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Aims: The occurrence of vascular permeability pulmonary edema in acute lung injury (ALI) is
related to the imbalance of alveolar fluid transport. Regulating the active transport of alveolar
fluid by aquaporins (AQPs), epithelial sodium channels (ENaCs), and Na+-K+-ATPase can
effectively reduce the edema fluid in the alveolar cavity and protect against ALI. We evaluated
the therapeutic effects of total flavonoids, extracted from Nervilia fordii (TFENF), and
investigated its potential mechanisms of alveolar fluid transport in a rat ALI model.

Materials andmethods: Amodel of lipopolysaccharide (LPS, 5 mg/kg)-induced ALI was
established in Sprague-Dawley (SD) rats through the arteriae dorsalis penis. SD rats were
divided into six groups, including the vehicle, LPS model, TFENF (6 mg/kg, 12mg/kg,
24 mg/kg), and dexamethasone group (DEX group, 5 mg/kg). The wet-to-dry (W/D) lung
weight ratio, oxygenation index, and histopathological observation were used to evaluate
the therapeutic effect of TFENF. The mRNA expression of AQPs, ENaCs, and pro-
inflammatory cytokines was determined using real-time polymerase chain reaction,
whereas protein expression was determined using immunohistochemistry. The Na+-
K+-ATPase activity was assessed using enzyme-linked immunosorbent assay.

Results: LPS significantly stimulated the production of inflammatory mediators including
tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and disrupted the water transport
balance in the alveolar cavity by inhibiting AQPs/ENaCs/Na+-K+-ATPase. Pretreatment
with TFENF reduced the pathological damage and W/D ratio of the lungs and
ameliorated the arterial blood oxygen partial pressure (PaO2) and oxygenation index.
TFENF further decreased the mRNA level of TNF-α and IL-1β; increased the expression of
AQP-1, AQP-5, αENaC, and βENaC; and increased Na+-K+-ATPase activity. Moreover,
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the regulation of AQPs, βENaC, and Na+-K+-ATPase and the inhibition of TNF-α and IL-1β
by TFENF were found to be dose dependent.

Conclusion: TFENF protects against LPS-induced ALI, at least in part, through the
suppression of inflammatory cytokines and regulation of the active transport capacity of
AQPs/ENaCs/Na+-K+-ATPase. These findings suggest the therapeutic potential of TFENF
as phytomedicine to treat inflammation and pulmonary edema in ALI.

Keywords: acute lung injury, nervilia fordii, flavonoids, lipopolysaccharide, aquaporins, epithelial sodium channel,
Na+-K+-ATPase

INTRODUCTION

Acute lung injury (ALI) is a life-threatening respiratory disease
characterized by increased permeability of alveolar capillaries,
effusion of protein fluid in the pulmonary alveoli, and hyaline
membrane formation. A clinical epidemiology investigation
revealed that the incidence of ALI in patients over 15 years of
age was 86.2 cases per 100,000 person-years (Rubenfeld et al.,
2005). ALI has a worrisome high mortality rate and is 40% in the
United States (Johnson et al., 2010) and 50% in Europe (Brun-
Buisson et al., 2004). There are no specific pharmacological
strategies to treat ALI (Diamond et al., 2020; Matera et al.,
2020), and current therapies are mainly based on the support
of lung-protective mechanical ventilation (Fan et al., 2018; Chen
et al., 2019). Therefore, the discovery of drugs for the
management of ALI is challenging and should be actively
pursued.

Inflammatory cytokine storm and the resultant impairment
in gas exchange are the major causes of death in ALI.
Pulmonary edema is the most important pathological
characteristic in the progression of ALI (Matthay et al.,
2005). Reabsorption of alveolar fluid ensures normal
pulmonary gas exchange, which relies on the coordinated
control of epithelial sodium channels (ENaCs), aquaporins
(AQPs), and Na+-K+-ATPase (Ma et al., 2020). Na+ transport
across epithelial cells is driven by Na+-K+-ATPase, which is
present on the basolateral surface of epithelial cells. Na+-K+-
ATPase provides 10 times the concentration of Na+ in the
pulmonary interstitium than in epithelial cells. This Na+

gradient accelerates Na+ along with the transport of water
from the alveolar spaces to the pulmonary interstitium and
capillaries. ENaCs on the apical surface of alveolar epithelial
cells and AQPs are the main channels for Na+ and water on
epithelial and endothelial cells. It has been reported that
ENaCs contribute to 40–60% of Na+ transport in rat lungs
and up to 90% in mouse lungs (Mutlu et al., 2005). Briefly,
ENaCs, AQPs, and Na+-K+-ATPase play pivotal roles in
alleviating pulmonary alveolar edema (Wang et al., 2018).
Regulation of the expression of AQPs/ENaCs/Na + -K +
-ATPase has great significance in water transport in the lungs.

Inflammatory cytokine storm is a characteristic of ALI and
one of the main factors interfering with the reabsorption of
lung fluid during ALI, although ENaC is known to be directly
regulated by the renin-angiotensin-aldosterone system (Zaika
et al., 2013). Excessive release of pro-inflammatory cytokines,

such as tumor necrosis factor (TNF)-α, destroying the sodium
and chloride transport on epithelial barriers is reported to be
the main reason for the inhibition of reabsorption of the lung
fluid (Eisenhut et al., 2020). It has been reported that TNF-α
induces alveolar epithelium apoptosis by p55-related death
pathway and downregulates Na+-K+-ATPase in the rat colon
via prostaglandin (PG) E2 (Markossian and Kreydiyyeh, 2005;
Patel et al., 2013). Moreover, interleukin (IL)-6 is known to
upregulate the expression of angiotensin and aldosterone or
their receptors, which may indirectly increase ENaC
expression (Wassmann et al., 2004). Therefore, anti-
inflammation is an important therapeutic strategy in the
management of ALI.

Traditional Chinese medicine, including Chinese herbal
decoction and Chinese medicine injection, has potential
advantages in the prevention and treatment of ALI and has
been widely used in China. Evidence from systematic
evaluation shows that Chinese medicine injection combined
with conventional therapy can significantly reduce the
inflammatory score and improve clinical efficacy (Chen et al.,
2019). N. fordii (Hance) Schltr. a Chinese herbal medicine, is
widely used to treat infectious diseases in China. In traditional
Chinese medicine, it is used for clearing heat toxins, inducing
diuresis for edema removal, and moistening the lung to prevent
coughing. It also exerts antiviral, antibacterial, and anti-
inflammatory effects (Chen et al., 2013). Flavonoids are found
in many fruits, vegetables, and herbs, and are known to possess
antiaging, anti-inflammatory, and anti-cancer properties (Zhou
et al., 2019). Flavonoids are the main components of N. fordii. To
date, more than 20 flavonoids have been identified in N. fordii.
(Qiu et al., 2013).

We previously showed that pretreatment with N. fordii water
decoction could regulate aquaporin and reduce pulmonary
edema caused by ALI (Xu et al., 2010). The protective effect of
a N. fordii injection, containing total flavonoids and amino acids,
against ALI through the inhibition of inflammation has been
confirmed (Xu et al., 2014). However, the efficacy of the total
flavonoids from N. fordii (TFENF), which are the main
components of N. fordii injection, on ALI and the molecular
mechanism underlying their effects are currently unknown. Thus,
we assessed the therapeutic effects of TFENF using an LPS-
induced ALI model. We evaluated the effects of TFENF on the
release of inflammatory cytokines and expression of AQPs/
ENaCs/Na+-K+-ATPase, and investigated its potential
mechanisms in alveolar fluid transport.
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MATERIALS AND METHODS

Plant Materials and Preparation of TFENF
WildN. fordiiwas collected fromGuangxi Province, China, and was
confirmed as the whole herbal medicine,N. fordii (Hance) Schltr, by
the Chinese pharmacist Yunfeng Huang from the Guangxi Institute
of Traditional Chinese Medicine and Pharmaceutical Science. N.
fordii was cut into pieces, placed in a leakage cylinder, and soaked in
95% ethanol. The ethanol extract was collected and concentrated to
remove the alcohol. The resultant N. fordii extract was poured into
glass columns containing AB-8 porous resin, washed with pure
water until the outflowing liquid was colorless, and was then washed
with 70% ethanol until the eluent was colorless. The ethanol eluate
was collected, concentrated to remove alcohol, and then diluted with
pure water. The residual liquid was added into the polyamide
column, washed until colorless, and eluted with 70% ethanol

until colorless. The eluent was collected and concentrated into
TFENF powder.

TFENF composition was determined by high-performance
liquid chromatography (HPLC) using an Agilent-1260 HPLC
System equipped with a PhenomenexLuna 5 μ PFP column (4.6
× 250 mm, 5 μm). A mobile phase of acetonitrile and 0.2%
methane acid was used for the analysis and the elution profile
for TFENF is shown in Table 1. Two mixed standard reference
substances were selected and identified by Dr. Zhu Chenchen
from the Institute of Clinical Pharmacology of Guangzhou
University of Chinese Medicine to have a purity >98.5%. The
standard reference compounds are shown in Table 2 and their
chemical structural formula is depicted in Figure 1.

Animals and Experimental Design
Male, 5–7 week-old, SD rats weighing 150–200 g were purchased
from the Animal Laboratory Center of the Guangzhou University
of Chinese Medicine. All the animals were allowed to adapt to the
environment for 5 days prior to experiments. They were fed food
and water under sterile pathogen-free conditions and maintained
at 23–26°C at a relative humidity of 40–60% and subjected to a
standard 12 h/12 h light/dark cycle. Anesthetic drugs and other
necessary measures were used to reduce animal suffering during
all experimental procedures. All standardized processes were
carried out in accordance with the Regulations of
Experimental Animal Administration issued by the Ministry of
Science and Technology of the People’s Republic of China.

Rats were divided into six groups, with six rats per group as
follows: Vehicle, LPS model, Low dose (6 mg/kg) of TFENF
(TFENF-L group), Middle dose (12 mg/kg) of TFENF
(TFENF-M group), High dose (24 mg/kg) of TFENF (TFENF-
H group), and dexamethasone (DEX group, 5 mg/kg). TFENF
and dexamethasone dosages were based on our previous research
(Yinji et al., 2014) and preliminary experiments. Rats in the drug-

TABLE 1 | HPLC elution profile for TFENF(flow rate: 1 ml/min).

Time (min) % of acetonitrile % of 0.2% methane
acid

0 15 85
21 19 81
40 23 77
50 50 50
60 100 0

TABLE 2 | The standard reference substance for TFENF.

Name Chemical Formula Formula Weight

Nervilifordizin A C28H32O16 624
Complanatoside C28H32O16 624

FIGURE 1 | Chemical profile of TFENF analyzed using HPLC. 1. Total flavonoids extracted from Nervilia fordii; 2 (A) Nervilifordizin A; 3 (B) Complanatoside.
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intervention groups were pretreated with TFENF or DEX
through intraperitoneal injection for 7 days, whereas those in
the vehicle and LPS model groups were injected with an equal
amount of vehicle. One hour after the last drug pretreatment, rats
in the experimental groups were injected with 5 mg/kg LPS or
0.1 ml normal saline through the vena dorsalis penis, while those
in the Vehicle group were injected with an equal volume of
vehicle. Rats were sacrificed 6 h after the LPS injection.

Histopathological Evaluation
The right middle lung tissue was removed and fixed with 10%
formaldehyde solution for 3 days. The lung tissue-biopsy material
was dehydrated using a serial alcohol gradient, embedded in paraffin,
and prepared into 4 μm-thick sections. After dewaxing with xylene
and hydration with ethanol, lung tissue sections were washed with
phosphate-buffered saline (PBS) and the sections were stained with
hematoxylin-eosin (H&E). Next, the sections were sealed with
neutral balsam and histopathological changes were observed
using a light microscope (Olympus, Japan). The lung injury
scores of each rat were calculated in five random fields (×400)
for histopathological evaluation and graded as follows: 0 � no
injury, 1� slight injury (25%), 2�moderate injury (50%), 3� severe
injury (75%), and 4 � very severe injury (almost 100%) (Deng et al.,
2012).

Blood Gas Analysis
Blood gas analysis including the oxygenation index (OI) and
partial pressure of oxygen in the artery (PaO2) was obtained using
a blood gas analyzer (Siemens RAP500, Germany). Samples for
blood gas analysis were drawn from the aorta abdominals and
immediately sent for evaluation. The OI was calculated using the
following equation: OI � PaO2/21%.

Wet-To-Dry (W/D) Lung Weight Ratio
TheW/D ratio was used to evaluate lung edema in ALI. The left lung
tissue was weighed to obtain the wet lung weight, placed in an oven at
65°C for 72 h, and reweighed to obtain the dry lung weight. TheW/D
ratio was calculated using the following equation: W/D � Wet lung
weight/Dry lung weight.

Reverse-Transcription Polymerase Chain
Reaction (RT-PCR)
Total RNA was isolated from the lung tissues using NucleoZOL
reagent (MN, Duren, Germany) and a reverse transcription kit

(Lot#AI20778A, TaKaRa, Japan) was used to transcribe the RNA
to cDNA. Reverse-transcription PCR expression analysis was
performed using an ABI 7500 PT-PCR System (Applied
Biosystems, United States) and SYBR Premix Ex Taq
(Lot#RR820A, TaKaRa, Japan). Primers used for RT-PCR are
shown in Table 3.

Immunohistochemistry
The right middle lung sections from each group were
deparaffinized with xylene, rehydrated using gradient ethanol,
and incubated in 3% H2O2 for 15 min at 37°C. The sections were
rinsed 3 times (5 min per rinse) in PBS, blocked with bovine
serum albumin for 30 min, and incubated with primary
antibodies at 4°C for 24 h. After washing 3 times (5 min per
rinse) with PBS, rabbit IgG was added to the sections and
incubated for 30 min, followed by staining with DBA,
counterstaining with hematoxylin, dehydration with gradient
ethanol, vitrification with xylene, and lastly, sealing with
neutral balsam.

Na+-K+-ATPase Activity Assay
Lung tissue homogenate was prepared using normal saline
according to the weight-to-volume ratio. After centrifugation,
the supernatant was removed, and the lung protein concentration
was determined using an enzyme-labeled meter. ATP enzyme test
kits (Jiancheng Company, Nanjing, China) were used to assay
Na+-K+-ATPase activity following the manufacturer’s
instructions.

Statistical Analysis
Data are presented as the mean ± standard error of the mean
(S.E.M.). One-way analysis of variance (ANOVA) was used to
analyze differences between groups. A 5% level of probability was
considered significant for all analyses. SPSS 20.0 was used to
analyze data and the graphs were generated using GraphPad
Prism 7 (GraphPad Software Inc., La Jolla, CA, United States).
p < 0.05 was considered statistically significant.

RESULTS

Qualitative Analysis of TFENF Using HPLC
TFENF was analyzed using HPLC with two different reference
standard compounds. As shown in Figure 1, over three peaks
were generated within 40 min. At 15 min, the first

TABLE 3 | PCR primers for different observation indices.

Gene target Forward primer (5–39) Reverse primer (5–39)

αENaC F-TACATGGGGTGGTGGAACTTG-R R-GAAGGACTGGAAGATCGGCT-F
βENaC F-GGCCACTAGCTGATGACAGT-R R-CCGTACCATCGAGGAATCGC-F
cENaC F-GGAGCCAAGGTGCTTATCCA-R R-GGGAGTAGGCAGCGTTGTAG-F
AQP-1 F-CGGTCAGTGGTAGCCAGAAC-R R-ATCCTCCGGGCTGTCATGTA-F
AQP-5 F-GGTTTATTGGGAAGCGCCAG-R R-AGGGATAGATGGCTCACGGA-F
TNF-α F-GCTTGGTGGTTTGCTACGAC-R R-GCTTGGTGGTTTGCTACGAC-F
IL-1β F-GTGCCGTCTTTCATCACACA-R R-ACAAAAATGCCTCGTGCTGTC-F
β-actin F-AGGGTGTAAAACGCAGCTCA-R R-GATCAAGATCATTGCTCCTCCTG-F
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chromatographic peak appeared in the sample and was found to
correspond to that of complanatoside. The second peak appearing
in the sample at 25 min was found to correspond with that of
nervilifordizin A. In brief, a comparison of individual peak
retention times with those of the reference standard
compounds resulted in the identification of the two
compounds, nervilifordizin A and complanatoside.

TFENF Reduced the Severity of
Pathological Injury of Lung Tissue
As shown in Figure 2, no histopathological changes were
observed in the vehicle group (Figure 2A), the alveolar
morphology was uniform, and there was no alveolar
collapse or neutrophil infiltration. The bronchial wall was
smooth and no hyperemia and edema were observed in the
interstitial edema. However, in the LPS model group, a series of
pathological changes were observed including the pulmonary
interstitial thickening and alveolar collapse, and large numbers
of neutrophils infiltrating the pulmonary interstitium
(Figure 2A). After pretreatment with TFENF and
dexamethasone, pulmonary interstitial thickening, alveolar
collapse, and neutrophil invasion were significantly reduced,
the lung tissue morphology was closer to that of the Vehicle
group, and the edema of lung interstitium significantly
decreased (Figure 2A). The lung injury score showed that
the model group scored higher than the Vehicle group after
pretreatment with TFENF and dexamethasone, and the lung
injury score decreased significantly compared with that of the
model group (Figure 2B).

TFENF Improved PaO2 and OI in
LPS-Induced ALI
As shown in Figure 2A, stimulation with LPS destroyed the
alveolar integrity, caused pulmonary edema, increased

pulmonary capillary permeability, and, consequently, led to
a reduction in pulmonary ventilation and ventilation function.
The decrease in OI is one of the main parameters when
diagnosing ALI. Arterial blood gas analysis was performed
to confirm the role of TFENF oxygenation improvement in
LPS-induced ALI. PaO2 and OI were decreased in the LPS
model group; however, the degree of PaO2 and O/I were
ameliorated in the TFENF and DEX groups compared with
those in the LPS model group (p < 0.01) (Figure 3).

TFENF Reduced Lung W/D Ratio in
LPS-Induced ALI
The lung W/D ratio was calculated to evaluate the potential
protective effect of TFENF on pulmonary edema. As shown in
Figure 4, compared with that in the vehicle group, stimulation
with LPS caused a significant increase in the lungW/D ratio in the
LPS model group (p < 0.01). However, compared with that in the
LPS model group, the lung W/D ratio declined significantly after
TFENF intervention (p < 0.01), similar to that in the DEX group.
Moreover, with an increased dosage of TFENF in the intervention
group, the W/D ratio was determined to be closer to that of the
vehicle group.

TFENF Decreased the mRNA Expression
Level of TNF-α and IL-1β
To determine the anti-inflammatory effect of TFENF
pretreatment on LPS-induced ALI, we evaluated the gene
expression of TNF-α and IL-1β in lung tissue samples from
different groups. TNF-α and IL-1β mRNA expression
increased significantly in the LPS model group (Figure 5).
Compared with the LPS model group, the gene expression of
TNF-α and IL-1β decreased after TFENF pretreatment, especially
in the TFENF-M and TFENF-H groups (p < 0.01). Similarly, a
significant decline was observed in the DEX group.

FIGURE 2 | TFENF protected against pulmonary pathological damage and inflammatory cell infiltration in LPS-induced ALI. Effect of TFENF on LPS-induced
changes in lung histology (A) and lung injury score (B) 6 h after LPS challenge or saline treatment (n � 6 per group). Lung sections stained using H&E (×200). Lung injury
scores are presented as mean ± S.E.M. **p < 0.01 compared with the vehicle group; #p < 0.05 compared with the LPSmodel group; ##p < 0.01 compared with the LPS
model group.
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TFENF Increased the mRNA Expression
Level of AQPs and ENaCs
AQPs and ENaCs play key roles in LPS-induced ALI lung edema
pathogenesis. Compared with that in the vehicle group, LPS
stimulation suppressed the mRNA expression of AQP-1, AQP-
5, αENaC, βENaC, and cENaC in the LPS model group
(Figure 6). The mRNA expression of AQP-1, AQP-5, and
βENaC increased in the TFENF pretreatment groups (Figures
6A,B,D). With an increase in TFENF dosage, the gene expression
in the three groups (TFENF-L, TFENF-M, and TFENF-H)
exhibited an increasing trend. This trend was not observed in
terms of αENaC gene expression (Figure 6C). In the AQP-1
group, the TFENF-M and TFENF-H groups exhibited differences

compared with the LPSmodel group, but in theAQP-5 and ENaC
groups, the differences were only observed in the TFENF-H
group when compared with the LPS model group. However,
TFENF pretreatment had no obvious effect on cENaC
(Figure 6E). In the DEX group, the mRNA levels of AQP-1,
AQP-5, αENaC, βENaC, and cENaC increased significantly
compared with those of the LPS model group.

TFENF Promoted the Protein Expression of
AQPs and ENaCs
Immunohistochemical analysis was used to determine the
effect of pretreatment with TFENF on the subcellular
distribution of AQP-1, AQP-5, αENaC, βENaC, and
cENaC. Positively immunostained cells appeared brown.
As shown in Figure 7, compared with that in the LPS
model group, AQP-1, AQP-5, αENaC, and βENaC protein
expression increased after treatment with different doses of
TFENF, and this difference was especially prominent in the
TFENF-H group (p < 0.01). However, the expression of
cENaC in the TFENF-H group was significantly lower
than that in the LPS model group (p < 0.05). The protein
expression levels of AQP-5, αENaC, and βENaC in the DEX
group were different compared with those in the LPS model
group (p < 0.01), except for AQP-1 protein expression.

TFENF Increased the Enzymatic Activity of
Na+-K+-ATPase
To determine whether TFENF affected the enzymatic activity
of Na+-K+-ATPase, we measured Na+-K+-ATPase activity in
lung tissue. The results showed that LPS inhibited Na+-K+-
ATPase activity whereas Na+-K+-ATPase activity in the
TFENF-administered groups increased, and a significant

FIGURE 3 | TFENF ameliorated PaO2 and IO of arterial blood gas analysis in LPS-induced ALI. Rat arterial blood gas analysis to determine PaO2 (A) and IO (B) 6 h
after LPS-induced ALI or saline treatment (n � 6 per group). Data are presented as mean ± S.E.M. **p < 0.01compared with the vehicle group; #p < 0.05 compared with
the LPS model group; ##p < 0.01 compared with the LPS model group.

FIGURE 4 | Effects of TFENF on the W/D ratio in LPS-induced ALI.
Effects of TEFNF on theW/D ratio in rat lungs 6 h after LPS challenge (n � 6 per
group). Data are presented as mean ± S.E.M. **p < 0.01 compared with the
vehicle group; ##p < 0.01 compared with the LPS model group.
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FIGURE 5 | TFENF suppressed the expression of pro-inflammatory cytokines in LPS-induced ALI. Measurement of mRNA levels of TNF-α (A) and IL-1β (B) in lung
tissue 6 h after LPS-induced ALI or saline treatment (n � 6 per group). Data are presented as mean ± S.E.M. **p < 0.01 compared with the vehicle group; #p < 0.05
compared with the LPS model group; ##p < 0.01 compared with the LPS model group.

FIGURE 6 | TFENF increased the mRNA expression of AQPs and ENaC in LPS-induced ALI. mRNA expression of AQP-1 (A), AQP-5 (B), αENaC (C), βENaC (D),
and γENaC (E) in lung tissue 6 h after LPS-induced ALI or saline treatment (n � 6 per group). Data are presented as mean ± S.E.M. *p < 0.05 compared with the vehicle
group; **p < 0.01 compared with the vehicle group; #p < 0.05 compared with the LPS model group; ##p < 0.01 compared with the LPS model group.
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difference was observed between the TFENF-L and LPS
model groups. However, compared with the LPS model
group, TFENF-M, TFENF-H, and DEX groups showed a
significant increase in Na+-K+-ATPase activity (p < 0.01)
(Figure 8).

DISCUSSION

Various factors, within or outside the lung, likely induce ALI.
Damage to the pulmonary capillary endothelial and alveolar
epithelial cells can lead to increased permeability of the
capillary wall, imbalance in alveolar fluid transport, influx of a
large amount of protein-rich fluid into the alveoli, and acute
pulmonary edema, which cannot be explained by cardiogenic

pulmonary edema (Jiang et al., 2015). In ALI, pulmonary
ventilation and air-exchange functions are severely impaired,
and the ventilation/blood flow ratio is imbalanced as alveoli
are filled with a large amount of fluid. The blood oxygen
saturation cannot be improved despite the increased inhaled
oxygen. Therefore, the OI decreases in ALI, and the decrease
is positively related to disease severity. In addition, large numbers
of inflammatory factors accumulate in the lung and trigger an
inflammatory waterfall effect in ALI, leading to acute pulmonary
edema, the main pathological feature of ALI.

ALI has an acute onset, complex mechanism, rapid
progression, and high mortality, which is challenging in
critical illness in a clinical setting. As a traditional Chinese
herbal medicine, N. fordii has been widely used to treat
pneumonia, sepsis, and other infectious diseases. Recently,

FIGURE 7 | TFENFpromoted theprotein expression ofAQPs andENaCs in LPS-inducedALI. Effect of TFENFon theprotein expression ofAQP-1, AQP-5, αENaC,βENaC,
and γENaC in rat lung tissue 6 h after LPS-induced ALI or saline treatment (n � 6 per group) (immunohistochemistry staining, magnification ×200). Representative photographs of
immunohistochemistry assay (A) and quantitative analysis of immunohistochemistry results (B). Data are presented as mean ± S.E.M. The numbers of cells expressing AQP-1,
AQP-5, αENaC, and βENaC are significantly decreased in LPS-induced ALI compared with those in the vehicle group. Meanwhile, the numbers of cells expressing AQP-1,
AQP-5, αENaC, and βENaC are significantly increased after TFENF treatment. Brown immunostained cells are positive. *p < 0.05 compared with the vehicle group; **p < 0.01
compared with the vehicle group; #p < 0.05 compared with the LPS model group; ##p < 0.01 compared with the LPS model group.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 6038638

Yin et al. TFENF Protects Against LPS-Induced ALI

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


some studies have confirmed the antibacterial (Xiong et al., 2014),
antioxidant (Zhou et al., 2018), anti-inflammatory (Qiu et al., 2013;
Jiao et al., 2014), antipyretic, and analgesic effects of N. fordii (Xie,
2008; Mei et al., 2011). Our previous study has reported the
protective effect of N. fordii against ALI. The N. fordii water
decoction promotes the expression of AQP-1 and AQP-5 in ALI
and increases the clearance and transfer of lung water, improves
water metabolism, and reduces pulmonary edema (Xu et al., 2010).
Additionally, the total flavonoids and amino acids have been
extracted as an injectable, which have been shown to exhibit
protective effects against lung injury by inhibiting the
overexpression of TNF-α and IL-6 (Xu et al., 2014). Furthermore,
in vivo studies, N. fordii injection has demonstrated significant
inhibition of the proliferation of J774 macrophages and
production of TNF-α and IL-6 in the cell supernatant (Xu et al.,
2014). However, there are only a few reports on the effect ofN. fordii
or its main components on the regulation of alveolar fluid transport.

In this study, a rat model of LPS-induced ALI was established
to elucidate the possible mechanism of TFENF in the
inflammatory response and alveolar fluid transport. We
showed that LPS significantly stimulated the production of
inflammatory mediators and disrupted the balance of water
transport in the alveolar cavity. To our knowledge, this is the
first study to report changes in different key links (AQPs/ENaCs/
Na+-K+-ATPase) in the imbalance of the active transport of
alveolar fluid in an ALI model. Moreover, pretreatment with
TFENF reduced the pathological damage and W/D ratio and
improved PaO2 and OI. TFENF also decreased the mRNA levels
of TNF-α and IL-1β in a dose-dependent manner, increased both
the mRNA and protein levels of AQP-1, AQP-5, αENaC, and
βENaC (but not cENaC), and upregulated Na+-K+-ATPase
activity. All of the above results demonstrated that TFENF
reduced the transcription of pro-inflammatory cytokines in the

lungs and alleviated lung edema induced hypoxima by increasing
the expression of aquaporins and ENaCs, and Na+-K+-ATPase
activity. Meanwhile, both mRNA and protein levels of AQP-1,
AQP-5, αENaC, and βENaC were upregulated by TFENF, which
indicated that TFENF upregulated the expression of AQPs and
ENaCs at the transcriptional level. Moreover, our results
indicated that TFENF selectively increased αENa and βENaC
expression but not that of cENaC, demonstrating the possibility
that α and β but not the γ subunit are the regulation targets of
TFENF.

However, why TFENF is unable to increase cENaC expression
is an interesting topic. Studies have demonstrated that the three
subunits are usually synthesized in a differential fashion in cells
that express endogenous ENaC, with one or two subunits
expressed constitutively (Weisz et al., 2003; Peters et al., 2014).
This finding suggests that ENaC subunits are regulated in a non-
coordinated manner (Kim et al., 2018). On the other hand,
whether TFENF is selective in the regulation of ENaC subunits
needs further discussion.

LPS, the main component of the outer membrane of Gram-
negative bacteria (Maldonado et al., 2016), stimulates
neutrophils, macrophages, and other immune cells to produce
different mediators including pro-inflammatory cytokines such
as TNF-α and IL-1β, and the anti-inflammatory cytokines IL-10
and TGF-β (Fligiel et al., 2006). Excessive release of these
cytokines recruits polymorphonuclear neutrophils to the injury
site and leads to ALI. Therefore, it is crucial to suppress the
excessive production of pro-inflammatory factors to control ALI
progression (Idell, 2001; Toews, 2001).

Intravenous LPS-induced ALI is a commonly used modeling
method. The pathological features of ALI are acute pulmonary
edema, accompanied by a decrease in OI, and pathological
damage to the lung tissue. W/D is a common indicator to
evaluate the degree of pulmonary edema in an ALI model. In
our study, an increase in the W/D ratio and a decrease in OI were
observed in the LPS model group, in addition to significant
pathological damage. Furthermore, a large increase in pro-
inflammatory cytokines including TNF-α and IL-1β were
observed, which indicated ALI. Our results are consistent with
those of previous studies that demonstrated that pro-
inflammatory cytokines play an important role in LPS-induced
inflammatory responses (Yang et al., 2018; Ding et al., 2019).
TFENF intervention could reduce pathological damage and W/D
ratio, and improve PaO2 and OI in ALI. The main mechanism is
the inhibition of the production of pro-inflammatory cytokines
(TNF-α and IL-1β).

The mechanism of active transport of alveolar fluid in
pulmonary edema is complex and involves multiple key links
or pathways. Currently, it is clear that the regulation of AQPs,
ENaC, andNa+-K+-ATPase is a typical representation and plays a
vital role in active transport. Previous studies have shown that the
expression of AQPs and ENaCs was decreased and the activity of
Na+-K+-ATPase was suppressed in LPS-induced models of ALI
(Hasan et al., 2014; He et al., 2015; Jiang et al., 2015). Our study
also confirmed that an imbalance in alveolar fluid transport was
related to the inhibition of AQP-1, AQP-5, αENaC, βENaC,
cENaC, and Na+-K+-ATPase.

FIGURE 8 | TFENF increased the enzymatic activity of Na+-K+-ATPase
in LPS-induced ALI. Increase in the enzymatic activity of Na+-K+-ATPase by
TFENF in rat lung tissue 6 h after LPS-induced ALI or saline treatment (n � 6
per group). Data are presented as mean ± S.E.M. **p < 0.01 compared
with the vehicle group; ##p < 0.01 compared with the LPS model group.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 6038639

Yin et al. TFENF Protects Against LPS-Induced ALI

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Some studies have reported the association between pro-
inflammatory cytokines and active transport of alveolar fluid.
TNF-α induces a decrease in AQP-1 and AQP-5 (Mezzasoma
et al., 2013), whereas IL-1β inhibition can reverse the decrease of
AQP-1 and AQP-5 (Yu et al., 2018). Previous evidence has also
confirmed that TNF-α and IL-1β directly downregulate ENaC
levels and expression in alveolar epithelial cells and their
profound influence on the capacity of alveolar epithelial cells
to transport sodium (Dagenais et al., 2004; Matalon et al., 2015;
Wynne et al., 2017). Moreover, TNF-α is known to downregulate
Na+-K+-ATPase andNa+-K+2Cl- cotransporter in the renal cortex
and medulla and in the colon of rats via PGE2 (Markossian and
Kreydiyyeh, 2005; keydiyyeh and Markossian, 2006), whereas IL-
1β has been shown to inhibitNa+-K+-ATPase activity and protein
expression in cardiac myocytes (Kreydiyyeh et al., 2004).
However, there are only a few studies that focus on
pulmonary edema. In brief, stimulation of inflammatory
cytokines may inhibit the expression and activity of AQPs,
ENaCs, and Na+-K+-ATPase in alveolar epithelial cells. In the
current study, different doses of TFENF were found to promote
alveolar fluid transport by regulating AQP-1, AQP-5, αENaC,
βENaC, and Na+-K+-ATPase to reduce pulmonary edema. The
underlying mechanism may be associated with the inhibition of
the pro-inflammatory cytokines, TNF-α and IL-1β.

We determined the composition of TFENF using HPLC. Two
standard reference compounds nervilifordizin A and
complanatoside were used. The composition of the N. fordii is
complex and the identification of total flavonoids is a useful
approach to provide an objective and accurate basis for future
animal- or cell-based experiments.

We found that N. fordii not only inhibited the expression of
inflammatory factors but also promoted the expression of AQPs,
ENaCs, andNa+-K+-ATPase in LPS-induced ALI in rats. Thus,N.
fordii demonstrates the potential for multi-target effects in ALI
treatment. Our findings may provide new avenues for the
discovery of effective drugs to treat ALI.

CONCLUSION

Using in vivo experiments, we demonstrated that pretreatment
with TFENF can protect against pulmonary edema caused by
LPS-induced ALI in rats. The protective mechanism is associated

with the regulation of AQPs/ENaCs/Na+-K+-ATPase, which may
be associated with the inhibition of pro-inflammatory cytokines.
These findings demonstrate that TFENF could be a potential
therapeutic phytomedicine to treat inflammation and pulmonary
edema in ALI.
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