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Over the last 15 years, network analysis approaches based on MR data have allowed

a renewed understanding of the relationship between brain function architecture and

consciousness. Application of this approach to Disorders of Consciousness (DOC)

highlights the relationship between specific aspects of network topology and levels of

consciousness. Nonetheless, such applications do not acknowledge that DOC patients

present with a dramatic level of heterogeneity in structural connectivity (SC) across

groups (e.g., etiology, diagnostic categories) and within individual patients (e.g., over

time), which possibly affects the level and quality of functional connectivity (FC) patterns

that can be expressed. In addition, it is rarely acknowledged that the most frequently

employed outcome metrics in the study of brain connectivity (e.g., degree distribution,

inter- or intra-resting state network connectivity, and clustering coefficient) are interrelated

and cannot be assumed to be independent of each other. We present empirical data

showing that, when the two points above are not taken into consideration with an

appropriate analytic model, it can lead to a misinterpretation of the role of each outcome

metric in the graph’s structure and thus misinterpretation of FC results. We show that

failing to account for either SC or the inter-relation between outcome measures can

lead to inflated false positives (FP) and/or false negatives (FN) in inter- or intra-resting

state network connectivity results (defined, respectively, as a positive or negative result

in network connectivity that is present when not accounting for SC and/or outcome

measure inter-relation, but becomes not significant when accounting for all variables).

Overall, we find that unconscious patients have lower rates of FP and FN for within cortical

connectivity, lower rates of FN for cortico-subcortical connectivity, and lower rates of FP

for within subcortical connectivity. These lower rates in unconscious patients may reflect

differences in their triadic closure and SC metrics, which bias the interpretations of the

inter- or intra-resting state network connectivity if the SC metrics and triadic closure are

not modeled. We suggest that future studies of functional connectivity in DOC patients

(i) incorporate where possible SC metrics and (ii) properly account for the intercorrelated

nature of outcome variables.

Keywords: network analysis, exponential random graph model, functional magnetic resonance imaging, coma,

disorders of consciousness

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2020.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2020.00042&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:johndellitalia@ucla.edu
https://doi.org/10.3389/fnsys.2020.00042
https://www.frontiersin.org/articles/10.3389/fnsys.2020.00042/full
http://loop.frontiersin.org/people/527408/overview
http://loop.frontiersin.org/people/142883/overview
http://loop.frontiersin.org/people/14644/overview
http://loop.frontiersin.org/people/522536/overview


Dell’Italia et al. Modeling Changing Structure in Functional Connectivity

1. INTRODUCTION

Over the last 15 years, the study of the functional organization
of the human brain under no overt task-set (i.e., so-called resting
state fMRI, rsfMRI; Raichle et al., 2001; Van Dijk et al., 2010),
has given rise to an explosion in the study of the relationship
between the functional brain network properties and cognitive
variables (e.g., Zou et al., 2013; Reineberg et al., 2015), biological
variables (e.g., Dosenbach et al., 2010; Wang et al., 2013), and
disease (e.g., Sorg et al., 2007; Hacker et al., 2012; Pandit et al.,
2013; Werner et al., 2014). Similarly, this approach has also been
applied toward the understanding the neural underpinnings of
consciousness and its disorders (e.g., Monti et al., 2013; Chennu
et al., 2014; Crone et al., 2015, 2018; Demertzi et al., 2019).

Despite the popularity and appeal of using network-based

description of brain function to assess task-free neuroimaging
data, there are a number of important challenges that

must be addressed. We have previously made the case for
four main shortcomings in current “standard” approach to

applying graph-theoretic methods to task-free neuroimaging
data, some of which relate to the implementation of the
method itself, while others relate to peculiarities of Disorders
of Consciousness (DOC) data (cf. Dell’Italia et al., 2018).
In this work, we start by providing context on the four
shortcomings and then focus on two specific problems
which we empirically show lead to inflated rates of false
positives and false negatives by virtue of mis-specifying
the model.

The first problem we discussed in our prior work (i.e.,
Dell’Italia et al., 2018) relates to the fact that network properties
are typically estimated on the basis of sparse matrices—that is
to say, on networks where each node only connects to a subset
of other nodes, as opposed to fully connected networks where
each node is connected to all other nodes. Functional networks,
however, conventionally obtained by correlating across time-
courses of a large number of regions of interest (ROI), are fully
connected. To overcome this issue, it is conventional to make
functional networks sparse by selecting a single arbitrary level
of sparseness (so-called proportional thresholding), an arbitrary
minimum correlation strength r below which connections are set
to 0 (so-called absolute thresholding), or by computing network
summary statistics over several different sparsity levels, typically
between the maximum sparsity of 2 × log(N), with N being
the number of nodes in the network, which guarantees that
networks are estimable, and the lowest level of sparsity that still
yields a network with small-world characteristic σ no lower than
1 (Watts and Strogatz, 1998). Importantly, however, summary
measures can only be compared across networks that have the
same number of connections (i.e., sparsity), thus leading to the
requirement to impose the same sparsity across groups (e.g.,
healthy volunteers vs. severe brain injury patients, minimally
conscious state vs. vegetative state patients) or different time-
points along the recovery trajectory (e.g., acute vs. chronic),
which are very likely to have different levels of “natural density”
(cf., Dell’Italia et al., 2018), thus biasing results toward whichever
set of networks happens to have natural density closest to the
enforced common density level. In response to this issue, some

have proposed the use of complex networks (Rubinov and
Sporns, 2011; Fornito et al., 2013, 2016, i.e., networks that are
fully connected and feature both positive and negative edges).
To date, however, this approach has only found very limited
application (≈ 7%; Nielsen et al., 2013).

Second, it is conventional to treat network outcome statistics
(e.g., nodal degree, clustering coefficient, etc) as independent of
each other. Yet, these outcome statistics are typically interrelated,
which can lead to spurious results. To explain, three generative
processes are believed to be key in generating a network’s
topological structure: sociality, selective mixing, and triadic
closure. Sociality, a process that operates at the single-node level,
refers to the propensity of some nodes to generate more edges
than others (e.g., the propensity of different individuals to make
friends; Goodreau et al., 2009). Selective mixing, a dyadic-level
process, refers to the propensity of an edge to form between two
nodes on the basis of some nodal attributes (e.g., the propensity
of an individual to make friends with other individuals of the
same political or religious persuasion; McPherson et al., 2001;
Goodreau et al., 2009). Assortative mixing indicates a greater
propensity for edges to form between nodes of the same category
whereas dissortative mixing indexes the opposite pattern. Finally,
triadic closure, a triadic-level process, refers to the propensity
of an edge to form between two nodes p and q that are each
already connected to the same third node r (e.g., the propensity
of friends of friends to also be friends; Goodreau et al., 2009).
While it is often assumed that each outcome metric maps in a
one-to-one fashion to the generative processes, this is typically
not the case (cf., Figure 2 in Goodreau et al., 2009). Clustering
coefficient, for example, defined as the average fraction of a
node’s neighbors that are also neighbors of each other (Watts
and Strogatz, 1998), is often employed as an outcome measure of
triadic closure. Indeed, the greater the triadic closure, the greater
the clustering coefficient. Yet, selective mixing can also affect
the clustering coefficient: when edges are more likely to form
between nodes of the same category (i.e., assortative mixing),
closure of the triangle is also more likely to occur (leading to a
greater clustering coefficient). To exemplify, friends of friends
that share membership in a group (e.g., a synagogue, a book
club), are more likely to be—themselves—friends, as compared
to friends of friends who do not share such a group membership
(i.e., dissortative mixing). In the face of this interdependence
between outcome metrics, independent testing of the metrics
is not advisable (albeit very frequent) since it can lead to
misinterpretation and spurious results.

