants or a shift towards the unconven-

tional route of vaccination, particularly the elicitation of mucosal immunity [16–22].

In this study, we established a VL mouse model using clinical isolates of L. donovani to eval-

uate the efficacy of whole Leishmania donovani promastigote antigens (LdAg) from L. dono-
vani. Through head-to-head comparison, we demonstrated that vaccine administration via the

intranasal (IN) route induces a complex and specific immune response. We then used a deliv-

ery system based on maltodextrin nanoparticles (NP) to improve the uptake and immunoge-

nicity of our LdAg-based vaccine. Altogether, this work highlights the dual efficacy of the IN

route and LdAg in the development of a new vaccine against VL.

Material and methods

Ethics statements

All animal studies were performed according to European Commission guidelines in compli-

ance with French Animal Welfare Law (law n˚2013–1118 from February 1st 2013, article

R214.89). Experimentation protocols were approved by the institutional ethic committee for

the handling of animals at Paris-Saclay University (CEEA 26-063/2013).

Mice and parasites

Female BALB/c mice were purchased from Janvier Lab and handled in accordance with the

principles and procedures outlined in Council Directive 2010/63/EU. Age- and sex-matched

mice were vaccinated at 8–10 weeks of age.

Leishmania donovani (MHOM/ET/67/HU3, known as LV9) promastigotes, were cultured

in M199 medium (Gibco, Invitrogen) supplemented with 0.1 mM adenosine, 5 μg/mL hemin,

25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 25 mM NaHCO3

(Sigma-Aldrich), and 10% heat-inactivated fetal bovine serum (FBS) (Gibco, Invitrogen). Pro-

mastigotes were maintained at 25˚C, neutral pH, in a dark environment under an atmosphere

of 5% CO2 [23,24]. For infection, mice were injected with 103 promastigotes at the stationary

phase of growth, via the intradermal (ID) route [25,26]. All mice groups were infected in our

in vivo study.

LdAg preparation and vaccination

For LdAg preparation, promastigotes were accordingly washed with PBS to eliminate the cul-

ture medium. Ten cycles of freezing at -80˚C, centrifugation and thawing at 37˚C, followed by

10 cycles of sonication were necessary to obtain a soluble antigenic mixture. LdAg protein con-

centration was then determined using microBCA assay (Pierce). To obtain maltodextrin-

based nanoparticle (NP)-LdAg formulation, LdAg were mixed with NP at a 1:3 weight ratio

(for example 15 μg LdAg with 45 μg NP), in water and at room temperature. The complete

antigen encapsulation was confirmed by loading the mixture onto native polyacrylamide gels

electrophoresis, followed by a silver nitrate staining (S1 Table and S1 Fig), as previously

described [27].
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For vaccination, mice were injected at day 0 with 15 μg of LdAg or NP-LdAg, either by the ID

route (50 μl) or the IN route (20 μL). At day 21, mice received a booster dose (15 μg) of LdAg or

NP-LdAg via the same route as the prime dose. All mice groups were infected at day 35.

Generation and stimulation of bone marrow derived DCs (BMDCs)

Cells were collected from the femur and tibia and resuspended in PBS solution containing

0.5% bovine serum albumin (BSA) and 2 mM Ethylene diamine tetraacetic acid (EDTA)

[28,29]. Collected cells were filtrated through 70 μM pre-separation filters to remove cell aggre-

gates or large particles. 3 x 106 viable cells were then cultured (37˚C, 5% CO2) in complete

Iscove’s Modified Dulbecco’s Medium (IMDM, Gibco, Invitrogen) containing 5% FBS, 1%

Penicillin-Streptomycin, 0.4% β-mercaptoethanol (Sigma Aldrich) and granulocyte-macro-

phage colony-stimulating factor (GM-CSF) at 25 ng/ml (Miltenyi Biotec). Non-adherent cells

were seeded in new dishes and enriched with the same medium at days 3 and 6. At day 9, non-

adherent cells were recovered, washed and resuspended in supplemented IMDM. For in vitro
stimulation, collected BMDCs were incubated with 3 μg of LdAg, NP-LdAg or 1 μg/ml Lipo-

polysaccharide (LPS, ThermoFisher). Purity was checked by flow cytometry and was�90%.

The uptake of NP and NP-LdAg was also assessed by flow cytometry. Briefly, BMDCs were

incubated with increasing amounts of NP-FITC or NP-LdAg-FITC (1% FITC w/w) for 24 h

and endocytosis was evaluated using the Attune NxT (ThermoFisher).

Antibodies and flow cytometry

The following antibodies were used to characterize BMDCs and assess their activation state:

MHC II-PE, CD11c-APC, CD86-PE-Cy7, CD80-FITC and CD11b-APC-Cy7 (all from BioLe-

gend). Acquisition was performed on an Attune NxT (ThermoFisher). Leukocyte populations

from BM, liver and spleen were also analyzed by flow cytometry. Single cells were excluded

from dead cells using the LIVE/ DEAD Zombie NIR Fixable Viability Kit (BioLegend).

Immuno-phenotyping was performed using the following antibodies: CD45-BV510, CD49b-

PE-Dazzle, CD19-PerCP, CD3-FITC, CD4-AF700, CD8-BV785, C44-BV650 and

CD62L-BV421 (all from BioLegend). Full minus one (FMO) controls were used to determine

positivity. Precision count beads (BioLegend) were used to count immune cells in different

organs. Before acquisition, stained cells were fixed with 1% Paraformaldehyde (Sigma-

Aldrich). Acquisition was performed using the BD LSRFortessa and data were analyzed using

the FlowJo software (TreeStar) version 10.

Real Time PCR (qPCR) analysis

Spleen, liver and BM were collected from experimental mice and processed on 70 μM cell

strainers to obtain single cell suspensions. qPCR was performed with a total amount of 75 ng

of genomic DNA (gDNA). Briefly, gDNA was extracted using DNA extraction kit (Bioline,

Meridian Bioscience) according to the manufacturer’s protocol. The parasitic burden was

assessed through the amplification of cytochrome c gene using the following primers (forward:

[5’-CCTGCTCCTCTCCACACA-3’]; reverse [5’-TTCCTCACTCTCCGCTTCTC-5’]). The

amplifications cycles were applied as following: 94˚C for 7 min, followed by 35 cycles at 94˚C

for 35 s, 60˚C for 35 s, and 72˚C for 35 s. At the end of each run, a melting curve analysis was

performed from 55˚C to 95˚C to monitor primer dimers and verify amplicon specificity. The

reactions were performed in triplicates. gDNA isolated from L. donovani promastigotes was

used to establish the quantification standard and the gDNA of mouse macrophage RAW 264.7

as negative control. We considered 75 ng of leishmanial DNA to be equivalent to 7.5 x 105 par-

asites based on the conversion between the quantification of leishmanial DNA and parasites.
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Culture and in vitro stimulation of splenocytes

Spleens were collected from infected mice and processed as described above to obtain a single

cell suspension. Red blood cells were lysed using commercial buffer (BioLegend) per the man-

ufacturer’s instructions. Cells were resuspended in complete Gibco Dulbecco’s Modified Eagle

Medium (DMEM, Gibco, Invitrogen) supplemented with 10% FBS, 10 mM HEPES and 50 μM

β-mercaptoethanol, then plated at 2 × 105 cells/well and incubated with or without 3 μg of

LdAg. Concanavalin A (Con A, ThermoFisher) was used at 2.5 μg/ml to make positive con-

trols. Supernatants were collected after 72 hours and analyzed using the ELISA Max Deluxe

Set Mouse IFN-γ from BioLegend.

NP preparation

Maltodextrin was dissolved in 2 N sodium hydroxide with magnetic stirring at room tempera-

ture. Reticulation and cationization were performed using epichlorohydrin and glycidyl tri-

methyl ammonium chloride (Sigma-Aldrich). Obtained hydrogels were neutralized with

acetic acid and sheared using a high-pressure homogenizer (LM20, Microfluidics, France).

The resulting nanoparticles were purified in ultrapure water by tangential flow ultrafiltration

using a 750 kDa membrane (AKTA flux 6, GE Healthcare, France), then mixed with 1,2-dipal-

mitoyl-sn-glycero-3-phosphatidylglycerol above the gel-to-liquid phase transition tempera-

ture. The average size and zeta potential of maltodextrin nanoparticles were measured in water

with the zetasizer nanoZS (Malvern Instruments) by dynamic light scattering and by electro-

phoretic mobility analysis, respectively (S1 Table). The association of LdAg with NP was char-

acterized using native polyacrylamide gel electrophoresis (native PAGE) (S1 Fig)[27]. In some

conditions, nanoparticles were conjugated to 1% fluorescein isothiocyanate (FITC, w/w ratio)

to assess the uptake of nanoparticles by BMDCs in vitro, using flow cytometry.

In situ cytokine quantification

Half of the spleen and a fraction of liver lobe were weighed and then passed through a 70 μm cell

strainer with 1 mL of lysis buffer composed of NP-40 cell lysis buffer (thermofisher), 1mM of

PMSF and protease inhibitor cocktail (Sigma-Aldrich). After 30 min of ice incubation, homoge-

nates were centrifugated for 10 min at 13000 rpm. Supernatants were collected and stored at -80˚C

until ELISA assay. IL-4, IL-10, IL-6, IL-17, IFN-γ and TNF-αwere quantified using the ELISA Max

Deluxe set (BioLegend) and the level of cytokines was adjusted according to the organ weight. The

LEGENDplex bead-based immunoassay was used to quantify cytokines in blood plasma.

Statistics

One-way ANOVA followed by the Bonferroni test was used for multigroup comparisons. A

two-tailed Student’s t test for unpaired data was applied for comparisons between 2 groups

(�p� 0.05, ��p� 0.01, ���p� 0.001). The non-parametric Mann-Whitney test was addition-

ally used to confirm statistical differences between 2 groups of mice in the in vivo study. p value

< 0.05 was considered to denote statistical significance. In vitro experiments were repeated 3

times while in vivo experiments were repeated at least 2 times. Data were analyzed with Prism

Software (GraphPad Software Inc.). Error bars represent standard error of the mean.

Results

LdAg induce the expression of MHC class II on BMDCs

The efficacy of a vaccine is first determined by its capacity to induce the innate immune sys-

tem. In particular, DC activation drives T cell priming and is a prerequisite for vaccine-elicited
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immune responses [11,30]. Therefore, we wanted to evaluate the direct recognition of LdAg by

DCs that lead to their activation. For this purpose, DCs were generated from bone marrow

progenitors and used as an in vitro cell model to analyze LdAg immunogenicity. The pheno-

type was then checked by flow cytometry, revealing that generated cells are mainly CD11c+

(�90%) (Fig 1A) and co-express the myeloid cell marker CD11b (Fig 1B). To evaluate the

capacity of LdAg to induce DC activation, BMDCs were incubated with LdAg or the positive

control, LPS, for 24 hours. The major histocompatibility complex class II (MHC II) and the

costimulatory molecule CD86 were expectedly expressed on BMDCs without any stimulation,

as revealed by the measurement of the mean fluorescence intensity (MFI). Interestingly, LdAg

A.

CD11c-APC
C

ou
nt

0 103 104 105 106

FMO
Full staining

CD11b-APC-Cy7

C
ou

nt

0 103 104 105 106

92%

MHC II-PE CD86-PE-Cy7 CD80-FITC

PBS
LdAg

LPS
FMO

0.0

0.5

1.0

1.5

2.0

Fo
ld

 in
cr

ea
se

 
 M

FI
 M

H
C

 II
  

0

1

2

3

4

0

1

2

3

4

Fo
ld

 in
cr

ea
se

 
 M

FI
 C

D
86

  

Fo
ld

 in
cr

ea
se

 
 M

FI
 C

D
80

  ***

PBS LdAg LPS PBS LdAg LPS PBS LdAg LPS

A. B.

C. E.

D.

G.

F. H.

** ** ***

0 104 105 106-104 0 104 105 106-104 0 104 105 106-104

Fig 1. LdAg induce MHC II expression in BMDCs. (A, B) Representative flow cytometry plots showing the

expression of CD11c (A) and CD11b (B) on BMDCs. (C-H) Representative flow cytometry plots showing the

expression of MHC II (C), CD86 (E) and CD80 (G). Corresponding quantification are presented as mean fluorescence
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https://doi.org/10.1371/journal.pntd.0009627.g001
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was as efficient as LPS in increasing the expression of MHC II (1.5-fold) (Fig 1C and 1D).

However, LdAg did not significantly increase the expression of CD86 and CD80 (Fig 1E–1H).

Taken together, our vaccine formulation has the potential to activate DCs and increase MHC

II expression, suggesting the induction of antigen processing and presentation pathways.

Intranasal and intradermal immunizations with a LdAg-based

prophylactic vaccine protect mice against VL

To put our in vitro results in context and investigate the protective role of LdAg as a prophylac-

tic vaccine, we immunized a cohort of mice with 15 μg of LdAg via the ID or the IN route. The

boost occurred 21 days after the prime, followed by subcutaneous infection of all mice groups

with L. donovani promastigotes at day 35, as described in Fig 2A. Infected mice were eutha-

nized at day 125 to collect the spleen, liver and BM; all of which are known to be the primary

affected internal organs in VL [31–33]. Since splenomegaly is the most common aspect of VL

infection, we assessed the effect of LdAg vaccine on spleen weight. Both ID and IN LdAg

immunizations led to a decreased tendency in spleen weight, but the effect was only significant

with the IN route (Fig 2B). The same trend was observed for liver weight, but differences were

not statistically significant (Fig 2C). Next, we amplified and quantified Leishmania genomic

material using qPCR to estimate parasitic burden in the infection of the spleen, BM and liver.
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https://doi.org/10.1371/journal.pntd.0009627.g002
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We observed that LdAg injection via both ID and IN routes dampens the parasitic burden in

the liver and the bone marrow, while only the IN route significantly decreases the parasitic

burden in the spleen (Fig 2D–2F). Remarkably, the IN route led to a larger decrease in para-

sitic burden as compared to both non-vaccinated and ID-vaccinated groups. Taken together,

these results suggest that LdAg-based prophylactic vaccine is efficient in the protection against

VL and better protection was ensured via IN immunization.

LdAg-based IN immunization induces adaptive immunity

The non-responsiveness of adaptive immune cells, including B and T cells, is associated with a

poor prognostic and enhanced progression of VL infection [34]. Vaccine efficacy is closely

dependent on its capacity to induce adaptive immunity in infected organs, mainly the spleen

that plays a pivotal role in the control of systemic infections [35]. To assess the impact of LdAg

vaccine on immune stimulation, we characterized and quantified main splenic immune cells,

including B cells, T cell subsets and natural killer (NK) cells. Using flow cytometry, we identi-

fied B cells as CD45+, CD3-, CD49b-, CD19+ cells; T cell subsets as CD45+, CD19-, CD4+ for

T helpers (Th) or CD8+ for cytotoxic T cells (Tc); and NK cells as CD45+, CD3-, CD19-,

CD49b+ cells (Fig 3A). Remarkably, LdAg immunization via the IN route was associated with

a significant increase in the number of CD4+ T cells, CD8+ T cells, B cells and NK cells, as

compared to non-vaccinated mice (Fig 3B–3E). Conversely, the ID route failed to stimulate

adaptive immunity, as compared to non-vaccinated and intranasally-vaccinated mice. Alto-

gether, these data highlight the capacity of LdAg to induce potential antileishmanial response

when administered via the IN route.

Intranasal LdAg vaccine induces specific IFN-γ-secreting immune cells

against VL

To understand the immunological mechanisms underlying the capacity of IN LdAg vaccine to

decrease the parasitic burden, we further investigated the cytokine microenvironment. In situ
quantification showed a mixed cytokine response to the IN LdAg vaccine in spleen and liver

(S2A–S2F Fig). Although IFN-γ:IL-10 ratio was >1 in the spleen and ~2 in the blood (S2G

and S2H Fig), it is challenging to define the immune balance in such a mixed and timeline-

dependent immune response [5,10]. Therefore, we next studied whether IN LdAg vaccine

induces specific T cells against L. donovani. For that, we performed a lymphoproliferation test

in which we stimulated splenocytes from non-vaccinated and vaccinated mice (IN and ID)

with LdAg in vitro. We then quantified the production of IFN-γ, the main marker of cell-medi-

ated immunity. In some conditions, splenocytes were stimulated with Con A as a positive con-

trol of activation (Fig 4A). Comparisons between the different groups revealed that the in vitro
stimulation of splenocytes from intranasally immunized mice results in remarkable and signif-

icant secretion of IFN-γ. The production of IFN-γ did not reach statistical significance in sple-

nocytes from intradermally immunized mice as compared to non-vaccinated mice (Fig 4B).

This suggests that administration of the LdAg vaccine via the IN route ensures the efficient

priming and activation of adaptive antileishmanial immunity, leading to the secretion of IFN-

γ.

Maltodextrin nanoparticles (NP) enhance LdAg capacity to activate DCs in
vitro and induce memory T cells in vivo
Since LdAg vaccine provides efficient protection against VL via the IN route, we explored the

ability of delivery systems to improve the mucosal delivery and immunogenicity of the LdAg
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vaccine. As previously described, LdAg were prepared from L. donovani promastigotes

exposed to 10 freeze/thaw cycles in alternation with 10 sonication cycles (Fig 5A). In parallel,

cationic and porous maltodextrin-based NP were prepared as previously described [36]. They

had a size of 42 nm and a surface charge of +32 mV (S1 Table). They were loaded with LdAg

proteins (1:3 weight ratio) by mixing, in order to form NP-LdAg. At this ratio, all the antigens

were encapsulated within the NP, as confirmed by Native PAGE (S1 Fig), and no release was

observed over time. This formulation was first tested in vitro with BMDCs. Using FITC, we

investigated the capacity of BMDCs to uptake NP-LdAg. Unconjugated NP were used as a neg-

ative control. Interestingly, BMDCs incubated with increasing concentrations of NP-LdAg-

FITC were associated with an increase in FITC MFI. After 24 hours of incubation with 3 μg of
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https://doi.org/10.1371/journal.pntd.0009627.g003
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NP-LdAg-FITC, 100% of BMDCs were FITC positive, which was an indication of antigen

uptake (Fig 5B). Additionally, a similar uptake was observed with empty NP-FITC, suggesting

that antigen loading does not affect these nano-sized material properties (Fig 5C). To
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determine whether NP-LdAg formulation improves DC activation when compared to LdAg,

we analyzed the expression of MHC II and CD86/CD80 costimulatory molecules. NP-LdAg

were significantly efficient in MHC II induction, as well as CD86 and CD80 (1.5 to 2-fold

change), that LdAg alone failed to activate (Fig 5D).

Next, we evaluated the advantages of NP-LdAg formulation in vivo in a preventive vaccine

protocol as compared to LdAg. For that, we established the same experimental procedure

described in Fig 2A and vaccinated mice intranasally with either LdAg alone or NP-LdAg. The

protective potential of NP-LdAg was comparable to LdAg in decreasing the parasitic burden

in the spleen, liver and BM, as well as in inducing B cells, NK cells, CD4+ and CD8+ T cells

(Fig 6A and 6B). This indicates that LdAg conserve in vivo immunogenicity when loaded in a

delivery system, with a potential modification in the immune response kinetics (S3 Fig). How-

ever, NP-LdAg formulation does not significantly improve the protection against VL, as com-

pared to LdAg in our experimental design and timeline. Given that the generation of memory

T cells is one of the main features that determine the long-term effectiveness of vaccines, we

compared effector and central memory CD4+ T cell generation in LdAg versus NP-LdAg

intranasally-vaccinated mice. Naïve CD4+ T cells were identified as CD44lo CD62hi; effector

CD4+ T cells as CD44lo CD62lo and memory CD4+ T cells as CD44hi CD62lo (Fig 6C). The

study of splenic CD4+ T cells revealed that NP-LdAg have a different distribution of CD4+ T

cells as compared to LdAg, characterized by a significantly lower percentage of naïve CD4+ T

cells and consequently higher percentages of effector CD4+ T cells and memory CD4+ T cells

(Fig 6D–6F). This suggests that NP-LdAg enhances DC activation and may lead to an

improved induction of effector and memory Th cells as compared to LdAg. Therefore, NPs

may be considered to be safe and efficient delivery systems for the future development of an

intranasal vaccine against VL.

Discussion

Visceral leishmaniasis is a poverty-related disease and is the most severe form of Leishmania
infection. Although VL is associated with high fatality, preventive vaccines that protect suscep-

tible people in endemic countries have yet to exist. In this study, we suggested and tested a sim-

ple and affordable vaccine made from whole Leishmania promastigote antigens. We

demonstrated in vivo that this vaccine efficiently protects mice against L. donovani infection

and can stimulate DCs and IFN- γ secreting cells in vitro.

Strong evidence supports the importance of DCs in generating a long-lasting immunity

through the orchestration of the adaptive immune response [37,38]. Nowadays, IN vaccination

is considered as a less invasive delivery route that is associated with more widespread immu-

nity as compared to existing alternatives. Interestingly, IN vaccine platforms against Covid-19

are well-positioned in current clinical trials [39,40]. The efficiency of this route primarily relies

on the rapid activation of antigen presenting cells, including DCs and macrophages within the

nasal-associated lymphoid tissue (NALT) [41]. Several studies have shown that DCs play a piv-

otal role in the uptake, processing and presentation of intranasally delivered antigens to T cells

in the draining lymph nodes [42–44]. Here, we performed an in vitro evaluation using a well-

characterized DC model derived from the bone marrow [45–47]. We also demonstrated that

LdAg are able to enhance the expression of MHC II but not the other maturation markers:

CD80 and CD86. It is known that DC exposure to maturation stimulus inhibits MHC II ubi-

quitination, leading to the translocation and accumulation of peptide–MHC II complexes

[48,49]. Since MHC II is a targeted pathway that reflects DC immunocompetency, newly

synthetized MHC II suggests the recognition of LdAg as danger signals that lead to DC

maturation.
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It has been previously reported that IN vaccination with L. amazonensis or L. braziliensis
antigens ensures significant protection against cutaneous leishmaniasis [17,50]. Nonetheless,

the effectiveness of such a strategy against VL remains to be elucidated and the immune mech-

anisms are still poorly explored. In this study, we used a simple approach that utilizes brutal

thermal variation followed by sonication to produce a lysate of L. donovani promastigote anti-

gens termed LdAg. Strikingly, both ID and IN LdAg prime-boost vaccinations decrease the

parasitic burden in the liver, bone marrow and spleen. However, IN delivery is significantly

more protective against VL. This is consistent with the aforementioned studies demonstrating
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that IN vaccination decreases the parasitic burden and lesion thickness in cutaneous leishman-

iasis. Therefore, IN delivery of Leishmania whole antigens may be a simple, cost-effective, and

non-invasive strategy that should be reconsidered in the development of vaccines against both

visceral and cutaneous leishmaniasis.

Immuno-proteomic techniques are now extensively used to define immunogenic candi-

dates in both promastigote and amastigote antigens [51–53]. Based on several previous studies

highlighting the presence of highly immunogenic antigens in the promastigote form that initi-

ates infection [54–56], we designed our prophylactic vaccine with total antigens from promas-

tigote and identified the optimal mode of administration. Interestingly, no liver and spleen

biopsies from IN LdAg vaccinated mice yielded viable parasites in vitro, suggesting significant

protection against promastigote infection. Since the induced immune protection may be lim-

ited to the promastigote form, we intend to strengthen our prophylactic vaccine with total

antigens of axenic amastigote, which is the invasive form in the mammalian host. Therefore,

further studies should be determinant of vaccine effectiveness in different parasite stages.

Additionally, more clinically relevant animal models, including the hamster, may pave the way

for translational research and clinical trials.

The immune response in VL infection is very complex and implicates various mechanisms

that prevent efficient eradication of the parasite [10]. In particular, promising vaccines against

VL may be capable of reverting the immune balance towards a Th1/Th17 response. In line

with other studies that have shown the potential of IN vaccines’ ability to induce specific cellu-

lar-mediated anti-infection responses [57–62], our prime-boost IN immunization resulted in

IFN-γ secretion after in vitro restimulation of splenocytes. This is reflective of a specific antil-

eishmanial response in the spleen avoiding the persistence of a chronic infection [5]. In accor-

dance with these in vitro results, we observed a remarkable increase in the number of the top

IFN-γ secreting cell candidates, T and NK cells. This was also correlated with a significant

decrease in the parasitic burden with IN, but not with ID vaccination. It is worth mentioning

that VL in mice is characterized by an organ restricted immunity, in which failure of splenic

immunity is responsible for the outbreak of Leishmania parasites in the different visceral

organs [31,63]. Understanding the immune mechanisms associated with LdAg-IN immuniza-

tion confirms a positive correlation between the immune response and the efficient protection

against VL.

Since the majority of soluble antigens are largely not taken up by antigen presenting cells

(APCs), growing interest in delivery systems has increased in the last decades. In particular,

nano-antigenic formulations provide adequate delivery systems in infectious diseases, amelio-

rating the antigen stability, delivery and immunogenicity [64,65]. Interestingly, a recent study

has also demonstrated the safety and effectiveness of nano-encapsulated retinoic acid as an

adjuvant for IN vaccination against cutaneous Leishmaniasis [66]. In parallel, we have estab-

lished a stable and adjuvant-free vaccination approach based on the use of maltodextrin nano-

particles [27,67]. This technology has led to the development of a vaccine against

Toxoplasmosis that has been validated in mouse and sheep [68–70]. Here we evaluated the

proof of concept of the same technology in a nanoparticle platform loaded with L. donovani
promastigote antigens for IN delivery. Interestingly, this NP formulation acts as safe delivery

system that increases LdAg immunogenicity in vitro, since NP-LdAg formulation improves

the expression of the costimulatory molecules CD80 and CD86 on DCs, as well as MHC II; all

of which are necessary for immune synapse formation and T cell priming. In our experimental

conditions and short timeline, NP-LdAg formulation did not improve the protective capacity

of LdAg against VL. Nevertheless, the remarkable increase in the percentage of effector and

memory CD4+ T cells is very promising in the development of antileishmanial vaccine

[71,72]. Indeed, meaningful immune memory response is a prerequisite for long-lasting
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immunity and is the outcome of naïve T cell priming in response to antigenic peptides com-

plexed to MHC on DCs.

In conclusion, LdAg vaccine ensures protection against VL largely through the IN route,

and to a lesser extent via the ID route. Consequently, our complete prophylactic vaccine strat-

egy, relying on the IN immunization with total antigens from L. donovani promastigotes is

successful in conferring an efficient immune protection against VL. Nevertheless, many limita-

tions should be taken into consideration in this study, including the lack of translational clini-

cal data and restricted investigation of long-lasting immunity. Therefore, it is anticipated that

greater insight into this promising strategy can be further evaluated and completed in future

fundamental and translational studies.

Supporting information

S1 Table. Characterization of NP size and charge. The size of the nanoparticles (NP) was

measured by dynamic light scattering (DLS) and is expressed as Z-average (average particle

size) and Number (most abundant size), in nm. The NP surface charge was measured by elec-

trophoretic light scattering (ELS) and is expressed in mV. PDI: polydispersity index. All these

measurements were performed in water and at room temperature.

(EPS)

S1 Fig. Characterization of NP-LdAg formulation on Native PAGE gel. 3 μg of LdAg alone

(LdAg well) or mixed with 9 μg NP (NP-LdAg well, 1/3 weight ratio), and 9 μg NP alone (NP)

were deposited onto native polyacrylamide gel. After a silver nitrate staining, the percentage of

encapsulation was measured using Image J software. The absence of protein in the NP-LdAg

well confirms their complete association in the NP.

(EPS)

S2 Fig. In situ quantification of relevant cytokines following intranasal LdAg vaccine.

(A-H) Spleens and livers were collected and lysed using the NP-40 buffer. In situ levels of IFN-

γ, IL-6, TNF-α, IL-17, IL-4 and IL-10 were assessed in the resulting homogenates using ELISA.

Cytokine concentrations were adjusted per gram of organ (n = 5). Levels of IFN-γ, TNF-α, IL-

2, IL-6, IL-4, IL-10 and IL-17 were assessed in blood plasma using LEGENDplex bead-based

immunoassay (n = 5–7).

(EPS)

S3 Fig. In situ quantification of relevant cytokines following intranasal NP-LdAg vaccine.

(A-F) Spleens and livers were collected and lysed using the NP-40 buffer. In situ levels of IFN-

γ, IL-6, TNF-α, IL-17, IL-4 and IL-10 were assessed in the resulting homogenates using ELISA.

Cytokine concentrations were adjusted per gram of organ (n = 5).

(EPS)
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do Instituto Oswaldo Cruz. 2010; 105: 736–745. https://doi.org/10.1590/s0074-02762010000600002

PMID: 20944986

27. LêMQ, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-Poisson I, et al. Protein delivery by

porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or

anionic nanoparticles. Int J Pharm X. 2018;1. https://doi.org/10.1016/j.ijpx.2018.100001 PMID:

31545856

PLOS NEGLECTED TROPICAL DISEASES Novel mucosal and adjuvant-free vaccine strategy against visceral leishmaniasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009627 August 17, 2021 16 / 19

https://doi.org/10.3389/fimmu.2019.00227
https://doi.org/10.3389/fimmu.2019.00227
http://www.ncbi.nlm.nih.gov/pubmed/30873156
https://doi.org/10.1371/journal.pntd.0002914
https://doi.org/10.1371/journal.pntd.0002914
http://www.ncbi.nlm.nih.gov/pubmed/25010815
https://doi.org/10.1016/j.cellimm.2016.07.004
http://www.ncbi.nlm.nih.gov/pubmed/27444130
https://doi.org/10.3389/fimmu.2017.01437
http://www.ncbi.nlm.nih.gov/pubmed/29163510
https://doi.org/10.5772/intechopen.75184
https://doi.org/10.1371/journal.pntd.0003439
http://www.ncbi.nlm.nih.gov/pubmed/25569338
https://doi.org/10.1038/s41541-020-00224-0
https://doi.org/10.1038/s41541-020-00224-0
http://www.ncbi.nlm.nih.gov/pubmed/32821440
https://doi.org/10.1016/j.bjid.2014.10.009
http://www.ncbi.nlm.nih.gov/pubmed/25532783
https://doi.org/10.1016/j.micinf.2019.02.005
https://doi.org/10.1016/j.micinf.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30817996
https://doi.org/10.1371/journal.pntd.0007146
http://www.ncbi.nlm.nih.gov/pubmed/30802247
https://doi.org/10.1017/S0031182015001584
http://www.ncbi.nlm.nih.gov/pubmed/26521984
https://doi.org/10.1016/j.ijpharm.2020.119390
http://www.ncbi.nlm.nih.gov/pubmed/32540349
https://doi.org/10.1371/journal.pntd.0008396
http://www.ncbi.nlm.nih.gov/pubmed/32722702
https://doi.org/10.1128/IAI.71.1.401-410.2003
http://www.ncbi.nlm.nih.gov/pubmed/12496190
https://doi.org/10.1590/s0074-02762010000600002
http://www.ncbi.nlm.nih.gov/pubmed/20944986
https://doi.org/10.1016/j.ijpx.2018.100001
http://www.ncbi.nlm.nih.gov/pubmed/31545856
https://doi.org/10.1371/journal.pntd.0009627
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51. Duarte MC, Lage DP, Martins VT, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, et al. Recent

updates and perspectives on approaches for the development of vaccines against visceral leishmania-

sis. Rev Soc Bras Med Trop. 2016; 49: 398–407. https://doi.org/10.1590/0037-8682-0120-2016 PMID:

27598624

52. Rashidi S, Kalantar K, Hatam G. Using proteomics as a powerful tool to develop a vaccine against Medi-

terranean visceral leishmaniasis. J Parasit Dis. 2018; 42: 162–170. https://doi.org/10.1007/s12639-

018-0986-y PMID: 29844618

53. Khan MAA, Ami JQ, Faisal K, Chowdhury R, Ghosh P, Hossain F, et al. An immunoinformatic approach

driven by experimental proteomics: in silico design of a subunit candidate vaccine targeting secretory

proteins of Leishmania donovani amastigotes. Parasites & Vectors. 2020; 13: 196. https://doi.org/10.

1186/s13071-020-04064-8 PMID: 32295617

54. Cardoso SRA, Silva JCF da, Costa RT da, Mayrink W, Melo MN, Michalick MSM, et al. Identification

and purification of immunogenic proteins from nonliving promastigote polyvalent Leishmania vaccine

(Leishvacin). Rev Soc Bras Med Trop. 2003; 36: 193–199. https://doi.org/10.1590/s0037-

86822003000200001 PMID: 12806454
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