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From at least two months onwards, infants can form perceptual categories.

During the first year of life, object knowledge develops from the ability to

represent individual object features to representing correlations between

attributes and to integrate information from different sources. At the end of

the first year, these representations are shaped by labels, opening the way

to conceptual knowledge. Here, we review the development of object know-

ledge and object categorization over the first year of life. We then present an

artificial neural network model that models the transition from early percep-

tual categorization to categories mediated by labels. The model informs a

current debate on the role of labels in object categorization by suggesting

that although labels do not act as object features they nevertheless affect per-

ceived similarity of perceptually distinct objects sharing the same label. The

model presents the first step of an integrated account from early perceptual

categorization to language-based concept learning.

1. Introduction
During their first 2 years of life, infants move from the vast array of seemingly dis-

connected sensory experiences towards a sophisticated knowledge of objects,

people and events, including the ability to group perceptually different objects

into common categories, and to understand and produce the names for many

of them [1,2]. Two closely related areas of research have addressed infants’ devel-

oping knowledge about individual objects, and the ability to form object

categories, respectively. Research on object knowledge has investigated the pro-

gressive increase in the complexity of infants’ representation of objects, for

example the developing ability to encode correlations between object features,

and the ability to link information from different sensory domains. Work on

object categorization has asked how infants group perceptually distinct objects

together and how the basis for these categories changes across development.

Research on early word learning has likewise proceeded along separate

strands. One strand, usually concerned with infants and toddlers from 14

months of age, has focused on when and how words are learned, how they are

linked to objects, how they are used and extended to novel objects and how

knowledge of a label affects children’s inferences about an object’s hidden prop-

erties. A second strand, usually focusing on younger infants around 10–12

months of age, addresses the question of how labels affect infants’ categorization

of objects that share the same label or that are labelled differently.

A coherent account of early semantic development should encompass all of

these research fields. Furthermore, it is important to acknowledge that, while

many studies test infants’ abilities to acquire object knowledge in laboratory-

based experimental settings, the knowledge shown by infants in such settings

arises from an interaction between what was learned in the laboratory and

prior knowledge acquired outside the laboratory. In this paper, we aim to pre-

sent a first step towards an integrated account of semantic development in the

form of a computer model that accounts for phenomena in early prelinguistic

categorization as well as for the role of word learning on category structures.

Computational models are useful tools for developing and testing hypotheses

of the mechanisms underlying development and for linking individual
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observations of developmental abilities into a coherent

trajectory of developmental change [3–5].

In the rest of this paper, we first review the development of

object knowledge and categorization, characterizing both as

shaped by a progressive development in the ability to integrate

aspects of information leading to the enrichment of category

representations. In the second part of the paper, we then pre-

sent a computational model that has previously been used to

account for apparently contradictory results in early object cat-

egorization, and we enhance it to account for the transition

from prelinguistic to language-mediated object categorization.
Phil.Trans.R.Soc.B
369:20120391
2. The development of object categorization
The ability to categorize lies at the heart of semantic develop-

ment. Knowledge of categories not only carves up the world

in meaningful ways, but it also enables us to infer and predict

properties of newly encountered objects. For example, by

possessing the category ‘dog’ and being able to recognize a

never before seen animal as a member of this category, we

know to expect that it makes barking sounds, chases after

cars and may come to lick our hand while wagging its tail.

We are also able to name this new animal as ‘dog’.

Given its importance for cognition as a whole, over the past

30 years a considerable amount of research has been devoted

to the development of categorization in infancy. Much of this

work is based on the familiarization/novelty-preference pro-

cedure that examines infants’ abilities to rapidly form

categories in laboratory-based settings. This method relies on

the fact that infants tend to spend more time looking towards

novel than towards familiar stimuli. In a typical categorization

study, infants are familiarized to a sequence of objects from a

single category and are then tested with two new objects, one

from the familiarized category and one from a different

category. When infants show a looking preference to the

object from the new category it can be concluded that during

familiarization they have formed a category that includes the

new within-category object but excludes the object from

the different category. For example, in a seminal study that

examined the earliest perceptual categories, Quinn et al. [6]

familiarized three- to four-month-old infants on a sequence of

cat pictures and found that in the test phase they looked

longer at pictures of dogs, horses and humans than at pictures

of novel cats. This and related work has shown that infants as

young as two months can form perceptual categories for

many objects at both the basic (e.g. dogs, cats, chairs, couches)

and global levels (e.g. animals, vehicles, furniture) [7–11],

although global-level categories typically precede basic-level

categories when compared directly [1,2,12–15].