The third major problem in applying network analysis
methods to DOC concerns the fact that there are currently
no methods for incorporating structural connectivity in the
characterization of functional networks. Structural connectivity
plays an important role in shaping the functional connectivity
that someone can express (cf., Messé et al., 2015,?; Finger et al.,
2016). In the context of DOC patients, the high heterogeneity
in underlying brain damage both within and across diagnostic
categories, as well as the potential for compensatory neuroplastic
mechanisms over time (Voss and Schiff, 2009; Demertzi
et al., 2011), makes it all the more important that structural
information be incorporated in the analysis of functional
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networks, not to make spurious inferences (see Dell’Italia et al.,
2018).

Finally, although we will not discuss the topic in the present
work, current analytic frameworks do not allow assessing the
dynamics of network change over time. Rather, they rely on
the comparison of static characterization of brain networks at
different time-points along the recovery trajectory (see Dell’Italia
et al., 2018).

In what follows, we adopt the powerful and flexible framework
of exponential random graph models (ERGM; Hunter et al.,
2008) to estimating network statistics to empirically show that,
in patients recovering from coma and a patient population and
in healthy volunteers (HCP; Van Essen et al., 2013), problem
#2 and problem #3, above, lead to false positives (FPs) and
false negatives (FNs) in the estimated networks and that, in the
patients, FPs and FNs occur at different rates depending on level
of consciousness and time since injury (i.e., acute and 6-month
follow-up). We define FPs and FNs by comparing four different
models with terms for triadic closure and/or SC included to a base
model without those terms. A FP is identified as the base model
having a significant parameter estimate (PE) for a specific type
of mixing (e.g., within default network connectivity) compared
to a model that includes an outcome metric for triadic closure
(or including SC metrics) produces a non-significant PE for
that specific type of mixing. While a FN is identified as a non-
significant PE for a specific type of mixing compared to a model
that includes an outcome metric for triadic closure (or including
SC metrics) produces a non-significant PE for that specific
type of mixing. Thus, we are identifying the effects omitting a
triadic closure term (i.e., the GWESP effect), SC metrics (i.e.,
the structural effect), or both triadic closure and SC metrics
(i.e., the interaction effect) on FP and FN rates for selective
mixing of resting state connectivity. In our current study, we
focused on rate differences of FPs and FNs for selective mixing
because much of the DOC research is focused on key regions
that form the physical substrate of consciousness. Overall, leaving
out important generative processes will produce many FPs and
FNs, but rate differences will produced biases in the FPs and FNs
that may be interpreted as true differences in patient populations.
Thus, we wanted to explore the possibility of rate differences
with three questions: (1) What are the rate differences in FPs and
FNs for HCP participants during resting state imaging days, (2)
what are the rate differences in FPs and FNs for unconscious and
conscious patients, and (3) what are the rate differences in FPs
and FNs for conscious acute and chronic patients?

2. METHODS

Our preprocessing remained consistent with our previous study
of the single patient (for full details see Dell’Italia et al.,
2018). The diffusion data were preprocessed using the following
pipeline: DWI preprocessing (brain extraction and bias field
correction), registrations (i.e., linear registration to patient’s
anatomical and non-linear registration to the MNI template
using Advanced Normalization Tools; Avants et al., 2008, 2011),
probabilistic tractography (i.e., FSL’s probtrackx2; Behrens T.

et al., 2003; Behrens T. E. et al., 2003) with tractography
thresholding (i.e., MANIA; Shadi et al., 2016). The putative
preprocessing steps for FC were performed including: brain
extraction, slice timing correction, motion correction, band-
pass filtering (0.08 ≤ Hz ≤ 0.1), removal of linear and
quadratic trends, nuisance regression for signals of non-interest
(e.g., motion parameters, white matter, cerebral spinal fluid,
and full-brain mean signal), and affine registration of functional
data to MNI template (Advanced Normalization Tools; Avants
et al., 2008, 2011). The brain network construction remained
unchanged using 154 ROIs spanning the cortex, sub-cortical
nuclei, cerebellum and brainstem. This parcellation scheme,
which was defined independently of our data, is made freely
available by Craddock et al. (2012). Additionally, we used the
Oxford thalamic connectivity atlas (Behrens T. et al., 2003) to
further refine the parcellation of the thalamus from 6 to 14 and
we parcellated the basal ganglia into 6 ROIS (caudate, putamen,
and globus pallidus each in the left and right hemispheres) for a
total of 154 ROI (i.e., 134 Craddock ROIs, 6 basal ganglia ROIs,
and 14 Thalamic ROIs). All the HCP data were downloaded with
the preprocessing completed using the miniminally processed
pipeline (Glasser et al., 2013; Van Essen et al., 2013). Functional
connectivity was assessed with a partial correlation method using
the Markov Network Toolbox (MoNeT; Narayan et al., 2015)
in MATLAB. MoNeT is a tool which combines a penalized
maximum likelihood estimation with a resampling-based model
selection procedure in order to find the most stable level of
sparse brain graph given a set of time-dependent measurements.
Each fMRI time series is bootstrapped and resampled in order to
estimate the within-subject variablity and a random penalization
is applied iteratively to find the most stable solution. This method
attempts to reduce the spurious connections that occur from
indirect sources, which plague any method using Pearson’s R
method. Thus, each patient or participant has their own sparse
connectivity from direct sources. This estimation procedure
was used on both the HCP participants and the patients with
DOC. While there are differences in signal quality and exact
preprocessing steps between the HCP participants and our
patient cohort, our comparisons involved only within HCP
participants (across imaging sessions) and within patients (across
imaging sessions). Any biases from increased signal quality or
differences in preprocessing steps should be controlled for by
comparing the data to other data with equal parameters (i.e.,
within HCP participants and within patients with DOC).

2.1. Human Connectome Project
Participants
The data for this analysis was taken from the HCP, which is a
public repository of high quality structural and functional MR
data in a large set of healthy volunteers. For the purposes of this
study, we selected a subset of the data (N = 12) so to match the
characteristics (i.e., age and gender) of the the final set of patients.
These HCP participants were randomly sampled from the S1200
(n = 9) release, the Q3 release (n = 1), S500 (n = 1), and S900
(n = 1) releases to best match the age and gender of the patients
at the time of their injury (see Table 1 for the patients that were
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matched and see Table 2 for their demographics). These HCP
participants only had a single DWI imaging session, which we
will use for both days of resting state data.

2.1.1. HCP Experimental Design
From the HCP dataset, we made use of anatomical (T1-
weighted), diffusion (Diffusion Tensor Imaging; DTI), and
functional (T2*-weighted) data. T1-weighted images were
acquired with a 3D MPRAGE sequence (repetition time [TR] =
2,400ms, echo time [TE]= 2.14 ms, flip angle [FA]= 8 deg). DTI
images were acquired with a spin-echo echo planar sequence (TR
= 5,520 ms, TE = 89.5 ms, FA = 78 deg/160 deg, 96 directions).
Finally, blood oxygenation level dependent (BOLD) functional
image were acquired with a gradient-echo echo planar image (TR
= 720 ms; TE= 33.1 ms; FA= 52 deg).

2.1.2. Functional Connectivity Patient Cohort
Of the original 16 patients, 4 patients were excluded due to BOLD
artifacts (patient P083), preprocessing errors (patient P086 and
P097), or registration errors (patient P100). After these final
exclusions there were 12 patients (see Table 1), which seven
of these patients were male and five were female. All of these
patients were presented with a post-resuscitation GCS during the
acute stage of TBI which was transformed into an inferred GOS-E
(Crone et al., 2018). Additionally, the GOS-E was assessed at the
chronic stage of TBI. Together, the inferred GOS-E and chronic
GOS-E were used to split 7 patients in the unconscious group
and 17 patients in conscious group (i.e., 5 acute patients and 12
chronic patients).

