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Abstract: The dipeptide d-Glu-meso-DAP (iE-DAP) is the minimal structural fragment capable of
activating the innate immune receptor nucleotide-binding oligomerization domain protein (NOD1).
The meso-diaminopimelic acid (meso-DAP) moiety is known to be very stringent in terms of the
allowed structural modifications which still retain the NOD1 activity. The aim of our study was to
further explore the chemical space around the meso-DAP portion and provide a deeper understanding
of the structural features required for NOD1 agonism. In order to achieve the rigidization of the
terminal amine functionality of meso-DAP, isoxazoline and pyridine heterocycles were introduced
into its side-chain. Further, we incorporated the obtained meso-DAP mimetics into the structure
of iE-DAP. Collectively, nine innovative iE-DAP derivatives additionally equipped with lauroyl or
didodecyl moieties at the α-amino group of d-Glu have been prepared and examined for their NOD1
activating capacity. Overall, the results obtained indicate that constraining the terminal amino group
of meso-DAP abrogates the compounds’ ability to activate NOD1, since only compound 6b retained
noteworthy NOD1 agonistic activity, and underpin the stringent nature of this amino acid with regard
to the allowed structural modifications.

Keywords: NOD1 agonist; constrained meso-DAP mimetics; NOD1 activation; innate immune agonist;
bioisosteric replacement; rigidization

1. Introduction

Nucleotide-binding oligomerization domain protein (NOD)-like receptors (NLRs) constitute a
family of innate immune receptors that mediate the response to bacterial peptidoglycan [1,2]. NOD1 is
an extensively expressed prominent NLR representative which detects peptidoglycan fragments [3,4]
featuring a dipeptide d-Glu-meso-DAP (iE-DAP) motif in their structures [5–8]. Upon recognition of
this sequence, NOD1 generates an immune response via the activation of nuclear factor κB (NF-κB) and
mitogen-associated protein kinases [9–11], while it has also been implicated in other innate immunity
mechanisms [12], such as caspase activation [13], apoptosis [14], and autophagy [15].

d-lactoyl-l-Ala-γ-d-Glu-meso-DAP-Gly (FK-156) and heptanoyl-γ-d-Glu-meso-DAP-d-Ala (FK-565)
have been identified as some of the first NOD1 agonists [16,17]. These compounds have displayed
significant therapeutic potential; besides reinforcing the innate and adaptive immune response,
thereby increasing the host defence, they have also been shown to possess antitumor activity [18–20].
Recently, Agnihotri et al. conducted an extensive structure–activity relationship study, which revealed
that by attaching lipophilic chains, in particular the lauroyl and didodecyl moieties, to the d-Glu
α-amine functionality of iE-DAP, a several hundredfold more potent NOD1 agonistic activity could
be achieved [21]. In line with these findings, our group designed iE-DAP derivatives decorated with
lauroyl or didodecyl moieties at the amino group of the d-Glu residue. In addition, a double bond
functionality was installed into the side-chain of the meso-diaminopimelic acid (meso-DAP) residue to
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increase the overall rigidity of these derivatives, which ultimately resulted in NOD1 agonists more
potent than C12-iE-DAP [22]. In fact, the majority of the ensuing attempts to enhance its activity
involved the introduction of lipophilic moieties into the d-glutamyl portion [23–25].

Based on the results of our previous work, we wanted to further explore the chemical space
around the meso-DAP portion to provide a deeper understanding of the structural features required
for NOD1 agonism. In order to achieve this objective, we explored possible replacements of this
moiety and therefore turned our attention towards the meso-DAP mimetics reported in the literature to
seek different options that provide optimization opportunities. The meso-DAP moiety is notorious
for being very stringent as far as the allowed structural modifications, which still retain the NOD1
activity, are concerned. For example, Agnihotri et al. reported that no structural variations are allowed
on its terminal amino group [21]. In spite of this, we investigated whether the rigidization of the
terminal amine of the meso-DAP side-chain could bring about an increase in the NOD1 agonistic
activity. To that end, we incorporated isoxazoline- and pyridine-based constrained meso-DAP mimetics
into the structure of iE-DAP. In addition, lauroyl or didodecyl moieties were attached to the α-amino
group of the d-Glu residue previously determined to be optimal. Collectively, nine innovative iE-DAP
derivatives have been prepared as potential NOD1 agonists. The HEK-Blue NOD1 cell line served as a
model for studying the ability of these compounds to activate NF-κB through NOD1 activation.

2. Results and Discussion

2.1. Design and Chemistry

Since diaminopimelic acid is featured in biosynthetic pathways and a number of biologically
active compounds, it has received considerable attention. Due to the flexibility of its side-chain,
meso-DAP is capable of assuming a number of spatial conformations. Previously, we have shown
that installing a double bond functionality into the side chain can result in an increase in the NOD1
activating capacity of molecules [22]. As a continuation of our previous efforts, we postulated that
constraining the terminal amino group of meso-DAP could also contribute to NOD1 agonistic activity.
Several meso-DAP mimetics have been identified [26–28], including those carrying isoxazoline [29],
pyridine [30], and aziridine [31] functionalities, whose structures are partially constrained, as well
as meso-DAP bioisosteres, such as lanthionine [32], meso-oxa-DAP [33], and cystine [34], all of which
still retain and mimic the key structural features of meso-DAP. We presumed that the rigidization
of meso-DAP terminal amine by introducing either isoxazoline or pyridine moieties (see Figure 1)
would best suit our objective and bring about an increase in the NOD1 agonistic activity.
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Figure 1. Design of conformationally constrained d-Glu-meso-DAP analogs carrying meso-diaminopimelic
acid (meso-DAP) mimetics.

The synthetic strategy for preparing the conformationally constrained iE-DAP analogs is shown
in Scheme 1. The starting diastereomeric isoxazoline mimetics of meso-DAP, 1a ((2S,5R)-configuration)
and 1b ((2R,5R)-configuration), were synthesized according to the published procedure [29].
Next, N-Boc deprotection of 1a and 1b was achieved by acidolysis using a standard trifluoroacetic
acid (TFA)-dichloromethane (DCM) (1:5) protocol [22]. In the following step, the resulting
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free amines were coupled with the commercially available Boc-d-Glu-OtBu to obtain the
fully protected d-Glu-meso-DAP derivatives 2a–b. Alternatively, the free amines underwent
in situ 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU)-mediated
coupling with lipophilic d-Glu derivatives N-lauroyl-d-Glu-OtBu and N,N-dilauryl-d-Glu-OtBu,
thereby affording the fully protected d-Glu-meso-DAP mimetics 3a–b and 4a–b, respectively.
Incidentally, N-lauroyl-d-Glu-OtBu and N,N-dilauryl-d-Glu-OtBu were synthesized as described
previously [22]. Finally, the synthons 2a–b, 3a–b, and 4a–b were subjected to a two-step deprotecting
sequence entailing a classical alkaline hydrolysis utilizing 1M NaOH/MeOH and a subsequent
acidolytic removal of the N-Boc and O-tBu groups using a standard TFA-DCM (1:1) protocol to yield the
isoxazoline-type d-Glu-meso-DAP mimetics 5a–b, 6a–b, and 7a–b, respectively [29]. The synthesis of the
pyridine-carrying d-Glu-meso-DAP mimetics is also illustrated in Scheme 1. The starting pyridine-based
meso-DAP analog 8 carrying a free amine functionality was synthesized as previously described [30,35].
In the following step, TBTU-mediated coupling was employed to promote the acylation of the
free amine with Boc-d-Glu-OtBu and the lipophilic d-Glu derivatives N-lauroyl-d-Glu-OtBu and
N,N-dilauryl-d-Glu-OtBu, thus furnishing the corresponding dipeptides 9a, 9b, and 9c, respectively.
Further, the deprotection of dipeptides 9a–c with 1M NaOH/MeOH and a subsequent acidolysis
yielded the desired pyridine-type d-Glu-meso-DAP mimetics 10a, 10b, and 10c.
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Scheme 1. Synthesis of conformationally constrained analogs of iE-DAP. Reagents and conditions:
(i) TFA/DCM (1:5), 0 ◦C then rt. (ii) Boc-d-Glu-OtBu, N-lauroyl-d-Glu-OtBu, or N,N-dilauryl-d-Glu-OtBu,
TBTU, diisopropylethylamine, DMAP/DCM. (iii) (a) 1M NaOH, MeOH; (b) TFA/DCM (1:1).