Subsequent work has verified that the way in which these

early categories are formed is contingent on the specific percep-

tual properties of the stimuli and even on the order in which

they are presented during familiarization [16–20]. It has also

become clear that previous experience interacts with the stimuli

presented during testing in the laboratory. For example,

Kovack-Lesh et al. [17] found that four-month-olds’ category

formation for cats and dogs was affected by whether they

had these pets at home or not.

Other work has shown that infants extract information about

category prototypes from the images used during familiariz-

ation. For example, when trained on distorted triangles three-

to four-month-old infants subsequently treated a prototypical
(equilateral) triangle as more familiar than previously seen

atypical triangles [21]. For more complex shapes only seven-

month-olds showed the same effect [22]. However, the higher

familiarity of a prototype after familiarization exists in parallel

with item memory for atypical category members [23].

With increased age, infants’ ability to process objects becomes

progressively more sophisticated, with a developing sensitivity

to the correlations between object features between seven and

10 months of age. For example, Younger & Cohen [24] familiar-

ized infants on two animal line drawings where each animal

had a characteristic body shape, tail and feet. Infants were then

tested on a previously seen animal, a completely novel animal

and an animal that was composed of a novel combination of pre-

viously seen features (e.g. the body and feet of the first animal

with the tail of the second animal). Younger and Cohen found

that four-month-old infants did not look longer at this animal

than at one they had seen during familiarization. By contrast,

seven-month-olds looked at this new animal as long as at the

animal made from completely novel features. When only two

out of the three features were correlated, only 10-month-olds

were sensitive to violations of feature correlations, suggesting a

progressively developing sensitivity to feature correlations.

From the second half of their first year of life, infants become

able to integrate different object features such as visual appear-

ance, sounds, function and motion [25–27]. For example,

although infants are sensitive to biological motion information

from birth [28] and three-month-olds can discriminate familiar

and novel motion paths even after a delay of one month [29],

the ability to link motion information with static visual features

seems to arise later in development [1,2]. In fact, in one study

[30], object movement was found to interfere with infants’ learn-

ing of shape–colour compounds up to the age of 10 months.

More global features indicating animacy such as eyes and

fur, on the other hand, were linked to animate-like motion in

seven-month-old infants [31], perhaps indicating that real-

world experiences with a richer stimulus set enables learning

of such associations earlier than found in the laboratory.

In a study by Madole et al. [25] on object function, 14-

month-olds were sensitive to an object’s change in function,

but only by 18 months were infants able to link function

with an object’s static visual features. However, in other

studies 11- to 12-month-olds already detected the functional

relevance of object parts and categorized objects based on

these parts when the function had been demonstrated to

them [27], again providing evidence for a developing ability

to integrate different aspects of an object and an earlier devel-

opment of this ability under more ecologically valid

conditions. In a related study, it was found that 10-month-

olds were able to learn the relationship between an object’s

visual appearance and its function, but not between visual

appearance and sound or between function and sound [26].

In a recent study investigating infants’ ability to learn

complex crossmodal associations, Chen & Westermann [32]

familiarized 10- and 12-month-old infants on two animated car-

toon animals, each of which produced a characteristic

unfamiliar sound. At test, both animals were shown side-by-

side and one of the sounds was played. Twelve-month-olds,

but not 10-month-olds, looked longer at the animal associated

with the played sound, indicating that the ability to rapidly

link novel objects and semantically meaningful sounds arises

around 12 months of age.