2.1.3. Patients’ Experimental Design
The 16 patients underwent two imaging sessions over the span
of at least 158 days to at most 222 days. The first session
occurred at most 37 days post injury (see Table 2), and the
follow-up session took place 238 days post-injury. At each
session the patient underwent (among other clinical and research
sequences) anatomical (T1-weighted) and functional (T2∗-
weighted) data protocols. T1-weighted images were acquired
with a 3D MPRAGE sequence (repetition time [TR] = 1900 ms,
echo time [TE]= 3.43, 1×1×1mm). BOLD functional data were
acquired with a gradient-echo echo planar image (see Table 1 for
the slice thickness, TR count, TE, and TR). Diffusion weighted
data were acquired with an echo planar sequence (for number
of gradient directions, TR, TE, and slice thickness see Table 3)
using a b-value of 1,000 and acquiring an additional B0 image.
Acute data were acquired on the in-patient 3 Tesla Siemens
TimTrio system at the Ronald Reagan University Medical Center
for patients P003, P005, P007, P014, P018, P021, P023, P024,
P026, P027, P029, P039, and P066, and rest of the patients’ acute
data were acquired on a 3 Tesla Siemens Prisma system. All the
chronic data were acquired on the out-patient 3 Tesla Siemens
Prisma system also at the Ronald Reagan Medical Center at the
University of California Los Angeles. The study was approved
by the UCLA institutional review board (IRB). Informed consent
was obtained from the legal surrogate, as per state regulations.

2.2. ERGM and Graph Statistics
The core idea underlying ERGM is the estimation of possible
network statistics that generate a family of graphs. Edges are
treated as a random variable generated by a stochastic process
that could have been sampled for a number of possible graphs,
which are produced from similar generative processes. A logistic
regression with multiple predictor variables is used to estimate
the unique contribution of each network statistic defined by:

Pθ (Y = y) =
exp(θTg(y))

c(θ)
(1)

where θ is a parameter vector that is modeled by g(y) (i.e.,
vector of graph statistics used in eachmodel). The parameter c(θ)
is a normalizing constant representing the parameter estimate
for all possible graphs (Hunter et al., 2008). This normalizing
constant is not able to be analytically solved in most models,
instead a Markov Chain Monte Carlo (MCMC) methods is used
to sample and estimate the population mean. These methods
assume Markovian principles of independent draws and the
ability to reach equilibrium. Equilibrium is the state in which any
edge that is toggled on or off results in an equally probable graph.

For both the HCP participants’ and patients’ datasets, we
ran 4 ERGM: complete model (i.e., edges term, nodemix for
resting state connectivity, the SC metrics, and triadic closure
terms), structural model (i.e., edges term, nodemix for resting
state connectivity, and the SC metrics), geometrically weighted
edged shared partners (GWESP) model (i.e., all terms except SC
metrics), and base model (i.e., only the edges term and nodemix
for resting state connectivity). The base model was specified as
follows, where Pθ (Y=y):

=
exp(θ1edges+ θ2nodemix(rest)

c(θ)
(2)

The edges term is used to control for the overall density of
each graph allowing for each graph to have a different density.
The nodemix(rest) term (i.e., the selective mixing for resting
state networks and subcortical regions) creates multiple terms
for each possible inter- (e.g., inter-frontoparietal and default
network connectivity), intra-resting state network connectivity
(e.g., within default network connectivity), inter-subcortical
(e.g., thalamo-basal ganlia connectivity), intra-subcortical (e.g.,
within basal ganglia connectivity), and between subcortical
and resting state connectivity (e.g., thalamo-frontroparietal
network connectivity.

The structural model includes structural connectivity
covariates estimated from the structural connectivity adjacency
matrix, where Pθ (Y=y):

=

exp(θ1edges+ θ2nodecov(degree)+ θ3nodecov(efficency)
+ θ4nodematch(latent)+ θ5nodecov(cluster)+ θ6nodemix(rest)

c(θ)
(3)

The structural model has the same terms (i.e., edges
and nodemix) as the base model with three additional
nodal covariates (i.e., degree, local efficiency, and nodal
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TABLE 1 | Patients’ functional MRI parameters.

Matched Acute Chronic Acute Chronic Acute Chronic Acute Chronic

MRI TR count TR count slice thickness slice thickness TR TR TE TE

P054 Yes 200 200 3.4375 × 3.4375 × 3 mm, 40 Slices 3.4375 × 3.4375 × 3 mm, 40 Slices 3,000 ms 3,000 ms 25 ms 25 ms

P055 Yes 200 200 3.5 mm isotropic, 52 Slices 3.4375 × 3.4375 × 3 mm, 64 Slices 3,000 ms 3,000 ms 25 ms 25 ms

P066 No 200 200 3.4375 × 3.4375 × 3 mm, 64 Slices 3.4375 × 3.4375 × 3 mm, 50 Slices 3,000 ms 3,000 ms 25 ms 25 ms

P069 Yes 200 200 3.4375 × 3.4375 × 3 mm, 50 Slices 3.4375 × 3.4375 × 3 mm, 52 Slices 3,000 ms 3,140 ms 25 ms 25 ms

P074 Yes 200 200 3.4375 × 3.4375 × 3 mm, 50 Slices 3.4375 × 3.4375 × 3 mm, 50 Slices 3,000 ms 3,000 ms 25 ms 25 ms

P079 Yes 200 200 3.4375 × 3.4375 × 3 mm, 50 Slices 3.4375 × 3.4375 × 3 mm, 50 Slices 3,000 ms 3,000 ms 25 ms 25 ms

P084 Yes 200 200 3.4375 × 3.4375 × 3 mm, 50 Slices 3.4375 × 3.4375 × 4.25 mm, 37 Slices 3,000 ms 2,006 ms 25 ms 25 ms

P085 Yes 200 200 3.4375 × 3.4375 × 3 mm, 40 Slices 3.4375 × 3.4375 × 4.25 mm, 37 Slices 3,000 ms 2,006 ms 25 ms 25 ms

P089 Yes 200 200 3.00 × 3.00 × 3.99, 33 Slices 3.4375 × 3.4375 × 4.25 mm, 37 Slices 2,000 ms 2,006 ms 30 ms 25 ms

P092 Yes 300 300 3.4375 × 3.4375 × 4.25 mm, 37 Slices 3.4375 × 3.4375x4.25 mm, 37 Slices 2,000 ms 2,006 ms 25 ms 25 ms

P096 Yes 300 300 3.4375 × 3.4375 × 4.25 mm, 37 Slices 3.4375 × 3.4375 × 4.25 mm, 37 Slices 2,000 ms 2,006 ms 25 ms 25 ms

P099 Yes 300 300 3.4375 × 3.4375 × 4.25 mm, 37 Slices 3.4375 × 3.4375 × 4.25 mm, 37 Slices 2,000 ms 2,006 ms 25 ms 25 ms

The functional MRI parameters are tabulated for each patient. These parameters’ descriptions are the same as the DWI paramters’s descriptions, except they are for the functional MRI

imaging session. An additional parameter for the number to TRs are tabulated under TR count.

TABLE 2 | Patients’ demographics.

