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Abstract: Porphyrin ligands, showing a significant affinity for cancer cells, also have the ability to
chelate metallic radioisotopes to form potential diagnostic radiopharmaceuticals. They can be applied
in single-photon emission computed tomography (SPECT) and positron emission tomography (PET)
to evaluate metabolic changes in the human body for tumor diagnostics. The aim of this paper is
to present a short overview of the main metallic radionuclides complexed by porphyrin ligands
and used in these techniques. These chelation reactions are discussed in terms of the complexation
conditions and kinetics and the complex stability.

Keywords: porphyrins; metallic radionuclides; single-photon emission computed tomography;
positron emission tomography

1. Introduction

In contemporary medicine, an important role is played by non-invasive diagnostics,
allowing early detection of disturbances or pathological changes due to disease. Recently, in
this field, the role of imaging methods and non-invasive tracking of physiological processes
on the molecular level has significantly increased. One of the observed phenomena is
the increasing importance of nuclear medicine. These methods, in contrast to popular
anatomical imaging methods, use radioisotopes administered to the patient to track the
distribution of labeled substances. This means that the patient is not exposed to a sampling
factor from an external source (i.e., in X-ray examination), but imaging is achieved after
administering a radioactive substance that generates radiation inside the patient’s body
and then is recorded by a system of external detectors. This approach allows the biodistri-
bution of the administered substance to be tracked in the examined system or organ and
offers qualitative and quantitative information about the concentrations, dynamics, and
accumulation in target organs [1].

SPECT (single-photon emission computed tomography) uses radioactive gamma
isotopes for functional and molecular imaging [2]. The effective range of the radiation
energies used is 50–300 keV and the gamma quanta are recorded in planar detectors with
collimators, defining the region of the target signal acquisition by a single detector. In
SPECT, thanks to the use of several rotating heads with detectors, it is possible to obtain
2- or 3-D images, both static (e.g., images of pathological bone changes (scintigraphy))
and dynamic (imaging of blood flow in the brain (perfusion)). In healthy people, the
distribution of the radiopharmaceutical follows the physiological pattern while in the case
of dysfunction, regions with increased or decreased contents are identified.

Positron emission tomography (PET) is a highly sensitive nuclear medicine imaging
technique capable of observing metabolic changes in the human body in real time. It utilizes
substances labeled with short-lived radionuclides that are injected intravenously into a
patient and are distributed within different tissues according to the carrier molecule. Ra-
dionuclides used in PET undergo beta plus (β+) decay, which leads to emission of positron
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(e+). Positron, after losing kinetic energy, interacts with an electron in an annihilation
reaction, resulting in the emission of two gamma photons at an angle of 180 degrees with a
characteristic energy of 511 keV. After detection of these coincidences, the distribution of
the radiotracer is calculated by determining the point of annihilation. The major application
of PET is clinical oncology, but it is also applied in the diagnostics of cardiac diseases and
neurological disorders [3,4]. The relatively short half-lives of radionuclides allow the tracers
to reach equilibrium in the body, which especially includes accumulation in the molecular
target and washout from other tissues, but without exposing the subjects to prolonged
periods of radiation.

Construction of a radiopharmaceutical usually involves the conjugation of the radioac-
tive isotope to the targeting molecule using a bifunctional ligand [4,5]. The bifunctional
ligands are able to coordinate the radionuclide and simultaneously are covalently attached
to the targeting molecule (small proteins, peptides, fragments of monoclonal antibody)
either directly or through various linkers. The target molecules are able to transport com-
plexed radionuclide to the diseased tissue containing the appropriate target receptor or
include it in a specific biochemical pathway. The complexes used in nuclear medicine have
to exhibit a high thermodynamic stability as a strong interaction between the metal and the
ligand is necessary to ensure the complete complexation of the radionuclide. Moreover, a
radioisotope–ligand complex should exhibit high kinetic inertness to prevent the dissocia-
tion of the complex and, thus, the release of the radionuclide in the biological medium.