Together, the described work suggests an unfolding ability

of infants to learn about different aspects of objects and
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associate different static and dynamic features to form a com-

plete object representation. In this way, categories in infancy

are based on progressively enriched representations that inte-

grate information from multiple sources, starting with the

ability to represent individual object properties and followed

by the ability to integrate these properties to form more

complex representations and to detect correlations between

features in one or across several sensory domains (see also [33]).
 hing.org
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3. Word learning and categorization
In the second half of their first year, infants begin to learn

their first words. From six months onwards, they look at

the referent for some familiar nouns when spoken by their

parent [34], and there is neurophysiological evidence that

this understanding is referential by nine months of age [35].

In laboratory studies, infants from 13 months onwards can

learn to associate novel labels with novel objects after a few

familiarization trials [36]. A number of studies have asked

how this emerging language affects category formation.

There has been considerable debate on how early word and

category learning interact. Early work by Waxman & co-

workers [37–39] argued that labels act as ‘invitations to

form categories’ by highlighting the common features of

objects sharing a label. In several studies, infants from six

to 15 months of age were familiarized on one category

(e.g. dinosaurs) while either hearing a labelling phrase

(‘Look, it’s a toma!’), a non-labelling phrase (‘Look at this!’)

or a tone sequence. At test, only infants who had heard the

labelling phrase looked longer at an out-of-category item

(e.g. a fish) than at a novel within-category item. However,

since other studies described above had found that infants

can already form perceptual categories when viewing objects

in silence, it is unclear what additional role the labels played

in these studies. An alternative account of these results was

therefore provided by Robinson & Sloutsky [40,41], who

argued that auditory information interferes with the pro-

cessing of visual information but that familiar sounds such

as labels disrupted visual processing less than unfamiliar

sounds such as tone sequences. Nevertheless, more recent

work involving a silent control condition has shown that

labels can indeed override visual similarities and re-shape

categories to correspond to how objects are labelled [42,43].

In one study [42], 10-month-old infants were familiarized

on a continuum of eight morphed cartoon animals. Looking

times at test revealed that when the stimuli were presented

in silence or with a single common label, infants formed a

large category comprising all eight stimuli. However, when

half of the animals were labelled with one name and the

other half with another, infants separated the animals into

two categories according to the labels.

There has also been substantial debate over how labels

affect perceived similarity in development, linked to the

role that labels play in object categorization. One view

holds that labels from early on act as category markers that

stand as a placeholder for a concept and enable language-

based inference of deeper conceptual structure [39,44,45].

A different view argues that early labels are merely another

object feature in line with, for example, visual perceptual

properties, and that shared labels contribute to the overall

similarity between objects with the same (or indeed, similar)

labels [46–50]. These two views make contrasting predictions
about the interactions between visual properties and labels:

according to the label-as-feature view, but not the label-

as-category-marker view, shared labels should affect

similarity judgements between items.

Circumstantial evidence for the label-as-feature view

comes from a series of studies by Sloutsky and co-workers

[47–50], but see [51,52]. For example, Sloutsky & Fisher

[47] presented 4- to 5-year-old children (much older than

the infants discussed so far) with picture triads containing

a target item and two test options (A and B). Test option A

was perceptually more similar to the target than option

B. However, when target and test option B shared a label,

the children judged B as more similar to the target than A.

In sum, it has become clear that labels can affect early cat-

egories by aligning category boundaries with shared labels. It

also seems to be the case that shared labels affect perceived

similarity of objects. However, whether labels act on the

same level as visual object features or whether they are sep-

arate from visual features and act on perceptual object

representations as a whole is an unresolved question.
4. A dual-memory model of infant
categorization

As described above, many studies using the familiarization/

novelty-preference procedure have found that infants can

form perceptual categories at least from two months of

age, and that the level of categories—basic or global—is

dependent on the similarity between the specific stimuli. How-

ever, other methods that do not involve familiarization but

instead assess spontaneous categorization to tap into infants’