Acute Chronic Delta Acute Acute Chronic

Gender Cause of injury Age at injury TSI TSI TSI GCS GOS-E GOS-E Group

P054 Female Fall 36+ 25 186 161 7 (E:2, V:1, M:4) 2 8 Unconscious

P055 Male Fall 36+ 1 195 194 6 (E:1, V:1, M:4) 2 4 Unconscious

P066 Male Bicycle vs. Automobile 36+ 0 222 222 7 (E:2, V:1, M:4) 2 5 Unconscious

P069 Male Fall 36+ 1 186 185 7 (E:2, V:1, M:4) 2 8 Unconscious

P074 Female Automobile accident 18–25 1 180 179 8 (E:1, V:2, M:5) 3 8 Conscious

P079 Female Pedestrian vs. Automobile 18–25 2 181 179 7 (E:3, V:3, M:1) 2 7 Unconscious

P083 Male Pedestrian vs. Automobile 18–25 1 180 179 3 (E:1, V:1, M:1) 2 8 Unconscious

P084 Female Automobile accident 18–25 5 183 178 3 (E:1, V:1, M:1) 2 3 Unconscious

P085 Female Fall 36+ 2 177 175 15 (E:4, V:5, M:6) 3 7 Conscious

P086 Male Fall 36+ 26 221 195 6 (E:1, V:1, M:4) 3 5 Conscious

P089 Male Fall 36+ 17 181 164 10 (E:2, V:1, M:5) 3 3 Conscious

P092 Male Automobile accident 18-25 1 158 157 10 (E:4, V:1, M:5) 2 4 Unconscious

P096 Male Automobile accident 26-30 37 176 139 3 (E:1, V:1, M:1) 3 4 Conscious

P097 Male Fall 18–25 17 170 153 8 (E:2, V:1, M:5) 3 6 Conscious

P099 Male Bicycle vs. Automobile 18–25 18 184 166 8 (E:2, V:1, M:5) 3 8 Conscious

P100 Male Fall 36+ 4 173 169 8 (E:2, V:1, M:5) 2 5 Unconscious

For the 16 patients, the following demographics for each patient is tabulated: gender, cause of injury, age at injury, time since injury for the acute imaging session (Acute TSI), time since

injury for the chronic imaging session (Chronic TSI), and the difference in time between the two imaging sessions (Delta TSI). Additionally for each patient, the level of consciousness at

the acute imaging session (Acute GCS) and chronic imaging session (Chronic GOS-E) are tabulated. The acute GOS-E is inferred from the GCS scores after the acute imaging session.

Finally, these GOS-E scores are used to group patients into two different recovery groups: unconscious and conscious groups.

clustering coefficient). These nodal covariates incorporate
structural connectivity differences into the functional
connectivity modeling.

The GWESP model has the same terms (i.e., edges and
nodemix) as the base model with a term for triadic closure, where
Pθ (Y=y):

=
exp(θ1edges+ θ2nodemix(rest)+ θ3gwesp(alpha = λ))

c(θ)
(4)

The GWESP term was added to the edges and
nodemix(rest) terms to account for the triadic
closure. This term models the number of edge shared
partners in each graph, but it applies a geometrically
weighted distribution to penalize higher counts of
edge shared partners (see Hunter, 2007, for a
complete description)

The complete model contains both the structural terms and
the GWESP term, where Pθ (Y = y):
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TABLE 3 | Patients’ DWI parameters.

Acute Chronic Acute Chronic Acute Chronic Acute Chronic

Matched MRI Bvec Bvec slice thickness slice thickness TR TR TE TE

P054 Yes 64 63 2 mm isotropic, 69 Slices 2.125 × 2.125 × 2 mm, 69 Slices 9,000 ms 9,000 ms 90 ms 90 ms

P055 Yes 56 56 2 × 2 × 3 mm, 50 Slices 2.125 × 2.125 × 2 mm, 81 Slices 8,000 ms 9,000 ms 96 ms 90 ms

P066 No 41 38 2 mm isotropic, 81 Slices 2 mm isotropic, 69 Slices 9,300 ms 9,000 ms 90 ms 90 ms

P069 Yes 59 61 2 mm isotropic, 69 Slices 2.125 × 2.125 × 2 mm, 77 Slices 9,000 ms 9,900 ms 90 ms 90 ms

P074 Yes 58 62 2 mm isotropic, 69 Slices 2.125 × 2.125 × 2 mm, 69 Slices 9,000 ms 9,000 ms 90 ms 90 ms

P079 Yes 64 62 2 mm isotropic, 69 Slices 2.125 × 2.125 × 2 mm, 69 Slices 9,000 ms 9,000 ms 93 ms 90 ms

P084 Yes 64 62 2 mm isotropic, 69 Slices 2 × 2 × 3 mm, 52 Slices 9,000 ms 9,000 ms 90 ms 90 ms

P085 Yes 54 62 2 mm isotropic, 69 Slices 2 × 2 × 3 mm, 52 Slices 10,100 ms 9,000 ms 90 ms 90 ms

P089 Yes 60 62 2 × 2 × 3 mm, 50 Slices 2 mm isotropic, 72 Slices 9,500 ms 9,500 ms 90 ms 90 ms

P092 Yes 61 63 2 mm isotropic, 78 Slices 2 mm isotropic, 75 Slices 10,100 ms 9,500 ms 90 ms 90 ms

P096 Yes 45 60 2 mm isotropic, 78 Slices 2 mm isotropic, 78 Slices 10,100 ms 10,100 ms 90 ms 90 ms

P099 Yes 62 64 2 mm isotropic, 78 Slices 2 mm isotropic, 78 Slices 10,100 ms 10,100 ms 90 ms 90 ms

The following parameters for each DWI imaging session (i.e., acute and chronic) varied from patient to patient due to clinical requirements: the number of gradient directions (Bvec),

the slice thickness, the repetition time (TR), and the echo times (TE). Additionally, the matched MRI indicates which patients had the same MRI system in both the acute and chronic

imaging sessions.

=

exp(θ1edges+ θ2nodecov(degree)+ θ3nodecov(efficency)
+ θ4nodematch(latent)+ θ5nodecov(cluster)+ θ6nodemix(rest)+ θ7gwesp(alpha = λ))

c(θ)
(5)

These four models will be used to estimate rate differences
using a multinomial regression (see section 2.3). Each model was
assessed for its overall fit to the observed data. Due to the large
number of total ERGM conducted (192 in total across patients
and HCP participants), we will only compare for two patients
(i.e., P092 in acute stage TBI and P085 in chronic stage TBI) and
HCP patients (i.e., HCP002 from the first and HCP008 resting
state imaging sessions) for the complete and GWESP models
assessed by using goodness of fit (GOF) plots (Hunter et al.,
2008). After the model was estimated, a thousand simulations
were run from the model statistics that generated 1,000 separate
graphs with the generative processes captured from each of the
four models. These simulations provided a distribution of mixing
terms (see Table 4 for patients, and for HCP participants, see
Table 5) and edge shared partners (see Table 6 for patients) that
were compared to the original graph’s edge probabilities. The
mean and variance of these distribution were used to test for
differences between the simulated distributions and the original
data’s distribution. This is to ensure that the model represents a
graph similar to the original data that it was modeled from. We
will assess the overall model statistics from equation 5 and edge
shared partner distributions.

2.3. Multinomial Regressions
We compared these 4 ERGMS in three combinations: base model
to structural model (i.e., structural effect), base model to GWESP
model (i.e,. GWESP effect), and base model to complete model
(i.e, interaction effect). The first comparison was to isolate the
effects of leaving out structural terms discussed in problem #3.
The second comparison was to isolate the effects of leaving
out a term that accounts for triadic closure (i.e., the GWESP

term) discussed in problem #2. Finally, the third comparison
demonstrates the effects of leaving out the structural terms while
still accounting for triadic closure (i.e., a combination of problem
#2 and #3). We labeled one model as the full model and one as
the partial model in each comparison.

To compare the affects of not accounting for specific terms,
we tallied the change in PEs when the terms were omitted. If a
PE was significant in the full model (i.e., the model with more
terms for that specific comparison), but not the partial model
(i.e., the base model), we label this as a FN. FP was a PE that
was significant in partial model, but not the full model. The true
positives (TPs) and true negatives (TNs) are the terms that are
significant or non-significant–respectively, in both models. We
group the PEs based on whether they belonged to the cortical
regions or subcortical to see if within cortical connectivity was
affected, within subcortical connectivity, or between cortical to
subcortical connectivity.

These tallies of FP and FN were compared for differences
between patients grouped based on their level of consciousness
at each imaging session using a behavior assessment. During the
acute session, patients were evaluated with a post-resuscitation
Glasgow Coma Scale (GCS; Teasdale and Jennett, 1974). The
GCS has three subscales: eyes opening (E), verbal response (V),
and motor response (M). Crone et al. (2018) used the GCS
subscales of V and M to transform the GCS scores into the
Glasgow Outcome Scale-Extended (GOS-E; Wilson et al., 1998).
A patient with a GCS V subscale of less than or equal 3 and a GCS
M subscale of less than or equal to 4 were assigned an inferred
GOS-E of 2, while a patient with higher scores for GCS V and
M were assigned an inferred GOS-E of 3. While DoC diagnoses
are typically not made at such an acute stage, a patient with a
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TABLE 4 | Goodness of fit differences for graph statistics.