2.2. Biological Characterization

Using the MTS metabolic activity assay, the proliferation rates of HEK-Blue NOD1 cells were
evaluated in the presence of C12-iE-DAP and the novel constrained iE-DAP analogs to check for
potential cytotoxicity. Cells were treated for 20 h with the compound of interest at concentrations of
up to 10 µM. A comparison of the resulting metabolic activities with those of the untreated control
showed that the compounds were well tolerated by HEK-Blue NOD1 cells, since none of their residual
metabolic activities fell below 90% at the maximum concentration tested (Figure 2).

The synthesized compounds and C12-iE-DAP were then examined for potential NOD1-activating
capacity using the standard HEK-Blue NOD1 assay. HEK-Blue NOD1 cells stably express the human
NOD1 gene and an NF-κB-inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene.
The recognition of a NOD1 agonist by its cognate receptor triggers a signaling cascade leading to
the activation of NF-κB and the production of SEAP. HEK-Blue NOD1 cells were incubated for 20 h
with C12-iE-DAP (100 nM) and compounds 5a–b, 6a–b, 7a–b, and 10a–c at concentrations of 10 µM.
As expected, the positive control, C12-iE-DAP, increased the NF-κB transcriptional activity (4.51-fold)
relative to that of untreated cells, while only a modest effect on this activity has been observed with
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the synthesized compounds, thus highlighting their lack of noteworthy NOD1-activating capacity
(Figure 3). A compound that carries in its structure an N-lauroyl moiety attached to the d-Glu amino
functionality and a (2R)-configuration was the best performing NOD1 agonist of the series (1.46-fold
activation), while its diastereomer 6a with a (2S)-configuration exhibited a weaker and insignificant
NOD1 agonistic activity (1.20-fold activation). Interestingly, their close structural analogs 7a and
7b, in which the d-Glu amine groups are decorated with didodecyl moieties, were devoid of any
activity. Moreover, the pyridine-based analog 10b, which incorporates the lipophilic N-lauroyl moiety,
exhibited only insignificant NOD1 activation (1.14-fold). Importantly, the obtained results show that
constraining the terminal amine functionality of meso-DAP moiety abrogates the compounds’ ability
to activate NOD1. Similarly, Vijayrajratnam et al. have reported that the amidation of the terminal
carboxylic acid results in a loss of NOD1 agonistic activity [36]. In summation, our research further
underlines the stringent nature of this amino acid with regard to structural modifications.
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Figure 3. Effects of conformationally constrained lipophilic analogs of γ-d-glutamyl- meso-diaminopimelic
acid 5a–b, 6a–b, 7a–b, and 10a–c on the NF-κB transcriptional activity. Secreted embryonic alkaline
phosphatase (SEAP) activity was measured in HEK-Blue NOD1 cells after incubation for 20 h with
C12-iE-DAP (100 nM) and synthesized compounds (10 µM). Columns represent means of duplicates of
two independent experiments. Error bars indicate ± S.E.M.; ** p < 0.01 vs. untreated cells (ctrl).
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3. Materials and Methods

3.1. General Information

Chemicals were obtained from Acros, Aldrich Chemical Co., Molekula and Fluka, and used
without further purification. C12-iE-DAP (a synthetic NOD1 agonist) was obtained from InvivoGen, Inc.
(San Diego, CA, USA). Analytical TLC was performed on Merck 60 F254 silica gel plates (0.25 mm) using
visualization with ultraviolet light and ninhydrin. Column chromatography was carried out on silica gel
60 (particle size 240–400 mesh). Melting points were determined on a Reichert hot stage microscope and
are uncorrected. 1H- and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively, on a Bruker
AVANCE III spectrometer (Bruker, MA, USA) in DMSO-d6, CDCl3, or MeOD solution with TMS as the
internal standard. Spectra were assigned using gradient COSY and HSQC experiments. IR spectra
were recorded on a Perkin-Elmer 1600 FT-IR spectrometer (PerkinElmer, MA, USA). Microanalyses
were performed on a 240 C Perkin-Elmer CHN analyzer (PerkinElmer, MA, USA). Mass spectra
were obtained using a VG-Analytical Autospec Q mass spectrometer (Waters, Manchester, UK).
HPLC analyses were performed on an Agilent Technologies HP 1100 instrument with G1365B UV-VIS
detector (Agilent, CA, USA) (215, 220 or 254 nm), using a Luna C18 column (4.6 × 150 mm) at flow rate
1 mL/min. The eluent was a mixture of 0.1% TFA in water (A) and acetonitrile (B), with a gradient
of 30% B to 80% B from 0 to 30 min and 80% B to 90% B from 30 to 33 min. The purity of all the
pharmacologically investigated compounds was >95%. Stock solutions of chemicals were prepared in
DMSO before use and the final concentration of DMSO never exceeded 0.2%.

3.2. General Procedures

3.2.1. General Procedure for the Acidolytic Cleavage of Boc Protecting Groups and the Subsequent
TBTU-Mediated Coupling

To an ice-chilled stirred mixture of trifluoroacetic acid and dichloromethane (1/5, 5 mL),
Boc- protected compound (0.2 mmol) was added and the mixture was allowed to warm to room
temperature. After 3 h, the reaction was completed and the solvent was evaporated in vacuo. The residue
was washed three times with diethyl ether, giving sufficiently pure free amine, which was dissolved
in dichloromethane (2 mL). In a parallel reaction, to a stirred solution of corresponding carboxylic
acid derivative (0.2 mmol) in dry dichloromethane (10 mL), diisopropylethylamine (0.20 mmol),
TBTU (0.22 mmol), and a catalytic amount of DMAP were added. After stirring for 45 min, the solution
of free amine in dichloromethane was added at 0 ◦C, the mixture was allowed to warm to room
temperature, and stirring then continued for 48 h. Upon completion, the reaction mixture was diluted
with dichloromethane (30 mL) and then washed with 1M of HCl (2 × 20 mL), water (20 mL), saturated
NaHCO3 solution (2 × 20 mL), and water (20 mL) and then dried over anhydrous Na2SO4. The solvent
was concentrated in vacuo and the residue was purified by flash silica gel column chromatography
(gradient elution; starting eluent: chloroform/methanol 20:1 v/v) to afford compounds 2a–b, 3a–b, 4a–b,
and 9a–c.