A wide variety of acyclic and macrocyclic chelators have been evaluated for application
in nuclear imaging [5–7]. The poly (amino) carboxylate ligands, such as DOTA (1,4,7,10-
tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-tria azacyclo nonane-1,4,7-
triacetic acid), DTPA (diethylenetriaminepentaacetic acid), and poly (aminophosphonic
acids), and their derivatives are one of the most frequently used chelators [8–12]. However,
these chelators often require harsh conditions for complexation, such as heating of over
80 ◦C or acidic medium and an excess of ligand. They also exhibit slow reaction kinetics.
Thus, the search for new alternative chelating ligands is still a subject in medical inorganic
chemistry [7,11,13].

Porphyrins have the ability to chelate metal ions, due to the system four pyrrole
nitrogen atoms, which are highly selective for ions with an ionic radius of about 70 pm
(i.e., ionic radius of copper (II) is about 72 pm, galium about 67 pm). When the ionic radius
of the coordinating cation is in the range 55–80 pm, the metal ion can fit into the center
of the planar tetrapyrrolic ring system, forming regular metalloporphyrin. Metal ions
with a greater ionic radius (over 80–90 pm) are located out of the porphyrin plane and
sitting-atop (SAT) complex is formed [14]. In this case, the reaction is relatively fast and
proceeds through a pathway that involves a mononuclear activated complex. Chelating
properties are not significantly affected by the type and number of substituents in the ring,
allowing tuning of the basic in vivo parameters, such as hydrophilicity/hydrophobicity or
partition coefficient octanol/water, and extends the application for the intended purpose of
imaging. Porphyrins can thus easily serve as bifunctional ligands coupled with various
biomolecules, which allows for specific targeting.

Complexes, although characterized by high values of stability constants, form with
relatively poor kinetics, which has led to limited application in the past [15]. Recent
advances have resulted in the development of rapid complexation methods with successful
applications even with the relatively short-lived isotopes of galium.

Due to the strong complexing properties and catalytic behavior of metalloporphyrins,
they have found numerous applications in analytical chemistry and as models for the
synthesis of related macrocyclic systems [16–19]. The recent advances in porphyrin-based
materials for metal detection were summarized by Qi et al. [20]. Porphyrins also offer good
potential for biomedical and imaging applications as they are potent fluorophores, biologi-
cally compatible, and are known to preferentially accumulate in tumor tissue, which is a
highly desirable feature for anticancer therapy [20]. One of the most important applications
of porphyrins is photodynamic therapy (PDT) of cancer, where the combination of light
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and a photosensitizer generates active oxygen species close to the tumor to damage the
diseased tissues [21,22]. Porphyrin-based molecules have also been used in in vivo mag-
netic resonance imaging (MRI) [23,24] and photodynamic antimicrobial chemotherapy [25].
They can also effectively deliver and release some drug molecules to the targeted cell,
which improves therapies for a range of human diseases [25,26]. Chelated metals can also
provide a convenient handle for bioconjugation with other molecules via axial coordination.
Meso-tetrakis(4-sulpho natophenyl)porphyrin modified with gold nanoparticles exhibits
high efficiency in binding with doxorubicin, a common drug used in a wide range of
cancers, and effectively delivers it within the nucleus of tumor cells [27].

The aim of this paper is to present a short overview of the radionuclides complexed by
porphyrin ligands and used in SPECT and PET. These chelation reactions are discussed in
terms of the complexation conditions and kinetics and the stability of the formed complexes.