Complete model GWESP model

Observed min M max p-value min M max p-value

HCP001 Rest1

Inter-frontoparietal subcortical 11 5 10 19 1 3 8.600 14 0.200

Inter-default visual 82 65 78.700 90 0.800 65 77.400 88 0.200

Inter-default limbic 69 57 64.800 70 0.200 56 68 80 1

Inter-subcortical thalamus 14 13 16.500 20 0.200 3 13 21 1

Inter-default ventral attention 79 75 86.100 100 0.200 62 78.300 86 1

HCP002 Rest1

Edges 2, 044 2, 023 2, 059.600 2, 113 1 1, 901 1, 983.800 2, 064 0.200

Inter-limbic thalamus 20 15 20.500 26 1 9 14.900 22 0.200

Within subcortical 159 144 161.800 173 0.600 112 143.400 169 0.200

Gwesp Fixed, λ=0.6 3, 634.600 3, 593.262 3, 660.370 3, 756.905 1 3, 367.806 3, 521.756 3, 670.710 0.200

HCP003 Rest1

Inter-dorsal attention dorsa attention 7 6 8.500 12 0.200 3 6.700 11 1

Inter-subcortical visual 10 6 8.300 14 0.200 4 10.300 18 0.800

HCP004 Rest1

Within thalamus 23 16 25.900 33 0.400 23 32.200 39 0.200

Within subcortical 138 118 144.300 160 0.400 140 160.600 169 0

HCP005 Rest2

Inter-frontoparietal somatomotor 45 29 38.800 45 0.200 30 43.300 50 1

Within subcortical 174 156 184.100 200 0.200 148 167.400 176 0.600

HCP006 Rest2

Inter-frontoparietal somatomotor 45 29 38.800 45 0.200 30 43.300 50 1

Within subcortical 174 156 184.100 200 0.200 148 167.400 176 0.600

HCP008 Rest2

Inter-limbic thalamus 26 19 23 30 0.400 16 20.800 29 0.200

Inter-somatomotor thalamus 75 64 73.800 87 0.800 60 67.900 76 0.200

Inter-limbic visual 28 15 27.100 37 0.800 18 21.900 27 0

HCP009 Rest1

Inter-limbic subcortical 16 14 17.400 21 1 17 19.200 24 0

Inter-frontoparietal ventral attention 46 35 46.700 52 0.800 45 49.900 57 0.200

Inter-dorsal attention visual 28 21 28.200 38 1 20 24.200 34 0.200

HCP010 Rest1

Inter-basal ganglia default 33 24 31.700 44 0.400 25 29.200 32 0

Inter-default dorsal attention 41 29 40.100 53 0.800 36 44.400 47 0.200

HCP010 Rest2

Inter-basal ganglia limbic 13 7 11.100 18 0.200 8 12.900 21 1

HCP012 Rest2

Inter-basal ganglia ventral attention 18 17 20.800 30 0.200 12 16.200 24 0.600

The observed column is the original data’s values for each graph statistic, while the minimum, mean, maximum, and p-value for the simulated graphs based on each of the ERGM

models are displayed. They are the biggest difference between the complete model and the GWESP model. Overall, all the patients’ ERGM for the complete model and GWESP effect

fit the data well based on the graph statistics modeled but the GWESP model had 4 p < 0.05.

GOS-E of 2 is consistent with a VS, and patient with a GOS-
E of 3 has recovered from VS. This allows organizing patients
into two groups (see Table 2): unconscious patients vs. conscious
patients. To mirror this in the HCP datasets, we compared
the first resting state imaging to the second resting state
imaging session.

Using the nnet package Venables and Ripley (2013) in R, we
used the mlogit function to multinomial regressions to predict

the differences between unconscious patients’ FP and FN rates for
the cortical groupings (i.e., within cortical connectivity, within
subcortical connectivity, and cortico-subcortical connectivity).
These cortical groupings are for the mixing of the resting
state networks and subcortical structures. The no error for all
grouping was the reference group for the outcome variable
and the acute conscious patients were the reference group
for the predictor variable. For the cortical group there were

Frontiers in Systems Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Dell’Italia et al. Modeling Changing Structure in Functional Connectivity

TABLE 5 | Goodness of fit differences for graph statistics.

Complete model GWESP model

Observed min M max p-value min M max p-value

P054 Acute

Edges 1, 796 1, 702 1, 780.300 1, 839 0.800 1, 793 1, 839.300 1, 886 0.200

Intra-limbic 19 15 21.300 28 0.400 18 22.100 28 0.200

Inter-somatomotor-ventral attention 56 50 57.700 69 1 54 63.300 74 0.200

GWESP (fixed, λ = 0.45) 2, 766.980 2, 614.125 2, 741.347 2, 834.899 0.800 2, 761.997 2, 835.273 2, 908.383 0.200

P084 Acute

Inter-frontoparietal-somatomotor 40 28 39 52 1 6 10.400 16 0.200

Inter-frontoparietal-thalamus 16 13 18.250 28 0.700 13 18.200 22 0.200

P084 Chronic

Inter-dorsal attention-limbic 9 9 11.300 14 0.200 2 8 12 1

Within subcortical 153 151 159 172 0.200 127 144.300 161 0.600

P085 Acute

Inter-dorsal attention-ventral attention 12 6 9.700 15 0.200 10 15 21 0.800

The observed column is the original data’s values for each graph statistic, while the minimum, mean, maximum, and p-value for the simulated graphs based on each of the ERGM

models are displayed. None of these are bad fits, but they are the biggest difference between the complete model and the GWESP model. Overall, all the patients’ ERGM for the

complete model and GWESP effect fit the data well based on the graph statistics modeled because neither model produced any p < 0.05 for any graph statistic.

TABLE 6 | Goodness of fit differences for edge shared partners.

Complete model GWESP model Complete model GWESP model

P054 acute P054 acute P084 chronic P084 chronic

Observed min M max p-value min M max p-value Observed min M max p-value min M max p-value

esp0 4 0 0.100 1 0 0 0 0 0 16 0 0.700 2 0 0 1.600 4 0

esp1 20 1 3.200 6 0 1 3.200 6 0 63 42 56.800 73 0.800 50 58.500 67 0.400

esp2 58 50 65 83 0.600 54 74 89 0.400 140 198 231.700 254 0 182 226.200 258 0

esp3 140 226 245.900 269 0 224 252.800 292 0 243 311 341.300 371 0 326 347.500 391 0

esp4 213 357 385 410 0 326 359.100 383 0 275 311 335.200 365 0 316 332.900 353 0

esp5 255 362 384 406 0 360 380.300 401 0 260 200 237.600 277 0.400 217 240.600 267 0.200

esp6 275 276 311.200 351 0 261 292.500 326 0.600 201 113 142.900 167 0 124 149.600 174 0

esp7 245 176 205 231 0 170 198.300 231 0 143 51 76.700 95 0 67 80.100 94 0

esp8 197 89 116.100 147 0 81 110.600 135 0 72 26 35.600 47 0 20 35.700 46 0

esp9 158 54 64.200 78 0 40 60.900 79 0 40 7 14.600 26 0 11 14.700 25 0

esp10 93 26 34.800 45 0 17 28.500 41 0 17 3 7 15 0 3 5.400 9 0

esp11 68 6 14.600 22 0 9 12.900 22 0 12 0 2.500 6 0 0 1.800 3 0

esp12 28 4 6 9 0 1 4.300 7 0 6 0 1 3 0 0 1.100 4 0

esp13 24 1 2.700 5 0 0 2.200 4 0 1 0 0.500 1 1 0 0.100 1 0.200

esp14 11 0 0.900 3 0 0 0.600 3 0 0 0 0 0 1 0 0 0 1

The observed column is the original data’s values for each edge shared partner type, while the minimum, mean, maximum, and p-value for the simulated graphs based on each of the

ERGM models are displayed. The edge shared partner types are based on the number of triangles sharing a common edge (e.g., the esp10 term has 10 triangles all sharing common

edge). Overall, all the patients’ ERGM for the complete model and GWESP effect did not fit the data well based on the graph statistics modeled because both models had at least than

11 of the 14 p < 0.05 for types of edge shared partner type.

6 possible categories predicted, which were FN and FP for
each grouping. The same comparisons were conducted for the
HCP participants, but there was only one possible comparison
between the first and second resting state scan. Finally, we
transformed all the logits into odds ratios for reporting
and interpretations.

3. RESULTS

As shown in Figure 1, the brain network construction using
MoNeT resulted in different estimated densities. Overall, the
density varied between resting state session 1 and session 2
in all participants (except HCP011) within the range between
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TABLE 7 | The effect of daily variability in resting state connectivity on FPs and FNs.

Multinomial Regression: Cortical Nodal Labeling

Comparison: Interaction effect GWESP effect Structural effect

Constant Rest2 Constant Rest2 Constant Rest2

False negatives for Cortical to Subcortical 0.00597∗∗∗ 1.49 0.00614∗∗∗ 1.97

(0.355) (0.458) (0.355) (0.435)

False positives for Cortical to Subcortical 0.0269∗∗∗ 0.716 0.039∗∗∗ 0.681 0.0338∗∗∗ 0.628

(0.169) (0.260) (0.141) (0.220) (0.153) (0.245)

False negatives for Within Cortical 0.0157∗∗∗ 0.614 0.001∗∗∗ 0.984 0.937∗∗∗ 0.797

(0.220) (0.355) (0.708) (1.001) (0.198) (0.296)

False positives for Within Cortical 0.0299∗∗∗ 1.09 0.031∗∗∗ 0.937 0.0515∗∗∗ 0.869

(0.160) (0.222) (0.157) (0.224) (0.125) (0.183)

False negatives for Within Subcortical 0.00448∗∗∗ 0.826 0.002∗∗∗ 0.656 0.00307∗∗∗ 1.73

(0.409) (0.607) (0.578) (0.914) (0.501) (0.628)

False positives for Within Subcortical 0.00149∗∗∗ 0.496 0.002∗∗∗ <0.0001 0.000768∗∗∗ 1.97

(0.708) (1.23) (0.578) (<0.0001) (1.00) (1.23)

Observations 2904 2904 2904

Log Likelihood -1072.262 -1702.825 -1316.831

Akaike Inf. Crit. 2168.524 1722.825 2657.662

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. For the cortical nodal labeling, the FPs and FNs for each type of connectivity pattern were predicted for the first resting state imaging days. The

change in odds ratios and their standard errors in parentheses are listed for the interaction, GWESP and structural effect comparisons. Overall, there are no significant change in odds

ratios for any of the three model comparisons.

TABLE 8 | The effect of level of consciousness and stage of TBI on FPs and FNs.

Multinomial Regression: Cortical Nodal Labeling

Comparison: Interaction effect GWESP effect Structural effect

Constant Unconscious Chronic Constant Unconscious Chronic Constant Unconscious Chronic

False negatives for Cortical to Subcortical 0.0272∗∗∗ 0.277∗∗∗ 1.16 NA NA NA 0.0183∗∗∗ 0.274∗ 0.401∗

(0.271) (0.491) (0.317) (NA) (NA) (NA) (0.319) (0.594) (0.450)

False positives for Cortical to Subcortical 0.0350∗∗∗ 0.575 1.14 0.05628∗∗∗ 0.83284 0.94166 0.00733∗∗∗ 0.685 1.00

(0.240) (0.348) (0.281) (0.188) (0.254) (0.225) (0.502) (0.709) (0.594)

False negatives for Within Cortical 0.0447∗∗∗ 0.366∗∗∗ 1.31 0.01313∗∗∗ 0.69403 0.23741∗ 0.0201∗∗∗ 1.31 1.09

(0.213) (0.352) (0.246) (0.380) (0.537) (0.629) (0.305) (0.376) (0.356)

False positives for Within Cortical 0.0485∗∗∗ 0.259∗∗∗ 1.18 0.05816∗∗∗ 0.60447 1.05868 0.0366∗∗∗ 0.274∗∗ 0.321∗∗∗

(0.205) (0.378) (0.239) (0.185) (0.269) (0.218) (0.228) (0.422) (0.339)

False negatives for Within Subcortical 0.0136∗∗∗ 0.370 0.551 NA NA NA 0.0256∗∗∗ 0.636 0.746

(0.381) (0.629) (0.507) (NA) (NA) (NA) (0.271) (0.389) (0.335)

False positives for Within Subcortical 0.00583∗∗∗ 0.431∗ 2.43 0.00750∗∗∗ 0.86763 0.10388∗

(0.579) (0.915) (0.628) (0.502) (0.673) (1.12)

Observations 2904 2904 2904

Log Likelihood -1749.64 -1381.539 -1024.384

Akaike Inf. Crit. 3535.28 2799.077 2078.769

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

For the cortical nodal labeling, the FPs and FNs for each type of connectivity pattern were predicted for unconscious patients compared to all conscious patients. The change in odds

rations and their standard errors in parentheses are listed for the interaction, GWESP and structural effect comparisons. Overall, the interaction effect has a significant decrease in odds

ratios for FNs in cortical to subcortical connectivity and within cortical connectivity, and FPs in within cortical and subcortical connectivity.

0.003 to 0.0175. Across HCP participants, the densities ranged
from 0.1676 to 0.2159 and the structural connectivity had
less variability in the densities of the graphs across subjects
ranging from 0.0531 to 0.0632. For the patients, the density

of the functional connectivity differed between resting acute
session and chronic session in all patients within the range
between 0.0019 to 0.0331. Across patients, the densities ranged
from 0.1039 to 0.1524 and the structural connectivity had less
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FIGURE 1 | Densities for the functional and structural connectivity. The functional connectivity and structural connectivity was allowed to naturally vary based on the

thresholding procedure. In (A), there is no clear difference within the patients when comparing acute and chronic stage of TBI for neither the structural or functional

density. In (B), the HCP participants also show no clear difference between resting state imaging on day 1 compared to day 2.

variability across acute and chronic imaging sessions in the
densities (i.e., a difference between 0.005 to 0.0095).

In both HCP participants and patients,we assessed the
functional connectivity types with ERGM using four models (i.e.,
base, structural, GWESP, and complete) to reveal the FPs and FNs
that result from the omissions of the structural terms (i.e., the
structural effect), triadic closure term (i.e., the GWESP effect),
and both structural and triadic closure (i.e., the interaction
effect). Leaving out the structural terms, the HCP participants
all had either FP or FNs for cortical/subcortical connectivity
(see column B in Figure 2. Using multinomial regression we
tested for differences in FP and FN rates between their two
resting state imaging, the structural effect, GWESP effect and
interaction effect comparisons all revealed no significant change
in odds ratios for the resting state imaging session performed
on day 2 compared to day 1 (see Table 7). Despite these
lack of differences in resting state imaging days, all patients
had FP or FN rates for leaving out the triadic closure term
(see column A in Figure 2, and for the interaction effect

of leaving out both the structural and GWESP terms (see
Figures 3, 4).

The omission of structural terms generate FPs or FNs for
all patients (see row B in Figure 5) did produce a 0.401
times decrease in FN for cortico-subcortical connectivity and
a 0.321 times decrease for FP in within cortical connectivity
for conscious chronic compared to conscious acute stage of
TBI patients (see column 3, in Table 8). A similar pattern was
found for unconscious patients compared to conscious acute
patients, where there was a significant 0.274 times decrease
in FN for cortico-subcortical connectivity and a 0.274 times
significant decrease for FP in within cortical connectivity. For the
GWESP (see row A in Figure 5), only the chronic patients had
a significant decrease in FP for within subcortical connecitivty
and significant decrease in FP for within cortical connectivity
compared to acute patients (see column 2, in Table 8). Finally,
the interaction effect of leaving out GWESP and structural terms
(see Figures 6, 7) produced FPs and FNs significant decreases in
odds ratios of 0.277 times, 0.366 times, 0.259 times, and 0.431

Frontiers in Systems Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Dell’Italia et al. Modeling Changing Structure in Functional Connectivity

FIGURE 2 | HCP participants model comparisons for the structural and GWESP effects. For the model comparison of base model (i.e., selective mixing only) to

GWESP model (i.e., selective mixing with modeling triadic closure), this figure shows, in column (A) the FN and FP rates of resting state network nodes grouped by

cortical and subcortical regions for each resting state imaging session separated by 1 day. The none category contains both the TP and TN across models. In column

(B) the effect on the FN and FP rates for leaving out the structural connectivity terms (i.e., structural effect) for the same types of connectivity. These model

comparisons revealed no structural or triadic closure effects on the rates of FPs and FNs for rate differences in cortical or subcortical regions’ connectivity patterns

across the different resting states on 2 separate days.

times for FNs in cortico-subcortical connectivity, FNs and FPs
for within cortical, and FP for within subcortical, respectively.
Overall, the patients with DOC did have differing rates FP
and FN and their rates were not driven by a few conscious
patients with DOC, rather there were clear high rates of FP and
FNs for seven of the seventeen conscious patients (i.e., P074
chronic, P085 chronic, P089 acute, P089 chronic, P092 acute,
P096 chronic, and P099 chronic; see Figure 7) compared to none
of the seven unconscious patients having rates close to the seven
conscious patients.

4. DISCUSSION

Overall, our results highlight two important and overlooked
issues in graph analysis. First, brain graphs are susceptible to
having different natural levels of density (see Milham et al.,
2012; Nielsen et al., 2013) at which they are the most stable and
thus, likely, better representations of the structure of the sampled
graph. In our data, FC densities ranged from 16.76 to 21.5%
for HCP volunteers (see Table 2), and from 10.39 to 15.24% in
TBI patients. The use of MoNeT (Narayan et al., 2015), together
with ERGM, acknowledges such inter-individual and inter-group
differences and views density as a potentially interesting feature
of a graph as opposed to a nuisance to be addressed by either
imposing an arbitrary level (or range) of density across all graphs
(Rubinov and Sporns, 2010; vanWijk et al., 2010) or by assuming
fully connected, complex, networks (Rubinov and Sporns, 2011;
Fornito et al., 2013, 2016). The issue is all the more important in
the context of brain injury and DOC, where full-brain functional

and structural connectivity are known to vary across groups
(e.g., acute vs. chronic, healthy volunteers vs. patients, coma
vs. MCS, etc; Vanhaudenhuyse et al., 2010; Fernández-Espejo
et al., 2012; Monti et al., 2015; Zheng et al., 2017; Crone et al.,
2018).

Second, our data also show that even when graph density
is allowed to vary, failure to account analytically for the
interdependence of network measures (i.e., problem #2) and for
the structural substrate of functional graphs (i.e., problem #3)
significantly affects model estimation. To clarify this issue, it
is worth noting that while the conventional approach to graph
theory attempts to “summarize” observed networks bymeasuring
their topological properties (e.g., characteristic path length,
clustering, and small-worldness Rubinov and Sporns, 2010;
Bullmore and Sporns, 2012), ERGM attempts to reconstruct
which “social” processes, or combination thereof, are the
most likely to have generated the observed networks (hence
the term generative processes; Robins et al., 2007; Goodreau
et al., 2009). Somewhat analogously to a multiple regression
framework (Goodreau et al., 2009), ERGM can thus be viewed
as a procedure to determine which combination of generative
processes are most likely to explain the observed network (e.g.,
triadic closure, which is measured by the GWESP term, and
captures the degree to which, if node A and node B both
connect to node C, A and B more likely to be connected
compared to any other two nodes; selective mixing, which
is measured by the mixing term, and captures the degree to
which nodes that are part of the same group [e.g., hemisphere]
more likely to connect with each other). Thus, much like in
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FIGURE 3 | HCP participants model comparison for the interaction effect. For the model comparison of base model (i.e., selective mixing only) to complete model

(i.e., selective mixing with modeling both triadic closure and SC), this figure shows the FN and FP rates of resting state network nodes grouped by cortical and

subcortical regions for each resting state imaging session separated by 1 day. The none category contains both the TP and TN across models. This comparison

revealed no rate differences in cortical or subcortical regions’ connectivity patterns across the different resting states on 2 separate days.

a conventional multiple regression, omission of informative
explanatory variables from the model (i.e., terms) results in
incorrect estimation of the association between a dependent
variable (which, in ERGM, is the observed network) and
each explanatory variable (in ERGM, the outcome metrics
associated with the generative processes; for further discussion
see Dell’Italia et al., 2018).

The importance of this issue becomes clearer when
considering that many of the questions of interest in the
context of DOC and TBI are questions about specific generative
processes. For example, asking whether cortico-cortical or
cortico-subcortical connectivity play different roles in the
maintenance or recovery of consciousness (e.g., Laureys
et al., 2000a,b; Boly et al., 2009, 2011; Vanhaudenhuyse et al.,
2010; Crone et al., 2014, 2018; Amico et al., 2017) is, in the
ERGM framework, a question of selective mixing: is level of
consciousness associated with greater/smaller proclivity for
nodes within cortex to associate preferentially with nodes in
the same group (i.e., cortex)? In order to properly answer this
question, the model needs to account (i.e., parcel out, keeping
the analogy of the multiple regression) for the shared variance
of selective mixing and other generative processes (e.g., triadic
closure measured by number of triangles in a graph).

Indeed, the present results show that both patients
and HCP participants had non-zero rates for FP and
FN, if either triadic closure or the structural term
were omitted. Crucial for this literature, however,
conscious and unconscious patients exhibited very
different rates, potentially because, as we discuss more
below, of the different effect of mis-modeling on the
two populations (due to their different underlying
structural/functional properties).

Leaving out a known interrelatedmeasures (e.g., GWESP term
for triadic closure term; see column 2 in Table 8) increases risks
for differences in rates in FN for within cortical connectivity
and FP within subcortical connectivity for comparisons between
acute and chronic stage TBI patients. As we discussed in
the introduction, triadic closure is one the key generative
processes (Goodreau et al., 2009) present most graphs, but
more importantly these differences in FP an FN rates could
be due to the importance of triadic closure to consciousness.
Clustering coefficients have been used to differentiate patients
with DOC (using structural connectivity; Tan et al., 2019)
and for differentiating levels of consciousness while undergoing
anesthesia (Monti et al., 2013). Due to the empirical findings
of different levels of triadic closure within patient groups, the
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FIGURE 4 | HCP participants comparison for the interaction effect. These are individual participants’ FN and FP rates for the selective mixing of the cortical nodal

labeling. The FP and FN rates for each participant are quite homogeneous (except for HCP0005), which indicates the group finding of no rate differences are

representative of the most participants.

best way to avoid these FP and FN rate differences is to
model the selective mixing and triad closure processes in a
single model.

Similarly, omitting the structural terms (see column
3 in Table 8) affects the FP rates differently for the
unconscious patients in their acute stage of TBI and the
conscious patients in the chronic stage of their TBI for
both within cortical connectivity and cortico-subcortical
connectivity. These effects are quite problematic for DOC
research due to the interest in comparing cortico-cortico
and thalamo-cortical connectivity (e.g., Laureys et al.,
2000a,b; Boly et al., 2009, 2011; Vanhaudenhuyse et al.,
2010; Crone et al., 2014, 2018; Amico et al., 2017) and its
importance to consciousness. Due to the inherent nature

of structural damage affecting the structural connectivity,
the inclusion of structural terms into a model assessing
functional connectivity will help to avoid the FP and FN
rate differences between patient in acute and chronic stage
of TBI, and the difference in rates between unconscious and
conscious patients.

Finally, leaving out both the structural terms and the
GWESP term (see column 1 in Table 8) has differing rates
in FNs for cortico-subcortical connectivity, FN and FPs for
within cortical connectivity, and FPs for within subcortical
connectivity. Since all these effects are for unconscious patients,
it affects all of DOC research for all three possible types
of comparisons between cortical and subcortical connectivity.
As can be seen in Table 8, the combination of leaving both
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FIGURE 5 | Patients comparison revealing the structural and GWESP effects. For the model comparison of base model (i.e., selective mixing only) to GWESP model

(i.e., selective mixing with modeling triadic closure), this figure shows, in row (A) the FN and FP rates of resting state network nodes grouped by cortical and

subcortical regions when the patients are divided into their level of consciousness assessed by behavioral metrics (i.e., GOS-E). The none category contains both the

TP and TN across models. In row (B) the effect on the FN and FP rates for leaving out the structural connectivity terms (i.e., structural effect) for the same types of

connectivity when the patients are divided into their stage of TBI and their level of consciousness assessed by behavioral metrics. These model comparisons revealed

triadic closure effects on the rates of FPs for within cortical connectivity and FNs for within cortical connectivity in unconscious and chronic patients. Additionally, there

were structural effects on the rates of FNs for within cortical connectivity and FPs for within subcortical connectivity for chronic patients.

terms is not just a simple combination of leaving out each
term, but has a specific impact on unconscious patients. A
possible explanation is that, for unconscious patients, structural
connectivity alterations related to the traumatic injury affects
the patients’ triadic closure. These differences, however, are
might by not accounting for patients’ structural connectivity
metrics. These types of interactions are key reasons for
including all the generative processes in a graph and other
key contributing factors such structural connectivity metrics in
patient work, particularly when structural pathology is such a

prominent phenotype of this cohort (Lutkenhoff et al., 2015,
2019).

4.1. Limitations
While we have demonstrated that all three problems would

have affected this analysis, we did not fit the data well for the
specific effects of triadic closure. The GWESP term matched
the overall observed values (see Table 5 for patients, and for
HCP participants, see Table 4), but our fits were sub-optimal
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FIGURE 6 | Patients comparison for the interaction effect. When comparing the base model (i.e., selective mixing only) to complete model (i.e., selective mixing with

modeling both triadic closure and SC), the FN and FP rates of resting state network nodes grouped by cortical and subcortical regions when the patients are divided

into their level of consciousness assessed by behavioral metrics (i.e., GOS-E). The none category contains both the TP and TN across models. The right figure

displays the FN and FP for the selective mixing of the cortical nodal labeling when the patients are divided into their stage of TBI and their level of consciousness

assessed by behavioral metrics. Overall, This comparison revealed rate differences in cortical or subcortical regions’ connectivity patterns between patients with

different level of consciousness, but no rate differences in cortical or subcortical regions’ connectivity patterns between different stages of TBI.

for most specific edge shared partners (see Table 6). The edge
shared partners are a type of triadic closure that measures the
number of triangles that share an edge. The effect of these
poor fits are not well-understood in our field. There is not any
work that we are aware of, which explains specific amounts of
triadic closure and their neural mechanisms. There is some work
describing larger scale interpretations of outcome metrics (e.g.,
local and global clustering cofficient; Rubinov and Sporns, 2010,
2011) or to characteristic network blocks (i.e., motifs; Sporns and
Kötter, 2004), but these accounts are for general interpretations
without linking them to key neural mechanism. More theoretical
work is needed to understand how these generative processs
(i.e., sociality, selective mixing, and triadic closure) arise from
neural mechanisms.

Finally, we only accounted for the structural terms by
using measures of centrality and higher order clustering terms
(e.g., clustering coefficient and latent space clusters). This
is the equivalent of parceling out the effects of structural
connectivity on functional connectivity, similar to using
covariates in a regression analysis to control for confounding
effects. We have not truly estimated the effects of structural
connectivity on functional connectivity. There are structural
effects which could account for generative processes that
we are attributing to the functional connectivity. For
example, if a three nodes have two structural edges, does
the functional close this triad? A process like this would
represent a possible structural and functional relationship
from triad closure from the combination of structural and
functional connectivity.

5. CONCLUSIONS AND FUTURE WORK

For unconscious patients, the lower rate of false positives
and/or false negatives for within cortical connectivity, within
subcortical connectivity, and cortico-subcortical connectivity
reveal the problems of interrelated outcome statistics and
leaving out structural connectivity. These effects can result
in misinterpretations of selective mixing terms, if the other
generative processes are not included. The proper interpretation
selective mixing in functional connectivity for unconscious
patients are key to understanding how disruptions of functional
connectivity can disrupt consciousness. Additionally, the biases
of not including all the generative processes will affect any group
comparisons between unconscious patients and other patients
with a DOC. We suggest future studies in DOC patients model
all the generative processes and include structural connectivity
metrics when possible.

We did not compare the patients to the HCP data due to the

differences in quality of BOLD imaging and imaging parameters.

However, we suspect that there would be differences similar to

comparing the groups of patients because the underlying cause
of these false positives and false negatives is the importance in

generating structure in the brain. Patient populations differ in
this structure, which would be reflected by difference in sociality,

selective mixing, and triadic closure. Leaving out one of these
generative processes will affect the rest (Goodreau et al., 2009).
Additionally, the structural terms are specifically important to
DOC due to the TBI resulting in structural damage that is part of
the recovery process. While there may be alternatives to solving

Frontiers in Systems Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Dell’Italia et al. Modeling Changing Structure in Functional Connectivity

FIGURE 7 | Patients comparison for the interaction effect. These are individual patients’ FN and FP rates for the selective mixing of the cortical nodal labeling. The FP

and FN rates for each participant are quite heterogeneous. However, most of the conscious patients have large amounts of FNs and FPs, while the unconscious

patients have much lower amounts of FNs and FPs, which indicates the group finding of rate differences are representative of the most patients.

the three of the four problems we outlined (i.e., problem#1, #2,
and #3), we chose to use exponential random graph models due
to the flexibility it provides to model all the generative processes
and other covariates of interest (e.g., size of regions of interest
or amount of atrophy within an region of interest). This flexible
framework would allow researchers to generate models that fit
their specific needs and research questions.

In addition, a method is needed that accounts for the
social processes that generate the complex interactions between
structural and functional connectivity. Structural and functional
connectivity are part of a multi-level problem (i.e., there is a
structural layer, functional layer within the brain and finally an
interaction between these layers). By this, we mean that each
have their own generative processes that govern their structure

and there are interactions between the levels that drive the
brain dynamics. Multi-level exponential random graph models
(Wang et al., 2013, 2016; Lazega and Snijders, 2016) have been
developing to capture the the nested structure of networks. A
concrete example is collaborative research (Lazega et al., 2008),
in which, researchers have advice networks for their research
problems and the laboratories have collaboration networks. The
researchers advice network would be the micro-level network
because they are nested within the laboratories (i.e., macro-
level). Each of these levels have their own generative processes
associated with the structure, but there is a third layer (i.e.,
the meso-level) that affects both levels. In the collaborative
research example, the researchers’ affiliation with laboratories
are the meso-level. This example could be extended to the
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structural and functional layers of the brain. The functional
layer is the micro-level because it is nested within the macro-
level structural layer. The meso-level could be the locations of
the functional layer within the structural layer or an estimation
of joint functional structural connectivity could be the meso-
level (e.g., hybrid connICA; Amico et al., 2017). These multi-
level exponential random graph models would allow for a more
complete solution to the four problems posed in this thesis
because all the levels of functional and structural connectivity
could be jointly estimated and properly modeled. This would be a
large step in the direction of unraveling the complex interactions
between structural and functional connectivity that generate the
ability for our complex behavior.
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