background knowledge have often yielded quite different

results [8,14]. For example, in the sequential touching para-

digm, a set of toy objects from different categories is placed

in front of the infant. The order in which the infant touches

the toys is recorded, and above-chance touching of objects

from one category is taken as evidence that the infant has cate-

gorized the objects. Using this procedure, it was found that 12-

to 20-month-olds formed categories on the global level, and

that basic-level distinctions within a global category were not

made before 20 or even 30 months of age [53–55]. Similar

results were found using the generalized imitation technique

[56,57]. In this method, a certain action is modelled for the

infant with a toy figure, for example, giving a dog a cup of

liquid to drink. Infants are then asked to perform the same

action with different toys, such as another dog, a cat or a

plane. Categorization is assessed by the new toys to which

the infant is extending the modelled action. It was found

that 14-month-olds successfully generalized the actions to

members of the same category (animals or vehicles). These

results were taken as evidence that categorization is not tied

to perceptual properties of objects but that it is based on con-

ceptual knowledge and that infants generalized the modelled

action to members of the same category (e.g. for a dog, another

dog or a cat), rather than of the same appearance.

Given the different results from familiarization-based and

non-familiarization-based studies, there has been intense

debate on whether deeper concepts arise from perceptual cat-

egories through a process of enrichment [9,58,59], or whether

perceptual categorization and concept learning are separate

processes [8,60,61] or indeed, whether early perceptual pro-

cesses are already based on conceptual object analysis [14].
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We [62] presented a connectionist neural network model of

infant categorization that aimed to integrate the different

results from looking-time and sequential-touching/general-

ized-imitation-type studies. The model was based on the

idea that a coherent account of this body of work could be

provided by considering the unfolding interactions between

two developing memory systems in the brain. In the adult

literature, the view that memory formation and consolidation

depend on multiple interacting neural systems is widely

accepted [63,64]. One influential idea [64] is that whereas

the hippocampus is responsible for rapidly acquiring new

memories, cortical networks learn slowly and extract regu-

larities from the environment. Our model was inspired by

this distinction between hippocampal and cortical processing.

Furthermore, it was based on the developmental literature

which suggests that novelty preferences observed in infant

looking-time studies are driven by the hippocampal memory

system [65,66], whereas categorization behaviour displa-

yed in imitation and object examination studies depends on

a later-maturing memory network that involves inferior

temporal regions [65]. The fact that different experimental

methods tap into different memory representations can

explain why the results in infant categorization depend on

the methodology used.

Consequently, the model consisted of two interacting

components (figure 1): a fast-learning hippocampal/striatal

system and a slower learning cortical system. Each component

consisted of an auto-encoder neural network: a three-layer

network that receives the representation of an object as input

and that learns to recreate the input on the output side. Because

the hidden layer is smaller than input and output layers this

creates a bottleneck, forcing the network to extract regularities

from the input to solve this task. Single auto-encoder models

have previously been used to model looking-time data in

infant categorization [16,67–70].

In the dual-memory model (see appendix A for implemen-

tation details) the hippocampal system was used to simulate

looking times in experimental situations where categories are

formed online in a familiarization/novelty-preference study.

The cortical component modelled the gradual develop-

ment of representations that drive non-familiarization-based

responses. The two systems differed only in their learning

rate, that is, the rate at which weights were adapted in response

to exposure to objects, with the hippocampal system adapting its

connection weights at a higher rate than the cortical system.

Interactions between the components were modelled by connec-

tions between the subsystems’ hidden layers. Together these

architectural constraints embody a minimal set of assumptions

about how the dual-memory systems can interact.
The model was trained in two ways. In background training
objects were randomly presented to the model for random

amounts of time. This training aimed to simulate infants’

experiences with objects in the real world. Modelling of cat-

egory formation in familiarization studies was achieved

through familiarization training where sequences of related

stimuli were presented for fixed amounts of time. Looking

times were modelled by the output of the hippocampal com-

ponent: the more different the output was from the input, the

longer the looking time at the stimulus [67]. Developing cor-

tical representations were modelled by the activation patterns

in the hidden layer of the cortical system.

The model was able to account for a range of results from

infant category learning: in its cortical component, it learned

perceptual categories that became progressively differentiated

with increased exposure to exemplars, showing the global-

to-basic shift that is also found in infant categories. The model

could further account for the fact that background experience

affects infants’ looking behaviour in an experimental setting

[71]. This was because previously learned representations in

the cortical system facilitated online category learning of related

items in the hippocampal component through feedback connec-

tions. More recently, we used the output of the cortical system

to model infant event-related potential (ERP) data in early

object categorization [72].