2. The Main Radiometals for PET and SPECT

The choice of radionuclide for diagnostic radiopharmaceuticals in PET and SPECT
mainly depends on its nuclear properties, such as the type of radiation, half-life, and en-
ergy. Other factors may include radionuclide production, the conditions for radiolabeling,
specific activity, and coemission of other gamma rays, which unnecessarily increase the
radiation dose. 11C (t 1

2
= 20 min) and especially 18F (t 1

2
= 109 min) are widely used in

PET, but their relatively short half-lives and hard labeling conditions are not suitable for
use for labeling with antibodies and peptides [28]. For this reason, 64Cu, 99mTc, and 89Zr
have received increasing attention in the last years [29–35]. Among them, 68Ga and 99mTc
(also 44Sc) are available from the appropriate generator, which enables wider application.
Another important trend is the use of appropriate isotope pairs (with similar biological dis-
tribution) for both therapeutic and diagnostic purposes (so-called theranostics) [29,30,32,36].
One radionuclide is a β+ or γ emitter that allows the diagnostics while the second emits
radiation (α, β, or Auger electrons), which is able to destroy malignant cells. The pairs
of 64Cu/67Cu, 68Ga/177Lu, 64Cu/177Lu, and 44Sc/47Sc could be applied as diagnostic and
therapeutic agents, respectively.

One of the most interesting radionuclides for PET is 64Cu. It undergoes multiple
decay paths, allowing not only PET imaging through positron emission but also offering
the possibility of treatment due to the emission of β− radiation. It also allows for online
monitoring of targeted therapy. Another advantage of 64Cu is its low positron energy
(653.1 keV) with a short average tissue penetration range (0.7 mm), which increases the
resolution of the obtained images [30]. Its relatively long half-time (t 1

2
= 12.7 h), compared

to other popular PET isotopes, offers an opportunity for the labeling of biomolecules,
such as proteins, antibodies, and peptides, which require more time to reach target tissues
or processes. 64Cu is commonly produced in class 2 (up to 20 MeV per particle, proton,
or deuteron beam) medical cyclotrons utilizing the 64Ni (p,n) 64Cu reaction. The well-
established coordination chemistry of copper allows for its reaction with a wide variety
of chelators that can potentially be linked to antibodies, proteins, peptides, and other
biologically relevant molecules.

The availability of 68Ga from a generator in which gallium is constantly produced
and that it can be eluted from resin containing the long-lived parent 68Ge nuclide has led
to a rapid increase in the use of this radionuclide. Particularly, after the approval by the
Food and Drug Administration of 68Ga-DOTATATE and 68Ga-DOTATOC, peptides with a
covalently bonded DOTA bifunctional chelator have been used to image neuroendocrine
tumors [37]. In terms of decay properties, 68Ga provides high positron abundance (89%,
1.83 MeV) and a half-life of 68 min, which is compatible with the pharmacokinetic profile
of most small molecule imaging agents [32]. The production of 68Ga is also possible using
the 68Zn (p,n) 68Ga nuclear reaction with a medical cyclotron [38]. As the formation of
67Ga and 66Ga isotopes is also possible during this reaction, the radionuclidic specification
based on European Pharmacopeia for cyclotron-produced 68Ga recommended a maximum
content of these isotopes of 2%.
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67Ga, a cyclotron-produced radiometal via the 68Zn (p,2n) 67Ga nuclear reaction with
a half-life of 78.3 days, is used in SPECT. The most abundant emitted γ-photons relevant
to imaging have energies and relative abundances of 93 (relative abundance of 39%),
184 (21%), and 300 keV (17%) [2]. Due to its longer half-time in comparison to 68Ga, 67Ga
does not have kinetic constraints under radiolabeling conditions. Thus, mild radiolabeling
conditions suitable for sensitive biomolecules can be used. As the biological iron transporter
transferrin has a strong affinity for Ga (III) [39], its complexes must be sufficiently inert to
transchelation. The similar biochemical properties of 67,68Ga diagnostics can be combined
with therapy using 177Lu [40].

89Zr, with its relatively long half-time (t 1
2

= 78.4 h) and low positron energy (396 keV),
has received attention for radiopharmaceutical development due to its favorable nuclear
decay properties that make it useful in the labeling of antibodies for immuno-PET ap-
plications [34]. It is mainly produced in medical cyclotrons via the proton irradiation of
natural yttrium foils. Separation from other metal impurities is usually carried out using
anion exchange chromatography due to the high affinity of Zr(IV) for hydroxamate-based
resins under acidic conditions [41]. Lin et al. proposed a semi-automated approach for the
production of 89Zr-oxalate/89Zr-chloride with high effective specific activity [42].