3.2.2. Final Cleavage of Methyl, Ethyl and Tert-Butyl Esters

To a solution of ester (0.075 mmol) in MeOH (2 mL) was added 1M of NaOH (6 eq; 0.45 mL) and the
mixture was stirred for 1 h at room temperature. Upon the completion of the reaction, which was
monitored by TLC, the reaction mixture was acidified with 2M of HCl to pH ~ 4–5 and then extracted
with ethyl acetate (4 × 10 mL). The organic phase was dried over anhydrous Na2SO4 and evaporated
in vacuo. The residue was then dissolved in an ice-chilled stirred mixture of trifluoroacetic acid and
dichloromethane (1/1, 2 mL) and the mixture was allowed to warm to room temperature. After 24 h,
the reaction was completed and the solvent was evaporated in vacuo. The residue was washed three
times with diethyl ether, giving sufficiently pure compounds 5a–b, 6a–b, 7a–b, and 10a–c.
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3.3. Characterization of Compounds

Ethyl (5R)-5-[(2S)-2-({(4R)-5-(tert-butoxy)-4-[(tert-butoxycarbonyl)amino]-5-oxopentanoyl}amino)-3-
methoxy-3-oxopropyl]-4,5-dihydro-3-isoxazolecarboxylate (2a). Colourless oil, yield: 70 mg (66%);
1H-NMR (CDCl3, 400 MHz): δ = 1.38 (t, 3H, J = 7.2 Hz, CH3CH2), 1.46 (s, 9H, 3 × CH3), 1.48 (s, 9H,
3 × CH3), 1.81–1.91 (m, 1H, CH2A-β-Glu), 2.19–2.27 (m, 3H, CH2B-β-Glu, CHCH2CH), 2.35–2.39 (m, 2H,
CH2-γ-Glu), 2.90–2.97 (m, 1H, Cq-CH2A), 3.35–3.43 (m, 1H, Cq-CH2B), 3.80 (s, 3H, CH3O), 4.35 (q, 2H,
J = 7.2 Hz, CH3CH2), 4.64–4.69 (m, 1H, CH-Glu), 4.91–4.98 (m, 1H, CH-O), 5.25 (dd, 1H, J = 8.0 Hz,
J = 16.4 Hz, NH), 6.80 (d, 1H, J = 6.4 Hz, NH), 7.06 (d, 1H, J = 6.8 Hz, NH) ppm. MS (ESI): m/z (%) =

530.3 (M + H)+. IR (KBr): ν = 2974, 1711, 1510, 1363, 1248, 1150 cm−1. HRMS Calcd for C24H40N3O10

m/z: 530.2714 (M + H)+, found 530.2706. [α]D
20 = +18.8◦ (c 0.15, CH2Cl2).

Ethyl (5R)-5-[(2R)-2-({(4R)-5-(tert-butoxy)-4-[(tert-butoxycarbonyl)amino]-5-oxopentanoyl}amino)-3-
methoxy-3-oxopropyl]-4,5-dihydro-3-isoxazolecarboxylate (2b). Colourless oil, yield: 75 mg (71%);
1H-NMR (CDCl3, 400 MHz): δ = 1.38 (t, 3H, J = 7.2 Hz, CH3CH2), 1.46 (s, 9H, 3 × CH3), 1.48 (s, 9H,
3 × CH3), 1.85–1.90 (m, 1H, CH2A-β-Glu), 2.09–2.28 (m, 3H, CH2B-β-Glu, CHCH2CH), 2.35 (t, 2H,
J = 7.2 Hz, CH2-γ-Glu), 2.88–2.95 (m, 1H, Cq-CH2A), 3.32–3.39 (m, 1H, Cq-CH2B), 3.78 (s, 3H, CH3O),
4.36 (q, 2H, J = 7.2 Hz, CH3CH2), 4.70–4.75 (m, 1H, CH-Glu), 4.91–4.98 (m, 1H, CH-O), 5.27 (dd, 1H,
J = 8.8 Hz, J = 20.0 Hz, NH), 6.86 (d, 1H, J = 7.2 Hz, NH), 7.20 (d, 1H, J = 7.2 Hz, NH) ppm. MS (ESI):
m/z (%) = 530.3 (M + H)+. IR (KBr): ν = 3420, 2359, 2090, 1642 cm−1. HRMS Calcd for C24H40N3O10

m/z: 530.2714 (M + H)+, found 530.2718. [α]D
20 = +15.0◦ (c 0.20, CH2Cl2).

Ethyl (R)-5-((S)-2-((R)-5-(tert-butoxy)-4-dodecanamido-5-oxopentanamido)-3-methoxy-3-oxopropyl)
-4,5-dihydroisoxazole-3-carboxylate (3a). Colourless oil, yield: 98 mg (80%); 1H-NMR (CDCl3,
400 MHz): δ = 0.90 (t, 3H, J = 6.8 Hz, CH3(CH2)10CO), 1.18–1.21 (m, 18H, CH3(CH2)9CH2CO), 1.39
(t, 3H, J = 6.8 Hz, CH3CH2O), 1.47 (s, 9H, OtBu), 1.83–1.93 (m, 1H, CH2A-β-Glu), 2.17–2.30 (m, 5H,
CH2B-β-Glu, CH2CO, isoxazoline-CH2-CH), 2.31–2.40 (m, 2H, CH2CO), 2.94 (dd, 1H, J = 9.6 Hz,
J = 8.0 Hz, isoxazoline-H4a), 3,40 (m, 1H, isoxazoline-H4b), 3.80 (s, 3H, COOCH3), 4.37 (q, 2H, J = 7.2 Hz,
CH3CH2O), 4.59–4.71 (m, 2H, 2 × CH), 4.91–4.99 (m, 1H, isoxazoline-H5), 6.28–6.35 (m, 2H, NH) ppm.
13C-NMR (CDCl3, 100 MHz): δ = 14.1, 22.7, 25.7, 28.0, 29.1, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 32.4, 32.5,
36.7, 37.2, 37.4, 39.1, 39.2, 49.9, 52.0, 52.8, 62.2, 80.5, 82.7, 151.5, 160.5, 171.3, 171.8, 172.2, 172.5, 173.8 ppm.
MS (ESI): m/z (%) = 612.4 (M+H)+. IR (ATR): ν = 587, 650, 748, 850, 930, 1016, 1130, 1158, 1254, 1348,
1369, 1439, 1531, 1589, 1646, 1723, 2853, 2924, 3331 cm−1. HRMS Calcd for C31H54N3O9 m/z: 612.3860
(M + H)+, found 612.3863. [α]D

20 = −10◦ (c 0.08, CH2Cl2).

Ethyl (R)-5-((R)-2-((R)-5-(tert-butoxy)-4-dodecanamido-5-oxopentanamido)-3-methoxy-3-oxopropyl)
-4,5-dihydroisoxazole-3-carboxylate (3b). Colourless oil, yield: 70 mg (57%); 1H-NMR (CDCl3,
400 MHz): δ = 0.88 (t, 3H, J = 7.2 Hz, CH3(CH2)10CO), 1.26–1.30 (m, 16H, CH3(CH2)8CH2CO), 1.37
(t, 3H, J = 7.2 Hz, CH3CH2O), 1.47 (s, 9H, OtBu), 1.67 (m, 2H, CH3(CH2)8CH2CH2), 1.80–1.92 (m,
1H, CH2A-β-Glu), 2.12–2.33 (m, 7H, CH2B-β-Glu, 2 × CH2CO, isoxazoline-CH2-CH), 2.89–2.93 (m,
1H, isoxazoline-H4a), 3,34 (dd, 1H, J = 11.2 Hz, J = 6.4 Hz, isoxazoline-H4b), 3.77 (s, 3H, COOCH3),
4.35 (q, 2H, J = 7.2 Hz, CH3CH2O), 4.54–4.65 and 4.67–4.80 (m, 2H, 2 × CH), 4.89–4.97 (m, 1H,
isoxazoline-H5), 6.30–6.36 (m, 1H, NH), 7.03 and 7.49 (2d, 1H, J = 7.6 Hz, NH) ppm. 13C-NMR (CDCl3,
100 MHz): δ = 14.1, 22.7, 25.6, 25.7, 28.0, 29.1, 29.4, 29.5, 29.6, 29.7, 31.9, 32.5, 36.7, 37.0, 37.1, 39.1, 39.2,
50.0, 50.2, 52.0, 52.1, 52.6, 52.7, 62.2, 80.6, 80.7, 82.7, 151.6, 160.5, 171.3, 171.8, 172.2, 172.5, 173.7, 173.9
ppm. MS (ESI): m/z (%) = 612.4 (M + H)+. IR (ATR): ν = 574, 689, 748, 845, 930, 1016, 1125, 1160, 1255,
1346, 1370, 1436, 1536, 1591, 1647, 1724, 2853, 2923, 3313 cm−1. HRMS Calcd for C31H54N3O9 m/z:
612.3860 (M + H)+, found 612.3863. [α]D

20 = +5.7◦ (c 0.07, CH2Cl2).

Ethyl (R)-5-((S)-2-((R)-5-(tert-butoxy)-4-(didodecylamino)-5-oxopentanamido)-3-methoxy-3-oxopropyl)
-4,5-dihydroisoxazole-3-carboxylate (4a). Colourless oil, yield: 72 mg (47%); 1H-NMR (CDCl3,
400 MHz): δ = 0.89 (t, 9H, J = 7.2 Hz, 2×CH3CH2-), 1.24–1.27 (m, 40H, 2×CH3(CH2)10CH2), 1.38 (t, 3H,
J = 7.2 Hz, CH3CH2O), 1.45 (s, 9H, OtBu), 1.56–1.65 (m, 2H, CH2), 1.81–2.08 (m, 2H, CH2CH), 2.15–2.97
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(m, 8H, CH2CO, 2 × CH2N, isoxazoline-CH2-CH), 3.24 (dd, 1H, J = 6.4 Hz, J = 2.4 Hz, isoxazoline-H4a),
3.38 (dd, 1H, J = 10.8 Hz, J = 6.8 Hz, isoxazoline-H4b), 3.79 (s, 3H, COOCH3), 4.05–4.08 (m, 1H, CH),
4.36 (q, 2H, J = 7.2 Hz, CH3CH2O), 4.63–4.68 (m, 1H, CH), 4.84–4.93 (m, 1H, isoxazoline-H5), 6.40–6.44
(m, 1H, NH) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 14.1, 22.7, 23.1, 23.6, 25.2, 25.3, 26.9, 27.0, 27.2, 27.4,
28.0, 28.2, 28.3, 29.0, 29.4, 29.6, 29.7, 31.9, 32.9, 33.0, 35.3, 37.5, 37.6, 39.2, 41.9, 49.8, 51.2, 51.6, 52.8, 60.6,
62.2, 62.8, 63.0, 64.6, 80.2, 80.3, 80.8, 82.2, 82.5, 151.5, 160.5, 169.2, 171.3, 171.9, 172.3, 172.9, 175.2 ppm.
MS (ESI): m/z (%) = 766.6 (M + H)+. IR (ATR): ν = 722, 747, 849, 929, 1019, 1147, 1251, 1368, 1464, 1526,
1676, 1721, 2853, 2923 cm−1. HRMS Calcd for C43H80N3O8 m/z: 766.5945 (M + H)+, found 766.5944.
[α]D

20 = +41.5◦ (c 0.07, CH2Cl2).

Ethyl (R)-5-((R)-2-((R)-5-(tert-butoxy)-4-(didodecylamino)-5-oxopentanamido)-3-methoxy-3-oxopropyl)
-4,5-dihydroisoxazole-3-carboxylate (4b). Colourless oil, yield: 90 mg (59%); 1H-NMR (CDCl3,
400 MHz): δ = 0.88 (t, 6H, J = 6.4 Hz, 2 ×CH3CH2-), 1.24–1.26 (m, 40H, 2 ×CH3(CH2)10CH2), 1.36 (t, 3H,
J = 7.2 Hz, CH3CH2O), 1.45 (s, 9H, OtBu), 1.53–1.60 (m, 2H, CH2), 1.77–1.89 (m, 1H, CH2A-β-Glu),
1.91–2.67 (m, 5H, CH2B-β-Glu, CH2CO, isoxazoline-CH2-CH), 2.72–2.95 (m, 4H, 2×CH2N), 3.22–3.25
(m, 1H, isoxazoline-H4a), 3.33 (dd, 1H, J = 10.4 Hz, J = 7.2 Hz, isoxazoline-H4b), 3.77 (s, 3H, COOCH3),
4.05 (d, 1H, J = 8.8 Hz, CH(NH)), 4.36 (q, 2H, J = 6.8 Hz, CH3CH2O), 4.69–4.78 (m, 1H, CH), 4.84–4.94
(m, 1H, isoxazoline-H5), 6.38–6.39 (m, 1H, NH) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 14.1, 22.7, 23.1,
23.5, 25.2, 26.7, 27.0, 27.2, 27.4, 28.0, 28.2, 28.3, 29.1, 29.4, 29.6, 29.7, 29.8, 31.9, 32.9, 35.6, 37.5, 39.2,
41.9, 50.0, 51.2, 51.7, 52.7, 60.7, 62.2, 62.9, 64.8, 80.8, 82.2, 82.7, 151.6, 160.5, 169.0, 171.3, 171.8, 172.3,
172.8, 174.8, 175.3 ppm. MS (ESI): m/z (%) = 766.6 (M + H)+. IR (ATR): ν = 731, 847, 929, 1020, 1147,
1251, 1367, 1461, 1533, 1589, 1678, 1722, 2853, 2923 cm−1. HRMS Calcd for C43H80N3O8 m/z: 766.5945
(M + H)+, found 766.5966. [α]D

20 = +27.1◦ (c 0.07, CH2Cl2).

(1R)-1-carboxy-4-({(1S)-1-carboxy-2-[(5R)-3-carboxy-4,5-dihydro-5-isoxazolyl]ethyl}amino)-4-oxo-1-
butanaminium 2,2,2-trifluoroacetate (5a). Colourless oil, yield: 33 mg (74%); 1H-NMR (DMSO-d6,
400 MHz): δ = 1.95–2.11 (m, 4H, CH2-β-Glu, CHCH2CH), 2.26–2.42 (m, 2H, CH2-γ-Glu), 2.86–2.92
(m, 1H, Cq-CH2A), 3.21–3.29 (m, 1H, Cq-CH2B), 3.93–3.95 (m, 1H, CH), 4.29–4.35 (m, 1H, CH), 4.78–4.84
(m, 1H, CH-O), 8.27 (s, 3H, NH3

+), 8.42 (d, 1H, J = 8.0 Hz, NH), 13.44 (br s, 3H, COOH) ppm. 13C-NMR
(DMSO-d6, 100 MHz): δ = 23.2, 25.2, 26.2, 26.4, 30.0, 30.7, 30.9, 31.8, 37.9, 47.2, 49.0, 52.3, 52.4, 63.5,
72.7, 118.0, 118.8, 157.9, 170.5, 171.4, 173.3, 174.4 ppm. MS (ESI): m/z (%) = 332.1 (M + H)+. IR (KBr):
ν = 3421, 2359, 1669, 1437, 1202, 1141, 802, 724 cm−1. HRMS Calcd for C12H18N3O8 m/z: 332.1094
(M + H)+, found 332.1097. Anal. Calcd for C12H18N3O8 × 0.4 CF3COOH × 0.3 CH3CH2OCH2CH3

(%): C, 37.45; H, 4.20; N, 8.19. Found: C, 37.29; H, 4.20; N, 8.18. [α]D
20 = −7.3◦ (c 0.28, MeOH).

(1R)-1-carboxy-4-({(1R)-1-carboxy-2-[(5R)-3-carboxy-4,5-dihydro-5-isoxazolyl]ethyl}amino)-4-oxo-1-
butanaminium 2,2,2-trifluoroacetate (5b). Colourless oil, yield: 38 mg (85%); 1H-NMR (DMSO-d6,
400 MHz): δ = 1.81–1.88 (m, 1H, CH2A-β-Glu), 1.95–2.11 (m, 3H, CH2B-β-Glu, CHCH2CH), 2.27–2.41
(m, 2H, CH2-γ-Glu), 2.86–2.92 (m, 1H, Cq-CH2A), 3.23–3.30 (m, 1H, Cq-CH2B), 3.90–4.00 (m, 1H, CH),
4.29–4.35 (m, 1H, CH), 4.72–4.79 (m, 1H, CH-O), 8.29 (s, 3H, NH3

+), 8.38 (d, 1H, J = 8.0 Hz, NH)
ppm. 13C-NMR (DMSO-d6, 100 MHz): δ = 14.4, 18.4, 26.8, 27.0, 27.1, 32.1, 32.7, 37.5, 39.6, 51.1, 53.5,
58.4, 63.1, 63.9, 64.9, 81.7, 119.0, 153.4, 162.3, 170.2, 170.7, 171.5, 173.5, 174.5, 174.6 ppm. MS (ESI):
m/z (%) = 332.1 (M + H)+. IR (KBr): ν = 2932, 1667, 1432, 1198, 1142, 800, 723 cm−1. HRMS Calcd for
C12H18N3O8 m/z: 332.1094 (M + H)+, found 332.1090. Anal. Calcd for C12H18N3O8 × 0.3 CF3COOH ×
0.15 CH3CH2OCH2CH3 (%): C, 37.21; H, 4.07; N, 8.56. Found: C, 36.80; H, 4.45; N, 8.18. [α]D

20 = −2.2◦

(c 0.22, MeOH).

(R)-5-((S)-2-carboxy-2-((R)-4-carboxy-4-dodecanamidobutanamido)ethyl)-4,5-dihydroisoxazole-3-
carboxylic acid (6a). Light brown oil, yield: 28 mg (73%); 1H-NMR (MeOD, 400 MHz): δ = 0.91 (t, 3H,
J = 6.8 Hz, CH3(CH2)10CO), 1.30–1.33 (m, 16H, CH3(CH2)8), 1.64 (t, 2H, J = 6.8 Hz, CH3(CH2)8CH2),
1.92–2.05 (m, 1H, CH2A-β-Glu), 2.11–2.32 (m, 7H, CH2B-β-Glu, isoxazoline-CH2, 2 × CH2CO), 2.97
(dd, 1H, J = 8.0 Hz, J = 9.6 Hz, isoxazoline-H4a), 3.32–3.41 (m, 1H, isoxazoline-H4b), 4.40–4.47 (m, 1H,
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CH), 4.55–4.58 (m, 1H, CH), 4.91–5.00 (m, 1H, isoxazoline-H5) ppm. 13C-NMR (MeOD, 100 MHz):
δ = 14.5, 15.5, 23.8, 27.0, 28.3, 28.5, 30.4, 30.5, 30.7, 30.8, 33.1, 36.9, 37.9, 39.8, 50.9, 51.0, 51.1, 53.1, 53.2,
67.0, 82.7, 111.6, 114.6, 117.4, 117.5, 118.6, 127.4, 128.4, 135.3, 153.7, 163.2, 174.4, 174.8, 174.9, 175.0,
176.6 ppm. MS (ESI): m/z (%) = 512.3 (M − H)−. IR (ATR): ν = 720, 930, 1023, 1085, 1205, 1377, 1439,
1540, 1626, 1721, 2361, 2854, 2923 cm−1. HRMS Calcd for C24H38N3O9 m/z: 512.2608 (M − H)−, found
512.2609. [α]D

20 = −3.6◦ (c 0.06, CH2Cl2). HPLC (215 nm): 97.5%, tr = 18.16 min.

(R)-5-((R)-2-carboxy-2-((R)-4-carboxy-4-dodecanamidobutanamido)ethyl)-4,5-dihydroisoxazole-3-
carboxylic acid (6b). Brown amorphous solid, yield: 24 mg (63%); mp 85-87 ◦C; 1H-NMR (MeOD,
400 MHz): δ = 0.94 (t, 3H, J = 7.2 Hz, CH3(CH2)10), 1.31–1.34 (m, 16H, CH3(CH2)8CH2CO), 1.64
(t, 2H, J = 6.8 Hz, CH3(CH2)8CH2CO), 1.96–2.03 (m, 1H, CH2A-β-Glu), 2.15–2.31 (m, 5H, CH2B-β-Glu,
2 × CH2CO), 2.39–2.43 (m, 2H, isoxazoline-CH2), 2.92–2.99 (m, 1H, isoxazoline-H4a), 3.36–3.40 (m, 1H,
isoxazoline-H4b), 4.40–4.45 (m, 1H, CH), 4.58–4.63 (m, 1H, CH), 4.86–4.95 (m, 1H, isoxazoline-H5)
ppm. 13C-NMR (MeOD, 100 MHz): δ = 14.5, 23.8, 26.9, 28.3, 28.5, 30.4, 30.5, 30.7, 30.8, 33.1, 33.2, 36.9,
37.7, 37.9, 39.7, 50.9, 53.2, 53.3, 81.8, 153.9, 163.2, 174.7, 175.0, 175.1, 176.6 ppm. MS (ESI): m/z (%) =

512.3 (M-H)−. IR (ATR): ν = 590, 719, 800, 929, 1134, 1236, 1434, 1539, 1620, 1719, 2853, 2923 cm−1.
HRMS Calcd for C24H38N3O9 m/z: 512.2608 (M−H)−, found 512.2602. [α]D

20 = +10◦ (c 0.05, MeOH).
HPLC (215 nm): 95.3%, tr = 18.04 min.

N-((R)-1-carboxy-4-(((S)-1-carboxy-2-((R)-3-carboxy-4,5-dihydroisoxazol-5-yl)ethyl)amino)-4-oxobutyl)
-N-dodecyldodecan-1-aminium 2,2,2-trifluoroacetate (7a). Brown amorphous solid, yield: 56 mg
(95%); mp 93–96 ◦C; 1H-NMR (MeOD, 400 MHz): δ = 0.91 (t, 6H, J = 6.8 Hz, 2 × CH3(CH2)11),
1.30–1.38 (m, 36H, 2 × CH3(CH2)9CH2), 1.77–1.79 (m, 4H, 2 × CH3(CH2)9CH2CH2), 2.13–2.40 (m, 4H,
CH2-β-Glu, CH2CH2CO), 2.66–2.68 (m, 2H, isoxazoline-CH2), 2.93–3.01 (m, 1H, isoxazoline-H4a),
3.15–3.35 (m, 4H, 2 × CH2N), 3.36–3.41 (m, 1H, isoxazoline-H4b), 4.17–4.23 (m, 1H, CH), 4.57–4.66
(m, 1H, CH) ppm. 13C-NMR (MeOD, 100 MHz): δ = 15.5, 23.8, 25.8, 27.6, 30.2, 30.5, 30.7, 30.8, 33.1, 37.8,
40.0, 51.3, 53.1, 53.9, 54.0, 158.8, 159.2, 162.5, 163.2, 163.4, 163.5, 170.8, 170.9, 173.2, 174.3, 174.4, 174.5
ppm. MS (ESI): m/z (%) = 668.5 (M + H)+. IR (ATR): ν = 599, 723, 801, 842, 1135, 1182, 1439, 1674, 2855,
2925 cm−1. HRMS Calcd for C36H66N3O8 m/z: 668.4850 (M + H)+, found 668.4863. [α]D

20 = +2.2◦

(c 0.09, MeOH). HPLC (215 nm): 95.3%, tr = 32.12 min.

N-((R)-1-carboxy-4-(((R)-1-carboxy-2-((R)-3-carboxy-4,5-dihydroisoxazol-5-yl)ethyl)amino)-4-oxobutyl)
-N-dodecyldodecan-1-aminium 2,2,2-trifluoroacetate (7b). Brown amorphous solid, yield: 52 mg
(88%); mp 91–93 ◦C; 1H-NMR (MeOD, 400 MHz): δ = 0.91 (t, 6H, J = 6.8 Hz, 2 × CH3(CH2)11),
1.31–1.39 (m, 36H, 2 × CH3(CH2)9CH2), 1.75–1.85 (m, 4H, 2 × CH3(CH2)9CH2CH2), 1.96–2.50 (m, 4H,
CH2-β-Glu, CH2CH2CO), 2.62–2.78 (m, 2H, isoxazoline-CH2), 2.93–3.02 (m, 1H, isoxazoline-H4a),
3.15–3.37 (m, 4H, 2 × CH2N), 3.36–3.42 (m, 1H, isoxazoline-H4b), 4.20–4.22 (m, 1H, CH), 4.64–4.67
(m, 1H, CH) ppm. 13C-NMR (MeOD, 100 MHz): δ = 14.5, 23.8, 24.1, 25.8, 27.6, 28.0, 30.2, 30.4, 30.5,
30.7, 30.8, 33.1, 37.6, 39.7, 43.1, 50.9, 54.0, 61.2, 81.8, 113.8, 116.7, 119.6, 154.1, 162.7, 163.1, 163.3, 174.6,
175.3, 178.2 ppm. MS (ESI): m/z (%) = 668.5 (M + H)+. IR (ATR): ν = 599, 723, 801, 841, 943, 1135, 1182,
1434, 1672, 2855, 2925 cm−1. HRMS Calcd for C36H66N3O8 m/z: 668.4850 (M + H)+, found 668.4857.
[α]D

20 = +8.0◦ (c 0.05, MeOH). HPLC (215 nm): 100%, tr = 32.00 min.

Ethyl 4-[2-({(4R)-5-(tert-butoxy)-4-[(tert-butoxycarbonyl)amino]-5-oxopentanoyl}amino)-3-ethoxy-3-
oxopropyl]-2-pyridinecarboxylate (9a). Colourless oil, yield: 47 mg (43%); 1H-NMR (DMSO-d6,
400 MHz): δ = 1.12–1.20 (m, 6H, 2 × CH3CH2), 1.38 (s, 18H, 6×CH3), 1.57–1.69 and 1.73–1.83 (2m, 1H
each, CH2-β-Glu), 2.10–2.16 (m, 2H, CH2-γ-Glu), 2.97–3.04 (m, 1H, Py-CH2A), 3.13–3.18 (m, 1H,
Py-CH2B), 3.71–3.78 (m, 1H, CH), 4.00–4.10 (m, 4H, 2 × CH3CH2), 4.51–4.57 (m, 1H, CH), 7.08–7.12
(m, 1H, NH), 7.49–7.52 (m, 1H, Py-H), 7.93 (s, 1H, Py-H), 8.37 (dd, 1H, J = 3.2 Hz, J = 8.0 Hz, Py-H),
8.60 (d, 1H, J = 5.2 Hz, NH) ppm. MS (ESI): m/z (%) = 552.3 (M + H)+. IR (KBr): ν = 3325, 2977, 2361,
1720, 1517, 1368, 1301, 1206, 1153, 1023 cm−1. HRMS Calcd for C27H42N3O9 m/z: 552.2921 (M + H)+,
found 552.2911. [α]D

20 = −8.0◦ (c 0.10, CH2Cl2).
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Ethyl 4-(2-((R)-5-(tert-butoxy)-4-dodecanamido-5-oxopentanamido)-3-ethoxy-3-oxopropyl)picolinate
(9b). Brown oil, yield: 43 mg (27%); 1H-NMR (CDCl3, 400 MHz): 0.88 (t, 3H, J = 7.2 Hz,
CH3(CH2)10), 1.24-1.32 (m, 24H, CH3(CH2)8CH2, 2 × CH3CH2O), 1.44 (s, 9H, OtBu), 1.63–1.65 (m, 2H,
CH2CH2CONH), 1.77–1.87 (m, 1H, CH2A-β-Glu), 2.07–2.38 (m, 5H, CH2B-β-Glu, 2 × CH2CO) 3.13–3.20
and 3.25–3.32 (2m, 1H each, Pyr-CH2-), 4.20 (q, 2H, J = 7.2 Hz, CH3CH2O),4.31–4.35 (m, 1H, CH),
4.44–4.51 (m, 2H, CH3CH2O), 4.84–4.89 (m, 1H, NHCHCOOEt), 6.36 (dd, 1H, J = 15.2 Hz, J = 8.0 Hz,
NH), 7.03 and 7.52 (2d, 1H (2 × 0,5), J = 7.6 Hz, NH), 7.36 (d, 1H, J = 4.8 Hz, Py-H), 7.99 (d, 1H,
J = 12.4 Hz, Py-H), 8.67 (d, 1H, J = 4.8 Hz, Py-H) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 14.1, 14.3,
22.7, 25.6, 27.9, 29.3, 29.5, 29.6, 29.9, 31.9, 32.5, 36.7, 37.1, 38.6. 51.9, 52.0, 52.9, 61.8, 61.9, 62.0, 82.8. 126.0,
126.1, 127.7, 147.1, 147.2, 148.3, 149.9, 165.1, 165.2, 170.8, 171.0, 171.2, 171.4, 172.0, 172.3, 173.7, 173.9
ppm. MS (ESI): m/z (%) = 634.4 (M + H)+. IR (ATR): ν = 589, 655, 686, 730, 786, 851, 928, 995, 1029, 1064,
1128, 1157, 1209, 1246, 1300, 1367, 1458, 1538, 1605, 1644, 1727, 2854, 2923, 3301 cm−1. HRMS Calcd for
C34H56N3O8 m/z: 634.4067 (M + H)+, found 634.4078. [α]D

20 = −5.0◦ (c 0.06, CH2Cl2).

Ethyl 4-(2-((R)-5-(tert-butoxy)-4-(didodecylamino)-5-oxopentanamido)-3-ethoxy-3-oxopropyl)picolinate
(9c). Brown oil, yield: 74 mg (47%); 1H-NMR (CDCl3, 400 MHz): δ = 0.90 (t, 6H, J = 6.8 Hz, 2 ×
CH3(CH2)11), 1.23–1.27 (m, 40H, 2 × CH2(CH2)10CH3), 1.30 (t, 6H, J = 7.2 Hz, 2 × CH3CH2O), 1.45
(s, 9H, OtBu), 1.80–2.03 (m, 2H CH2-β-Glu), 2.22–2.39 (m, 2H, CH2-γ-Glu), 2.43–2.49 (m, 2H, CH2N),
2.60–2.62 (m, 2H, -CH2N), 3.18 (m, 2H, CH2), 3.18–3.30 (m, 1H, CH), 4.17–4.26 (m, 2H, CH3CH2O),
4.50 (q, 2H, CH3CH2O), 4.87–4.93 (m, 1H, NHCHCOOEt), 6.16 (s, 1H, Py-H), 7.30 (m, 1H, NHCO), 7.94
(s, 1H, Py-H), 8.68 (d, 1H, J = 4.8 Hz, Py-H) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 14.1, 14.4, 22.7,
25.2, 25.3, 27.4, 28.3, 29.1, 29.4, 29.7, 31.9, 32.8, 33.0, 37.4, 37.5. 51.2, 52.5, 62.0, 62.8, 63.0, 80.8, 126.0,
127.7, 146.8, 148.4, 149.9, 165.1, 170.8, 170.9, 172.3, 172.5 ppm. MS (ESI): m/z (%) = 788.6 (M + H)+.
IR (ATR): ν = 645, 731, 784, 850, 918, 1025, 1147, 1204, 1251, 1300, 1367, 1464, 1529, 1602, 1676, 1722, 2853,
2923 cm−1. HRMS Calcd for C46H82N3O7 m/z: 788.6153 (M + H)+, found 788.6141. [α]D

20 = +41.8◦

(c 0.06, CH2Cl2).

(1R)-1-carboxy-4-{[1-carboxy-2-(2-carboxy-4-pyridinyl)ethyl]amino}-4-oxo-1-butanaminium
2,2,2-trifluoroacetate (10a). White amorphous powder, yield: 31 mg (92%); m.p. 198–200 ◦C.
1H-NMR (DMSO-d6, 400 MHz): δ = 1.89–1.93 (m, 2H, CH2-β-Glu), 2.15–2.35 (m, 2H, CH2-γ-Glu),
2.95–3.01 (m, 1H, Py-CH2A), 3.18–3.23 (m, 1H, Py-CH2B), 3.81–3.94 (m, 1H, CH), 4.51–4.57 (m, 1H,
CH), 7.51 (dd, 1H, J = 0.8 Hz, J = 4.8 Hz, Py-H), 7.96 (d, 1H, J = 0.8 Hz, Py-H), 8.27 (s, 3H, NH3

+),
8.45 (dd, 1H, J = 4.0 Hz, J = 8.0 Hz, Py-H), 8.60 (d, 1H, J = 5.2 Hz, NH) ppm. 13C-NMR (DMSO-d6,
100 MHz): δ = 14.1, 25.8, 25.9, 30.3, 30.4, 35.7, 48.5, 51.4, 52.3, 115.6, 118.6, 125.4, 127.6, 148.2, 148.4,
149.1, 157.6, 157.9, 158.2, 158.5, 166.1, 170.7, 170.9, 172.4 ppm. MS (ESI): m/z (%) = 340.1 (M + H)+.
IR (KBr): ν = 3298, 2885, 1653, 1534, 1194, 799 cm−1. HRMS Calcd for C14H18N3O7 m/z: 340.1145
(M + H)+, found 340.1131. Anal. Calcd for C14H17N3O7 × 0.8 CF3COOH (%): C, 43.52; H, 4.17; N, 9.76.
Found: C, 43.11; H, 4.06; N, 9.54. [α]D

20 = −19.2◦ (c 0.07, MeOH).

4-(2-carboxy-2-((R)-4-carboxy-4-dodecanamidobutanamido)ethyl)picolinic acid (10b). Brown oil, yield:
22 mg (83%); 1H-NMR (MeOD, 400 MHz): 0.92 (t, 3H, J = 7.2 Hz, CH3(CH2)10), 1.20–1.40(m, 16H,
CH3(CH2)8CH2CH2), 1.62 (m, 2H, CH3(CH2)8CH2CH2), 1.80–1.93 and 2.04–2.14 (2m, 2H, CH2-β-Glu),
2.23–2.30 (m, 4H, 2 × CH2CO), 3.16–3.23 and 3.45–3.58 (2m, 1H, Py-CH2), 4.27–4.34 (m, 1H, CH),
4.82–4.88 (m, 1H, CH), 7.70–7.75 (m, 1H, Pyr-H), 8.19–8.22 (m, 1H, Py-H), 8.66–8.70 (m, 1H, Py-H) ppm.
13C-NMR (MeOD, 100 MHz): δ = 14.5, 23.8, 26.9, 30.3, 30.5, 30.7, 30.8, 33.1, 36.8, 36.9, 37.8, 37.9, 53.1,
53.5, 53.7, 114.6, 117.5, 127.7, 129.9, 147.5, 147.6, 149.6, 152.3, 165.8, 173.6, 174.8, 176.5 ppm. MS (ESI):
m/z (%) = 520.3 (M − H)−. IR (ATR): ν = 593, 664, 720, 786, 977, 1085, 1134, 1186, 1308, 1443, 1539, 1643,
1730, 2853, 2923 cm−1. HRMS Calcd for C26H38N3O8 m/z: 520.2659 (M − H)−, found 520.2645. [α]D

20

= +14.5◦ (c 0.06, MeOH). HPLC (254 nm): 48.6%, tr = 14.84 min.

N-((1R)-1-carboxy-4-((1-carboxy-2-(2-carboxypyridin-4-yl)ethyl)amino)-4-oxobutyl)-N-dodecyldodecan
-1-aminium 2,2,2-trifluoroacetate (10c). Brown amorphous solid, yield: 56 mg (94%); mp 88–92 ◦C;
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1H-NMR (MeOD, 400 MHz): δ = 0.92 (t, 6H, J = 7.2 Hz, 2 × CH3(CH2)11), 1.31–1.37 (m, 36H, 2 ×
CH3(CH2)9CH2), 1.69–1.73 (m, 4H, 2 × CH3(CH2)9CH2), 1.94–2.13 (m, 2H, CH2-β-Glu), 2.44–2.59
(m, 2H, CH2CH2CO), 3.04–3.22 (m, 4H, 2 × CH2N), 3.47–3.50 (m, 2H, Py-CH2), 3.71–3.76 (m, 1H, CH),
4.72–4.78 (m, 1H, CH), 7.56–7.59 (m, 1H, Py-H), 8.10 (d, 1H, J = 5.6 Hz, Py-H), 8.58–8.60 (m, 1H, Py-H)
ppm. 13C-NMR (MeOD, 100 MHz): δ = 14.5, 23.7, 23.8, 25.5, 27.6, 30.2, 30.5, 30.7, 30.8, 33.1, 53.1, 53.4,
54.5, 67.1, 113.9, 116.8, 119.7, 127.3, 129.6, 150.5, 155.8, 162.9, 163.3, 166.1, 174.7 ppm. MS (ESI): m/z (%)
= 676.5 (M + H)+. IR (ATR): ν = 574, 722, 801, 839, 1130, 1179, 1204, 1325, 1405, 1674, 2855, 2924 cm−1.
HRMS Calcd for C38H66N3O7 m/z: 676.4901 (M + H)+, found 676.4899. [α]D

20 = +7.1◦ (c 0.07, MeOH).
HPLC (254 nm): 92.8%, tr = 12.52 min.

3.4. Cytotoxicity Assay

HEK-Blue NOD1 cells (Invivogen, San Diego, CA, USA) were cultured in accordance with the
manufacturer’s instructions. HEK-Blue NOD1 cells (4 × 105 cells/mL; 40,000/well) were treated with
the appropriate amounts of compounds or with the corresponding vehicle (control cells), then seeded
in duplicate in 96-well plates. After 20 h, the metabolic activity was assessed using the CellTiter 96®

Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA), in accordance with
the manufacturer’s instructions. The results are expressed as the means of duplicates ± S.E.M. of two
independent experiments.

3.5. Measurement of NF-κB Transcriptional Activity (Quanti-Blue Assay)

HEK-Blue NOD1 cells (Invivogen, San Diego, CA, USA) were cultured in accordance with
the manufacturer’s instructions. HEK-Blue NOD1 cells were assayed for changes in the NF-κB
transcriptional activity upon incubation (2.5 × 105 cells/mL; 25,000/well) with C12-iE-DAP (100 nM)
and synthesized compounds (10 µM) for 20 h. The secreted embryonic alkaline phosphatase (SEAP)
activity was determined in the supernatant in accordance with the manufacturer’s instructions.
Absorbance was measured on a BioTek Synergy microplate reader (BioTek Instruments, Inc., Winooski,
VT, USA) at 640 nm. The results are expressed as the means of duplicates ± S.E.M. of two
independent experiments.

3.6. Data Analysis and Statistics

All the experiments were performed at least two times, with average values expressed as
means ± standard error of mean (SEM). Statistical analyses were performed using GraphPad Prism 6
(La Jolla, CA, USA). Statistical significance was determined with the unpaired t-test test. Differences
were considered significant (*) for P < 0.05, highly significant (**) for P < 0.01, and extremely significant
(***) for P < 0.001.

4. Conclusions

In conclusion, we have synthesized new constrained mimetics of the NOD1 agonist
d-Glu-meso-DAP as potential innate immune agonists. The rigidization of the terminal amine group
was achieved by introducing isoxazoline and pyridine heterocycles into the side chain of the meso-DAP
residue. In addition, the α-amino group of the d-Glu residue of iE-DAP was either N-acylated or
N,N-dialkylated, rendering the molecule considerably more lipophilic. The results obtained have
demonstrated that the isoxazoline- and pyridine-carrying analogs do not properly recapitulate the
key structural features of meso-DAP. Consequently, they exhibit only limited NOD1 agonistic activity.
Nevertheless, our results offer additional insight into the chemical space of d-Glu-meso-DAP derivatives
and underpin the stringent nature of meso-DAP with regard to the allowed structural modifications.
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Abbreviations

C12-iE-DAP lauroyl-γ-d-glutamyl-meso-diaminopimelic acid
iE-DAP γ-d-glutamyl-meso-diaminopimelic acid
meso-DAP meso-diaminopimelic acid
NF-κB nuclear factor κB
NLR NOD-like receptor
NOD nucleotide-binding oligomerization domain
SEAP secreted embryonic alkaline phosphatase

TBTU
2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
tetrafluoroborate

TFA trifluoroacetic acid
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20. Nabergoj, S.; Mlinarič-Raščan, I.; Jakopin, Ž. Harnessing the untapped potential of nucleotide-binding
oligomerization domain ligands for cancer immunotherapy. Med. Res. Rev. 2019, 39, 1447–1484. [CrossRef]

21. Agnihotri, G.; Ukani, R.; Malladi, S.S.; Warshakoon, H.J.; Balakrishna, R.; Wang, X.; David, S.A. Structure-activity
relationships in nucleotide oligomerization domain 1 (Nod1) agonistic γ-glutamyldiaminopimelic acid
derivatives. J. Med. Chem. 2011, 54, 1490–1510. [CrossRef] [PubMed]

22. Jakopin, Ž.; Gobec, M.; Kodela, J.; Hazdovac, T.; Mlinarič-Raščan, I.; Sollner Dolenc, M. Synthesis of
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