In sum, the model covered a range of phenomena from

early, prelinguistic object categorization, accounting for

data from different experimental paradigms and data from be-

havioural and neurophysiological studies. Here, we want to

extend this model to simulate the shift from prelinguistic

to language-mediated categorization.

The extended model had the same architecture as the

original one, but in order to model the transition from pre-

linguistic perceptual categorization to language-mediated

categorization we extended the model with task/label units
linked to the hidden layer of the cortical memory system

(figure 1). The idea here was that these units could potentially

encode a variety of functions and object properties that go

beyond perceptual feature information, such as representing

affordances and specific ways of interacting with an object

or knowledge of an object’s hidden properties. Because we

aimed to model the role of first words in object categorization

here these units were used to encode object labels both at the

basic and global levels of categorization.
5. Stimuli
In order to model the development of basic- and global-level

categories under varying labelling conditions, eight photo-

graphs each of objects from 26 basic-level categories

were chosen. The basic-level object categories were (human)

male, (human) female, dog, cat, rabbit, horse, elephant, giraffe,

cow, squirrel, fish, eagle, songbird, duck, bicycle, forklift, bus,

car, plane, ship, desk, table, bed, sofa, chest of drawers and

chair. They fell into the four global-level categories humans,

animals, vehicles and furniture that have all been previously

used to test infant category formation. Exemplars varied in

their within-category perceptual similarities (see appendix A).

Each of the 208 objects was represented by 18 general (geo-

metric) and object-specific (facial) features: maximal height,

minimal height, maximal width, minimal width of base,

number of protrusions, maximal length/width of left, right,
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lower and upper protrusion, minimal width of lower protrusion,

texture, eye separation, face length and face width. Feature

values were scaled between 0 and 1. For each basic-level cat-

egory, a prototypical object (not included in the training set)

was created by averaging the feature values of all of its members.

In order to simulate an infant’s general experience with

the world, objects were presented in background training to

the model in random order for random exposure lengths

(between 1 and 1000 epochs). In simulations that explored the

effect of labelling, each object had a 50% chance of being

labelled, either with a global-level or a basic-level label (depend-

ing on the simulation). In these cases, the object label was

presented on the task layer and connections from the hidden

layer to the task layer were updated. Thereby, through training,

the labels led to adjustment of the connections from the hidden

to the task units. When no label was presented these connections

were not updated. In the simulations reported here, each object

label was represented by a single unit on the task layer. Training

the model on an object proceeded as follows (for details, see

appendix A): the object was presented to the input layer and acti-

vation propagated to the hidden layers. Activation then flowed

between the hidden layers until they settled in a stable state.

Next, hidden activations flowed to the output and, if applicable,

task layers. Output values were compared with target values

(the input values for the output layers and the correct label for

the task layer) and all weights were updated using the

backpropagation rule [73]. Weights were updated at each

presentation of an object (online learning).
bike plane

car
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Figure 2. Cortical hidden layer representations of the category prototypes with-
out labelling (a) and when labelled with global-level labels (b). The figures
represent the projections of the different classes of objects onto the subspace
defined by the first two principal components of the cortical hidden unit space.
6. Results
(a) Modelling the effects of labels on object

representations
The first simulation explored the effect on object represen-

tations when labelling objects with their global-level label

(human, vehicle, animal, furniture). Figure 2 shows the

hidden representations in the cortical system without (a)

and with (b) labelling of global categories. This is a projection

of the activation patterns for each category prototype of the

15 hidden units onto two dimensions using principal com-

ponent analysis. When the objects were not labelled, the

representations clustered on the basis of the objects’ percep-

tual similarities that sometimes corresponded to global-level

categories (see also [62]): a cluster for mammals comprised

cats, dogs, cows, elephants, horses and rabbits; a furniture

cluster contained tables, desks, chairs and chests of drawers;

fishes were distant from other objects but were closest to the

mammals cluster. Idiosyncratic clusters such as that of plane,

bicycle and eagle can be explained by the perceptual proper-

ties of these objects: in this case, each had two long, thin

protrusions, wings and handlebars.