44Sc, a positron-emitting isotope, is of particular interest in PET imaging, and more
broadly for theranostic applications in conjunction with 47Sc, which emits β− [43]. 44Sc
can be produced by proton bombardment of 44Ca in cyclotrons. It can also be obtained
from a 44Ti/44Sc generator, but difficulties in the production of parent 44Ti makes it less
affordable than the 68Ge/68Ga generator. 44Sc has biochemical properties that are similar to
68Ga, but its half-life is almost 4 times longer (t 1

2
= 4.04 h), with an average positron energy

of 632.0 keV; thus, this makes it suitable for the imaging of longer biological processes, such
as protein metabolism [44].

99mTc is the most common nuclide for SPECT due to its physical and chemical charac-
teristics [45,46]. It is a metastable isomer of 99Tc, to which it de-excitates emitted gamma
photons. 99mTc is available from the 99Mo/99mTc generator or is produced in a cyclotron
via proton bombardment of 100Mo. Its half-life is equal to 6.01 h. This allows for easy prepa-
ration and administration of the radiopharmaceuticals and a gamma ray energy of 140 keV
is suitable for detection [33]. The possibility of the occurrence of technetium in several
oxidation states allows the incorporation of this radionuclide into a variety of functional
groups, which can be specifically adapted to different organs, but its redox state has to
be carefully maintained to prevent release from the complex. Moreover, these properties
allow the formation of its metallic fragments, also named cores or moieties [47–49]. The
most known examples of these cores are Tc-oxo [TcO(H2O)4]3+, Tc-dioxo [TcO2(H2O)4]+,
Tc-nitrido [TcN(H2O)4]2+, Tc-HYNIC (where HYNIC = 6-hydrazino nicotinamide), and Tc-
tricarbonyl [Tc(CO)3(H2O)3]+ presented in Figure 1. They are prepared after the reduction
of TcO4

− to a suitable oxidation state, predominantly using SnCl2 in acidic media.
Another radioisotope that haas received attention is 111In. It is produced in a cyclotron

using the 112Cd (p, 2n) 111In reaction. The energies of the γ-ray emissions (171 and 245 keV)
are higher than that of 99mTe and are widely employed in SPECT for tumor imaging. The
half-life of 111In (2.8 days) is especially suited to the imaging of antibodies that tend to
have longer biological half-lives, such as lymphocytes, platelets, monoclonal antibodies,
and many others. Bétak et al. proposed another production method of 111In from its
grandparent 111Sb [50]. The latter is formed after proton bombardment of an enriched 112Sn
target via the 112Sn (p, 2n)111Sb reaction. Moreover, this reaction leads to the parent nuclide
111Sn, which decays to 111In.



Molecules 2022, 27, 3311 5 of 15

Molecules 2022, 27, 3311 5 of 16 
 

 

 
Figure 1. Technetium inorganic fragments used for labeling bioactive molecules. HYNIC- 6-hydra-
zinonicotinamide. Adopted from [48].  

51Mn, 52gMn, and 52mMn are radioactive isotopes of manganese that emit positrons and 
are used in PET imaging [51–53]. 51Mn is produced in a cyclotron via the 68Zn(p,2n)67Ga 
nuclear reaction. Its half-life of 46 min decays by 97% by β+ emission, but the positron 
energy is rather high at 2.2 MeV. 52gMn is also produced by the natCr(p, n)52gMn nuclear 
reaction in lower energy ranges from 16.9 to 8.2 MeV. The isolation of radiometal from the 
chromium target is well developed and is successful using ion chromatography methods, 
obtaining the product in the form of [52Mn]MnCl2. The relatively long half-life of 5.59 days 
of 52gMn is advantageous for purification, synthesis, and the investigation of longer-term 
biological processes. However, only 29% of positron decay occurs and three high-energy 
photons are emitted during decay, which limits its clinical relevance. 52mMn (t1/2 21 min, 
β+ 96.6%) also has high-energy gamma emission. Its short half-life is hardy compatible 
with the available time-consuming target separation methods. In addition, it emits a pho-
ton with relatively high energy (1.022 MeV), which causes pair formation and thus incor-
rect PET images. 

In addition to the above described radiometals, there are several other positron emit-
ters, such as 86Y (t½ = 14.7 h), Eβ+ = 1250 keV [54,55], 62Zn (t½ = 9.3 h) [56], and 57Co with a 
half-life of 17.5 h and Eβ+ = 570 keV [57], which have been proposed for in vivo PET imag-
ing.  

Table 1 summarizes the nuclear properties of the main radiometals used for PET and 
SPEC imaging. 

Table 1. The nuclear properties of the main radiometals used for PET and SPEC imaging. 

Radionuclide Source Reaction Radiation t1/2 
44Sc cyclotron 44Ca(p, n)44Sc β+ 3.97 h 
62Zn cyclotron natCu(p, x)62Zn β+ 9.19 h 
64Cu cyclotron 64Ni(p, n)64Cu β+ 12.7 h 
67Ga cyclotron 68Zn(p, 2n)67Ga γ 3.26 d 
68Ga generator 68Ge/68Ga β+ 68 min 

 cyclotron 68Zn(p, n)68Ga   
89Zr cyclotron 89Y(p, n)89Zr β+ 3.3 d 

99mTc generator 99Mo/99mTc, γ 6.0 h 
111In cyclotron Cd(p, xn)111In γ 2.83 d 

  

Figure 1. Technetium inorganic fragments used for labeling bioactive molecules. HYNIC- 6-
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51Mn, 52gMn, and 52mMn are radioactive isotopes of manganese that emit positrons and
are used in PET imaging [51–53]. 51Mn is produced in a cyclotron via the 68Zn(p,2n)67Ga
nuclear reaction. Its half-life of 46 min decays by 97% by β+ emission, but the positron
energy is rather high at 2.2 MeV. 52gMn is also produced by the natCr(p, n)52gMn nuclear
reaction in lower energy ranges from 16.9 to 8.2 MeV. The isolation of radiometal from the
chromium target is well developed and is successful using ion chromatography methods,
obtaining the product in the form of [52Mn]MnCl2. The relatively long half-life of 5.59 days
of 52gMn is advantageous for purification, synthesis, and the investigation of longer-term
biological processes. However, only 29% of positron decay occurs and three high-energy
photons are emitted during decay, which limits its clinical relevance. 52mMn (t 1

2
21 min, β+

96.6%) also has high-energy gamma emission. Its short half-life is hardy compatible with
the available time-consuming target separation methods. In addition, it emits a photon
with relatively high energy (1.022 MeV), which causes pair formation and thus incorrect
PET images.

In addition to the above described radiometals, there are several other positron emit-
ters, such as 86Y (t 1

2
= 14.7 h), Eβ+ = 1250 keV [54,55], 62Zn (t 1

2
= 9.3 h) [56], and 57Co

with a half-life of 17.5 h and Eβ+ = 570 keV [57], which have been proposed for in vivo
PET imaging.

Table 1 summarizes the nuclear properties of the main radiometals used for PET and
SPEC imaging.

Table 1. The nuclear properties of the main radiometals used for PET and SPEC imaging.

Radionuclide Source Reaction Radiation t 1
2

44Sc cyclotron 44Ca(p, n)44Sc β+ 3.97 h
62Zn cyclotron natCu(p, x)62Zn β+ 9.19 h
64Cu cyclotron 64Ni(p, n)64Cu β+ 12.7 h
67Ga cyclotron 68Zn(p, 2n)67Ga γ 3.26 d
68Ga generator 68Ge/68Ga β+ 68 min

cyclotron 68Zn(p, n)68Ga
89Zr cyclotron 89Y(p, n)89Zr β+ 3.3 d

99mTc generator 99Mo/99mTc, γ 6.0 h
111In cyclotron Cd(p, xn)111In γ 2.83 d

3. Porphyrins as Ligands for Radiometals
3.1. