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Abstract: Magnetic BiOBr/SrFe12O19 nanosheets were successfully synthesized using the
hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD),
scanning electron microscope (SEM), transmission electron microscope (TEM), and UV-visible diffused
reflectance spectra (UV-DRS), and the magnetic properties were tested using a vibration sample
magnetometer (VSM). The as-produced composite with an irregular flaky-shaped aggregate possesses
a good anti-demagnetization ability (Hc = 861.04 G) and a high photocatalytic efficiency. Under
visible light (λ > 420 nm) and UV light-emitting diode (LED) irradiation, the photodegradation rates
of Rhodamine B (RhB) using BiOBr/SrFe12O19 (5 wt %) (BOB/SFO-5) after 30 min of reaction were
97% and 98%, respectively, which were higher than that using BiOBr (87%). The degradation rate of
RhB using the recovered BiOBr/5 wt % SrFe12O19 (marked as BOB/SFO-5) was still more than 85% in
the fifth cycle, indicating the high stability of the composite catalyst. Meanwhile, after five cycles,
the magnetic properties were still as stable as before. The radical-capture experiments proved that
superoxide radicals and holes were main active species in the photocatalytic degradation of RhB.
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1. Introduction

Throughout the last few years, semiconductor photocatalysts, which can utilize the clean,
renewable, and most accessible solar energy, have attracted more and more attention in the material
science field [1,2]. The photocatalytic degradation of organic pollutants under sunlight irradiation
possesses promising applications in water pollutant control. Composite photocatalytic materials are
receiving considerable attraction owing to their excellent photocatalytic activity and stability [3–8].

Bismuth oxyhalide (BiOX; X = Cl, Br, and I) has been widely studied because of its narrow
band gap (Eg = 1.7–3.4 eV) [9–11]. In particular, BiOBr, with an intrinsic lamellar structure and
outstanding photocatalytic property, is one of the most promising photocatalysts. However, the Eg

of BiOBr is 2.8 eV, leading to a low absorption ability of visible light and a high recombination
rate of photo-induced electron-hole pairs [12,13]. There are reports on exploring strategies for the
improvement of visible light absorption and enhancement of the charge separation efficiency of
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BiOBr [14–17]. However, the problem of a low recycling rate after the photocatalytic reaction still exists.
The recovered method using an external magnet is a quick and low-cost approach [18], if the catalyst
materials hold magnetization.

The development research of magnetic photocatalysts (e.g., MnxZn1-xFe2O4/βBi2O3, Fe3O4/BiOCl,
BiOBr/ZnFe2O4, BiOBr/CoFe2O4, and Ag/AgCl/CoFe2O4) [19–24] is interesting, because of its easier
recyclable and repeatable use. It is worth noting that hard-magnetic strontium ferrite (SrFe12O19)
has a large saturation magnetization, superior coercivity, good chemical stability, and corrosion
resistivity [25]. It was reported that SrFe12O19 inhibited facet growth [1] and the selective exposure of
bismuth-based semiconductor photocatalyst [26]. Consequently, visible light absorption was enhanced
by compositing SrFe12O19, involving the low band gap energy and resulting in quick charge separation
and increased photocatalytic ability.

The photocatalytic degradation of organic contaminants under sunlight is a bright application
prospect in pollution control engineering. However, sunlight is a hot light and easily causes a series of
side reactions in the process of the photocatalysis reaction. In our previous studies [19,25], magnetic
photocatalysts were prepared by a dip-calcination method. It is noted that light emitting diodes
(LEDs) with little heat and good linearity are superior to conventional light sources or to sunlight.
Thus, LEDs have been widely used in hydrogen production and organic synthesis over semiconductor
photocatalysts [27–30]. The outstanding advantages of LED light are their long-life time and high
controllability in the reaction progress.

In this work, magnetic nanosheet BiOBr/SrFe12O19 (BOB/SFO-5) was prepared using a reasonable
fabrication method, and the corresponding photocatalytic property was investigated under visible
light and UV-LED (390–410 nm). Further insight into the magnetization and repeatable rate, and
the photocatalytic mechanism were researched with different kinds of tests. The photocatalytic
mechanism assisted by a magnetic field has been further discussed in this research. These results
provide important concepts concerning the synthesis method, and pave the way for the industrial
application of magnetic photocatalysts.

2. Experimental Section

All reagents were of analytical grade and were used directly, without further purification.
The water was deionized throughout all the experiments.

2.1. Preparation of BiOBr/SrFe12O19

Solution A consisted of 5 mmol of Bi(NO3)3·5H2O and 762 mg of SrFe12O19 (prepared by a
hydrothermal method [31]) dissolved in 20 mL of deionized water. Afterwards, 15 mL of NaBr (5 mmol)
was slowly dipped into solution A, and the formed suspension was transferred into a 50 mL Teflon-lined
stainless-steel autoclave and heated to 160 ◦C for 12 h. Subsequently, the solid was separated and
washed several times with deionized water and absolute alcohol, alternately. Then, the washed solid
was dried at 60 ◦C for 12 h, and the BiOBr/5 wt % SrFe12O19 (marked as BOB/SFO-5) was obtained.
A series of BiOBr-based composite products, including 0 wt %, 3 wt %, 7 wt %, 10 wt %, and 15 wt %
SrFe12O19, were prepared using the same process, and the gained composites were noted as BOB,
BOB/SFO-3, BOB/SFO-7, BOB/SFO-10, and BOB/SFO-15, respectively.

2.2. Material Characterization

Phase identification via X-ray diffraction (XRD) was conducted on an X-ray diffractometer
(Bruker Advance D8, Bruker, Germany). The average crystallite sizes of the samples were calculated
from the XRD peak (102) using the classical Scherrer equation, Dhkl = Kλ/βcosθ, where Dhkl is the
particle diameter (nm), K is the constant (0.943), λ is the X-ray wavelength (0.15405 nm), β is the
half-maximum line width, and θ is the diffraction angle. The microstructural morphology was
observed by scanning electron microscopy (SEM; EVO-LS15X, ZEISS, Oberkochen, Germany) and
high-resolution transmission electron microscopy (HR-TEM). Energy dispersive analysis (EDS) systems
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were used to verify the element constituents. A vibrating sample magnetometer (VSM; Lakeshore
7410, Lake Shore, Carson, USA) was employed to determine the magnetization. The UV-VIS diffuse
reflectance spectra (DRS) were measured using a UV-VIS spectrophotometer (TU1901, Beijing Purkinje
General Instrument Co. ltd, Beijing, China).

2.3. Determination of Photocatalytic Property

The photocatalytic performance of the BOB/SFOs was evaluated using the Rhodamine B (RhB)
photodegradation under visible light (λ > 420 nm) and UV light-emitting diode (LED) irradiation.
The visible light was obtained using a 300 W Xenon lamp with a UV cut-off filter (CEL-HXF300,
AULTT, Beijing, China), and the UV light was acquired by the LED under cool light (λ = 390–410 nm;
power = 122 µW). In addition, the distance between the light source and the reactor was 10 cm.
A 100 mL RhB solution (10 mg/L) and 50 mg catalyst were added into a quartz container and stirred
for 30 min in the dark, so that the adsorption equilibrium was reached. The irradiation time was set
as 30 min in the process of continuous stirring. Then, 3 mL of the RhB solution was sampled in the
setting time interval. The photocatalytic degradation process of the RhB was monitored by measuring
the characteristic absorption at 554 nm with a UV-VIS spectrophotometer. Composite catalysts were
separated and recovered with an external magnet.

The photocatalytic mechanism was probed using active species trapping experiments.
The degradation rates of the RhB over the photocatalyst were measured in active species scavenger
agents, including the hydroxyl radical scavenger of isopropanol (IPA), the hole scavenger of disodium
ethylenediaminetetra acetic acid (Na2-EDTA), and the superoxide radical scavenger of 1,4-benzoquinone
(BZQ), respectively.

3. Results and Discussion

A primary analysis of the photodegradation revealed that BOB/SFO-5 was the most efficient in
the RhB degradation under UV irradiation.

3.1. Microstructure and Pore Characteristics

Figure 1 shows the XRD patterns of SrFe12O19, BiOBr, and BOB/SFO-5. As we can see from
Figure 1a, the pattern of SrFe12O19 revealed a hexagonal primitive crystal structure (JCPDS card no.
33-1340) [32]. This was a member of the space group, P63/mmc, and the lattice parameters were

a = b = 5.8868
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and c = 23.037 Å. The main diffraction peaks of BiOBr (Figure 1c) were located at
2θ = 10.975◦, 21.979◦, 25.390◦, 31.851◦, 32.432◦, and 57.403◦, which matched with the (001), (002), (101),
(102), (110), and (212) crystal planes, respectively (JCPDS card no. 85-0862; space group P4/nmm;
a = b = 3.92 Å; c = 8.11 Å). For BOB/SFO-5 (Figure 1b), the diffraction peak of BiOBr was relatively
strong and that of SrFe12O19 was relatively weak, and the (002), (110), (111), and (114) peaks of
BiOBr overlapped with the (103), (107), (114), and (304) diffraction peaks of SrFe12O19, respectively.
Thus, the characteristic peaks of SrFe12O19 in the pattern of BOB/SFO-5 were not distinct.

It is worthwhile mentioning that the amount of magnetic matrix (5 wt %) was relatively low, and no
impurity phase was found in BiOBr/SrFe12O19, confirming that there is no appreciable decomposition
and perceptible chemical reaction between BiOBr and SrFe12O19.

The average crystallite sizes of BiOBr and BiOBr/SrFe12O19 calculated by the Scherrer equation
were 24.26 nm and 19.77 nm, respectively. The small size of BiOBr/SrFe12O19 was possibly due to the
growth inhibition of BiOBr by SrFe12O19 [27].

The morphological characteristics (Figure 2) of SrFe12O19, BiOBr, and BOB/SFO-5 were investigated
using SEM. As shown in Figure 2a, the SrFe12O19 is a hexagonal-shape, which is consistent with
the literature [26]. Figure 2b shows that the BiOBr nanosheets assembled as “petals” and formed
a flower-like microstructure, which could provide more active sites for the adsorption of organic
pollutants and help to enhance the photocatalytic activity for the pollutants’ decomposition [33].
As for BOB/SFO-5 (Figure 2c), SrFe12O19 nanosheets were inserted into a BiOBr flower-like shape,
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which indicated that the irregularly flaky-shape aggregated on the surface of BiOBr. The intimate
interaction between BiOBr and SrFe12O19 might contribute to the improvement of the electron transfer
and separation capacity in the photocatalysis process. Furthermore, the EDS spectra of BOB/SFO-5 is
shown in Figure 2d, confirming the existence of the Sr, Fe, O, Br, and Bi elements.Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 13 
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Figure 2. Scanning electron microscope (SEM) images of pure(a) BOB, (b) SFO, and (c) BOB/SFO-5; (d)
energy dispersive analysis (EDS) of BOB/SFO-5.

The TEM image of BOB/SFO-5 is given in Figure 3a, where the nanosheet-shaped structure is
further proven. Figure 3b shows the HR-TEM image, which demonstrates that the nanosheet was well
crystalized, and the interplanar of the (002) plane of the monoclinic BiOBr is 0.247 nm. Furthermore,
BiOBr is a p-type semiconductor material and SrFe12O19 is an n-type semiconductor material, leading
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to a p–n heterojunction structure of BOB/SFO. In this way, the magnetic composite might hold a high
photogenerated charge separation ability.
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Figure 3. (a) Transmission electron microscope (TEM) and (b) high-resolution transmission electron
microscopy (HR-TEM) of BOB/SFO-5.

In addition, the adsorption–desorption isotherms and the pore size distribution curves for
BOB/SOF-5 were tested using an ASAP 2010 instrument (micromeritics with a surface area deviation of
1%) (ASAP-2010, Micromeritics, Norcross, GA, USA). The results are shown in Figure S1. The most
probable pore radius was 7.7 nm, which indicates that the composite belongs to a mesopore material
that could provide more active sites for photocatalytic experiments.

3.2. Optical Properties

The optical absorption property plays a critical role in the photocatalytic performance. The UV-VIS
DRS spectra of the BiOBr and BOB/SFO-5 composite are shown in Figure 4. There is an obvious
difference in the light absorption abilities of the two samples. It is clear that both the pure BiOBr and the
composite present a strong absorption in the UV light region (wavelength of 200–400 nm). However,
it is worth noting that the composite showed a strong absorption in a wide wavelength range from
UV to visible light, compared with that of pure BiOBr. Therefore, the visible light absorption ability
of BiOBr was enhanced for the BOB/SFO-5 composite, and it can be adopted as a visible light-driven
catalyst. According to the formula, αhυ = A

(
hυ− Eg

)
n/2, the band gap energy (Eg) of BOB, SFO,

and BOB/SFO-5 were estimated from the (αhυ)n/2 versus photo energy (hυ). Generally speaking, the Eg

values can be obtained from the intercept of the tangent to the absorption curves. The estimated
Eg values of BOB, SFO, and BOB/SFO-5 are 2.80 eV, 1.86 eV, and 2.67 eV, respectively. In addition,
the estimated Eg values are listed in Table S1. Obviously, the decrease in the Eg value is due to the
introduction of SrFe12O19. The results show that a new defective energy level formed between the
band gap of BiOBr and SrFe12O19.

3.3. Magnetic Property

The magnetic hysteresis loops of BOB/SFO-5 and SrFe12O19 are depicted in Figure 5, revealing
the typical feature of hard-magnetic materials [34]. Table S2 lists the magnetic parameters of the
samples. The saturation magnetization (Ms) of BOB/SFO-5 was 11.3% c.a. lower than that of SrFe12O19,
and the remnant magnetization (Mr) was significantly cut down because of the decreased amount of
magnetic component (SrFe12O19) per gram. Furthermore, it was confirmed that the BiOBr/SrFe12O19

was successfully synthesized without any negative changes to the magnetization. The results show that
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the BiOBr/SrFe12O19 microspheres displayed a good magnetic performance and were easily separated
and recovered after the photocatalytic reaction (Figure 4 inset).Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 13 
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3.4. Photocatalytic Property

The photocatalytic performances of the as-prepared photocatalysts were investigated with RhB
photodegradation. Figure S2 shows the absorption curves of RhB in BiOBr/SrFe12O19 at different times
under visible light (λ > 420 nm) irradiation. The key peak intensity (λmax = 554 nm) of RhB declined
gradually and reached zero after 30 min of the reaction, indicating the complete photodegradation
of RhB using BOB/SFO-5 after only 30 min. Thus, the optimization reaction time was set at 30 min.
For more details, a series of tests are shown in Figure 6 that were employed to test the effect of the
matrix amount on the degradation rate. In view of the low degradation rate in the blank test, it was
necessary to boost the degradation rate with suitable catalysts. Further insights demonstrated that the
photocatalytic activity of BOB/SFO-5 was indeed higher than that of pure BiOBr. Under visible light
(λ > 420 nm) irradiation, the photodegradation rate of RhB using BOB/SFO-5 after 30 min of reaction
could reach 97%, which was higher than that using BiOBr (86%). Compared with the results in the
literature [26], the photodegradation rate was obviously enhanced because of a UV cut-off filter that
was equipped to ensure a single visible light without UV light from the Xe light resource. When the Xe
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lamp was replaced with a UV LED (cool light), the degradation rate of the RhB was 98% and 87%,
respectively, under the same condition. The results above revealed that BOB/SFO-5 was extremely
efficient in RhB degradation under visible light and UV LED irradiation. It can be deduced that there
was a strong interaction between the BiOBr nanoparticles and SrFe12O19 in the hydrothermal reaction,
which played a crucial role in the transfer and separation of photogenerated carriers. Particularly,
SrFe12O19 provided a high mobility of the charge carrier through the longitudinal direction, owing
to the intimate interaction between BiOBr and SrFe12O19. Thus, the photogenerated electrons can
easily be transferred to the BiOBr nanoflakes’ moiety, leading to the efficient separation and slow
recombination of electron-hole pairs. Therefore, BOB/SFO-5 possesses an excellent visible-light-driven
catalytic property and can be utilized in subsequent experiments.
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In fact, we investigated some of the references reported in the past 10 years in order to compare
them with different photocatalysts under visible light irradiation in terms of the RhB photodegradation
ratio. The results are listed in Table S3. It was worth mentioning that the photocatalytic activity of
BOB/SFO-5 for RhB photodegradation under UV LED irradiation was outstanding. To the best of our
knowledge, the photocatalytic rate reached 97% after only 30 min of photocatalytic reaction under UV
LED irradiation, the efficiency of which was superior to that of the existing literature reports.

3.5. Stability and Recycle Property

The photocatalytic stability of BiOBr/SrFe12O19 was confirmed by the recycling tests.
The irradiation time of the four subsequent times cycles was set as 60 so that the degradation
rate change was clearly detected. The results are shown in Figure 7. The degradation rate of the RhB in
the recovered catalyst was above 85% in the fifth cycle. After five cycles, the BOB/SFO-5 was separated
and recovered with an external magnet, and the XRD patterns of the samples were collected, as shown
in Figure 8. The same intrinsic crystal structure of the BOB/SFO-5 and recovered BOB/SFO-5 was
further confirmed. In addition, the magnetic property of the recovered BOB/SFO-5 was examined
and is shown in Figure 9. The Ms, Mr, and Hc of the recovered sample were 4.38 emu/g, 1.18 emu/g,
and 861.04 G, respectively. Compared with the parameters of the original BOB/SFO-5, there was almost
no decrease of the Ms and coercivity, while the Mr appeared to have little increase. The results indicated
that BOB/SFO-5 possessed rather stable magnetic properties. The above achievements illustrated
that BOB/SFO-5 exhibited a good stability and high repeatable ability, which overcame the recycling
difficulty in the photocatalytic application.
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3.6. Photocatalytic Mechanism

It was important to detect the main active species in the photocatalytic process in order to know
how to improve the photocatalytic property. Figure 10 shows the RhB degradation rates over BOB/SFO-5
under different active radical species scavengers. It can be seen from Figure 10 that the introduction
of the superoxide radical (O2

−) scavenger, BZQ, caused degradation rate declination, namely, the
photocatalytic rate was directly proportional to the amount of O2

−, proving the dominant role of O2
−

in the photocatalytic process, which was identified by the EPR spectra for DMPO, and O2
− acted as

the most active species [33,34]. The RhB degradation rates in the hole (h+) scavenger, Na2-EDTA,
were slightly larger than those in BZQ. It can be deduced that the effect of the photo-generated holes
was lower than that of O2

−, although the hole was also one of the main oxidation species. Furthermore,
the degradation rate of the hydroxyl radical (·OH) scavenger, IPA, was similar to that of BZQ, indicating
the smaller difference for the amount change of ·OH. The results above manifest that the photocatalytic
reaction of BiOBr/SrFe12O19 was mainly affected by the O2

− radicals though the presence of holes.
Figure 11 shows the photocatalytic mechanism scheme of BiOBr/SrFe12O19 under visible light or
LED irradiation.

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 13 

 

BiOBr/SrFe O + hν( ≥ Eg) → BiOBr( e ) / SrFe O ( h ), (1) BiOBr(e ) + O → BiOBr + O ⋅ , (2) 𝑂 ⋅ + 𝐻 𝑂 → ⋅ 𝐻𝑂 + 𝑂𝐻 , (3) 𝑆𝑟𝐹𝑒 𝑂 ( ℎ ) , 𝑂 ⋅ + 𝑅ℎ𝐵 →  𝑑𝑒𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡. (4) 

 
Figure 10. Degradation rates of RhB with BOB/SFO-5 in different hole-radical scavengers (1.0 
mmol/L). BZQ—1,4-benzoquinone; Na2-EDTA—disodium ethylenediaminetetra acetic acid; IPA—
isopropanol. 

 
Figure 11. Photocatalytic mechanism scheme of BOB-SFO-5 under visible light irradiation. 

According to the previous study using GC-MS and FT-IR measurements to discuss the 
mechanism of RhB oxidation [39–41], according to the processing steps in the photocatalytic reaction, 
the RhB was changed from the primary complex macromolecular organic matter to several small 
organic matters, like phthalic acid [39]. Finally, all of the matter would be degraded into CO2 and 

Figure 10. Degradation rates of RhB with BOB/SFO-5 in different hole-radical scavengers (1.0 mmol/L).
BZQ—1,4-benzoquinone; Na2-EDTA—disodium ethylenediaminetetra acetic acid; IPA—isopropanol.

It is known that BiOBr and SrFe12O19 are the p-type and n-type semiconductors, respectively.
The intimate contact effect of BiOBr/SrFe12O19 is analogous to a p–n heterojunction structure in the
photocatalytic performance, which was absent in the single BiOBr. In addition, the conduction band
(CB) and valence band (VB) potentials of the p-type semiconductor, BiOBr, were 0.30 and 3.10 eV [35,36],
respectively. Meanwhile, the CB and VB of n-type SrFe12O19 were 0.20 and 2.06 eV, respectively [37,38].
Thus, the photogenerated electrons in SrFe12O19 easily transferred to BiOBr, because of the lower CB
potential position of BiOBr than that of SrFe12O19, and the VB holes in BiOBr spontaneously moved
to SrFe12O19 (shown in Equation (1)). The transfer of the electron and hole effectively reduced the
charge recombination rate, and resulted in a superior photocatalytic performance. Moreover, the
photogenerated electrons inhibited the formation of·HO2 (shown as Equations (2) and (3)). As a result,
O2
− directly caused RhB molecule oxidation in the simultaneous reaction of holes in Equation (4).

BiOBr/SrFe12O19 + hν(≥ Eg)→ BiOBr(e−)/SrFe12O19(h+), (1)

BiOBr(e−) + O2 → BiOBr + O2·
−, (2)
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O2 ·
− +H2O→ ·HO2 + OH−, (3)

SrFe12O19(h+), O2 ·
− +RhB→ deradation product. (4)

According to the previous study using GC-MS and FT-IR measurements to discuss the mechanism
of RhB oxidation [39–41], according to the processing steps in the photocatalytic reaction, the RhB was
changed from the primary complex macromolecular organic matter to several small organic matters,
like phthalic acid [39]. Finally, all of the matter would be degraded into CO2 and H2O, achieving
complete mineralization [40,41]. So, the phenomenon where the blue shift (Figure S2) of the absorption
peaks in the ultraviolet-visible absorption spectra appeared in the photodegradation process was easier
to understand.
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4. Conclusions

(1) Nanosheet and irregular flaky-shaped BOB/SrFe12O19 was successfully prepared by a facile
hydrothermal method. The as-prepared composite presented good magnetic properties (Hc =

861.04 G). The recycling experiments proved that the degradation rate of the RhB of the recovered
photocatalyst still maintained at 85% in the fifth cycle. The magnetic photocatalyst was conducive
to separation and reuse using an external magnet, so that the recycling problem in the industrial
application was easily solved.

(2) The excellent visible-light-driven catalytic activity of BOB/SFO-5 was investigated. An Xe lamp
(λ > 420 nm) equipped with a UV cut-off filter used as the light resource provided the visible light
without UV light. An LED was employed as a cool light resource. The photodegradation rate of
the RhB over the BOB/SFO-5 was 97% and 98% at 30 min, which was higher than that (86% and
87%, respectively) over BiOBr.

(3) The superoxide radicals and holes were demonstrated to illustrate the main active species in
the photocatalytic reaction of BiOBr/SrFe12O19. The stable magnetic property of the composite
photocatalyst prompted visible light absorption and utilization, producing photogenerated e−

and h+. SrFe12O19 further strengthened the light response and enhanced the photocatalytic
property of BiOBr by means of absorbing a great number of photons.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/5/735/s1,
Figure S1: Adsorption–desorption isotherms and the pore size distribution curves (Inset) for BOB/SOF-5; Figure S2:
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Absorption curves of RhB with BOB/SFO-5 under visible light irradiation; Table S1: The estimated Eg values of
the as-prepared samples; Table S2: Magnetic parameters of the as-synthesized samples; Table S3: Comparison of
photodegradation ratio using different photocatalyst under visible light irradiation reported in the past ten years.
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