When the objects were labelled with their global-level

category name (human, animal, vehicle, furniture), the inter-

nal object representations in the model were modified to

separate clearly along these categories. Learning the objects’

global-level labels therefore warped the cortical repre-

sentational space to reflect both perceptual similarity and the

membership in different global categories. (Note that we

used global-level names here for illustrative purposes to

show the separation into global-level categories; infants are

more likely to hear basic-level than global-level names.)
This initial result models an interaction between per-

ceptual and language-mediated categorization: labels act on

the perceptual similarity structure and warp the similarity

space so that it corresponds to the labelled categories while

still maintaining internal category structure. The model there-

fore predicts that objects sharing the same label will develop

more similar representations, and thus, also be perceived

as more similar. Although this result has received empirical

backing [48] our model offers a different explanation to the

one in the literature. As described above, a long-standing

debate on this issue has yielded two conflicting accounts

[47,49,51,52]: according to the label-as-feature hypothesis, a

category name is merely another object feature on the same

level as visual perceptual features. On this view, common

labels affect the perception of overall similarity between mem-

bers of a category because a shared label-feature increases the

overlap between their representations. By contrast, the knowl-

edge-based view of labels maintains that labels act as markers

for objects and do not affect perceived similarity. In attaching

the label on the output side of the model, the model presented

here takes a middle ground between these two accounts. Here,

the label is not merely a feature of the same kind as, for

example, geometric extent of the object (as it is not an

additional input feature). Instead the model learns a mapping
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between the perceptual features and the label. In this sense, the

label is a concept marker and each of the members of the cat-

egory evoke the label (see [74] for evidence that infants

implicitly name visually fixated objects). However, differing

from the knowledge-based approach, the model suggests

that, to achieve this mapping, the perceptual representations

of the objects are nevertheless modified and the perceptual

space is warped as a consequence. Therefore, objects sharing

the same label do not become more similar by virtue of

merely sharing another common input feature, but because

perceptual representations must be re-structured in a way

that allows for the mapping between perceptual features and

labels to be learned. This re-representation results in a non-

linear warping of the visual similarity space that maintains to

some degree the topological relationship between the appear-

ances of objects but reduces intra-category distance by

moving objects closer to the category prototype.

(b) Effect of word knowledge on object familiarization
In [62], we showed that, in agreement with empirical

research, the model predicted faster familiarization for objects

with which infants have had prior experience. Here, we

investigated whether the model also predicts that knowledge

of the label for a category facilitates familiarization over and

above prior experience with the objects. For such background

knowledge to have an effect on familiarization time, rep-

resentations from the cortical component have to interact

with the hippocampal representations when familiarization

stimuli are presented. Depending on the developed structure

of cortical representations, these could affect hippocampal

processing in different ways.

We trained three models in different environments. The

first model was not given experience with any background

knowledge. The second model, replicating the results

reported in [62], was trained on all objects from the 26 cat-

egories, but only two of the eight rabbits were used, and

no object was labelled. The third model was trained like the

second, but this time there was a 50% chance for each

object to be labelled with its basic-level name. After training

these models for 4000 object presentations, they were famil-

iarized on the remaining six rabbits. This was done by

presenting each of the rabbits to the model repeatedly until

the output error of the hippocampal system fell below cri-

terion. The results of these simulations are shown in figure 3.

Replicating the result from [62], familiarization time to the

rabbit category was significantly shorter when the model had

previous experience with objects (including other rabbits)

than when it did not. Importantly however, when the pre-

viously experienced objects were labelled familiarization

time was again significantly shorter than when they were

merely presented without labels. This result predicts that

infants will familiarize faster to novel exemplars of familiar

objects for which they know the label than to those that are

familiar but for which the label is not known. To our knowl-

edge, this has so far not been tested with infants.
7. Discussion
In this paper, we first reviewed evidence of infant category

development as a process that is driven by infants’ emerging

abilities to integrate information about objects such as feature

correlations, dynamic and animacy cues, sounds and labels.
We then extended an artificial neural network model that

had previously been used to simulate prelingusitic category

learning to model the effect of labels on categorization. The

model suggested that labels warp the visual representational

space so that objects from the same category are represented

as more similar to each other. The model further predicts that

through the interaction between cortical and hippocampal

memory systems, knowing the label for a familiar object will

speed up familiarization to other exemplars of this object cat-

egory in looking-time tasks compared with a familiar object

for which the label is not known.

The model makes a number of contributions. First, it pro-

vides a new perspective on the debate surrounding whether

labels act as object features or as category placeholders. Although

in the model shared labels increase the similarity between

objects, which has been a prediction of the label-as-feature

view, in the model the label is not a feature but acts more like a

category marker. The model, which implements the view of cat-

egory learning as a continuous process based on the progressive

enrichment of object representations ([9], see also [75]), therefore

suggests how labels as category markers, which have in exper-

imental studies been found to affect category formation, can

interact with and reorganize prelinguistic representations.

Second, the model offers an integrated view of prelinguis-

tic categorization, where it has accounted for looking time

data from infant studies and the global-to-basic shift, and

the effect of labels on categorization, where it simulates

results showing that labels can shape category structure

and that a common label makes objects appear more similar.

Several related models have addressed early categorization

and word learning. For example, a recent connectionist model

of word learning [76] consisted of two maps, one visual and

one for labels, and learning label-object mappings was

achieved by linking units between the maps. Although the

model was able to account for phenomena from word learning

such as taxonomic responding, a vocabulary spurt and overex-

tensions, it had to make a number of assumptions that are in

contrast to empirical evidence. The model required that both

word and visual maps were fully established before mappings

between them could be formed, and the associations did not
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affect the representations on each map. It is, however, unlikely

that infants have achieved a considerable vocabulary prior to

linking any words to objects. Furthermore, as described

above, there is considerable evidence that mappings between

objects and labels affect their representations (see also

[77,78]). This model therefore accounted neither for prelinguis-

tic categorization nor for the effect of labels on categories.

A related model [79] took the opposite label-as-feature

approach so that visual features and labels together fed into

a common category map. This model was successful in

accounting for data from the effect of labels on category for-

mation, but the dual-memory model goes beyond that model

in that it can additionally account for looking-time data in

prelinguistic categorization as well as for the global-to-basic

shift in non-familiarization-based categorization studies.

Our model is perhaps most closely related to that of

Rogers & McClelland [80]. This model maps between objects

and their perceptual and non-obvious properties. When

being trained on objects from multiple global- and basic-

level categories, the model showed a global-to-basic shift in

category differentiation as well as aspects of word learning

such as label overextensions. However, their model focused

on learning in what in our model is the cortical component

and it did not attempt to provide an integrated account of

real-world learning and online learning in looking-time

tasks. Instead it focused on those categorization studies that

do not involve familiarization. The model therefore could

not account for effects of labels on category structures

found in the described laboratory-based studies. In contrast

to our model, however, this model accounted for several

aspects of adult categorization and of semantic dementia.

Clearly, these models are complementary in the phenom-

ena they address, and an integrated model should account for

different aspects of acquisition together with normal and

impaired adult performance (for a related point, see [81]).

Furthermore, following a neuroconstructivist approach that

views typical and atypical development within the same

framework [82–84], a comprehensive model should also

aim to account for categorization in children with develop-

mental disorders. Studies on different disorders suggest

that the early processes described in this paper might be dis-

rupted, leading to cascading deficits that manifest later in life.

For example, one study with 4- to 6-year-old children with

Williams syndrome (WS) found that these children were able

to categorize objects based on similarity, but they were

unable to categorize on the basis of shared labels, despite

having developed large vocabularies [85]. This deficit to use

verbal labels as category markers might itself be a downstream

consequence of WS children’s difficulty in planning visual sac-

cades and thus, triadic interactions [86]. In WS, therefore, at

least the saliency of the inputs to our model would be altered

to reduce the ability to link object representations with labels.

Evidence for atypical categorization and word learning has

also been found in studies with children with autism spectrum

disorder (ASD). Children and adults with ASD respond more

slowly to atypical category members in categorization tasks

than healthy controls do [87]. Furthermore, individuals with

ASD may have difficulty in forming prototypes when shown

varying exemplars from a category [88,89], an ability that is

already evident in typically developing three-month-olds.

These results suggest a perceptual processing deficit that

goes beyond attending to stimuli differently. In our model, cat-

egorization and prototype formation are automatic processes
that arise from the type of learning in connectionist models.

A model of categorization in autism would therefore need to

modify the central aspects of information processing in the

model. Several accounts of the observed perceptual deficits in

ASD that rely on abnormal neural processing have been put

forward that could beneficially be explored in extensions of

the current model [90–92].

Finally, children with word-finding difficulties (WFD)

present an interesting case to the model. These children have

dissociations between word comprehension and production,

with more difficulty in production compared with age-matched

peers [93]. There is a debate over whether the core deficit in WFD

is a semantic one (such as weak links between semantically

related concepts) or a phonological one (such as impoverished

phonological representations) [93]. In our model, there are mul-

tiple loci where impairment could be simulated: sematic deficits

can arise from imprecise featural object descriptions as input to

the model or from impaired semantic processing, for example,

through noisy connections in the network. The most direct simu-

lation of WFD without semantic deficits would consist in

damaging connections between the cortical hidden layer and

the task/label units. The challenge is to build a developmental

model that can provide insights into whether damage to the

different parts of the model leads to performance deficits that

are comparable to those in WFD.

Our model as presented here is only the first step of an

integrated view of category and concept development. We

have focused on early categorization from two months to

around 2 years of age. However, in the transition from categ-

orization to concept formation, labels can take a role above

merely re-shaping perceptual categories. Many studies have

shown that labels can serve as the basis for inferences

about an object’s non-obvious properties where they can

override perceptual similarities ([48], e.g. [94–96]). Further-

more, recent priming studies have shown that at least from

18 months onwards there are close links between category

representations and the phonological representations of

their labels [74], as well as semantic representations and

labels [97,98]. We do not believe that our model is incompa-

tible with this research and we plan to extend it in this

direction to provide a comprehensive account from early cat-

egorization to concept formation.
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Appendix A
A.1. Model details
The model had 18 input units, 15 hidden units each and 18

output units each in the hippocampal and the cortical systems.

For the simulation in which global-level labels were used it had

four task/label units, and for the simulation with basic-level

labels it had 26, one for each category. Layers were fully inter-

connected with unidirectional feed-forward connections. The

two hidden layers were fully interconnected with lateral con-

nections (i.e. the hippocampal hidden units projected into

the cortical hidden layer and vice versa). Weights were initia-

lized in the range +0.5. Training proceeded as follows: an

input was presented to the model and activation flowed to
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both hidden layers. Then, activation flowed between the

hidden layers (with inputs clamped) until a stable activation

state was reached, i.e. until the activation change for any

hidden unit was less than a threshold (0.01), or for a maximum

of 50 iterations. In the next step, activation flowed from the

hidden layers to the three output layers. Errors were computed

on all units according to the backpropagation rule. Weights

were updated with simple backpropagation with a ‘Fahl-

man-offset’ of 0.1 [99] and a momentum of 0.9. Learning

rates were as follows: in the hippocampal subsystem, 0.25;

in the cortical subsystem, 0.01; lateral connections from corti-

cal to hippocampal hidden layer, 0.1; lateral connections

from hippocampal to cortical hidden layer, 0.01; task unit

connections, 0.01.
A.2. Category structure
Category compactness was computed by calculating the

mean Euclidean distance between all members of a category

(each expressed as an 18-dimensional feature vector). These

were: female: 0.4556; male: 0.7204, dog: 0.8501; cat: 0.9072;

rabbit: 0.8001; horse: 0.8085; elephant: 0.7532; giraffe:

0.5951; cow: 0.8259; squirrel: 0.8332; fish: 0.8796; eagle:

1.3012; songbird: 0.6807; duck: 0.6756; desk: 0.4585; table:

0.2619; bed: 0.6352; sofa: 0.3459; chest of drawers: 0.6014;

chair: 0.2262; bike: 0.5659; forklift truck: 0.5128; bus: 0.4160;

car: 0.2953; plane: 0.9548; ship: 0.4402. In the interests of brev-

ity, further details of the stimulus materials have been

omitted here, but are available by request to the authors.
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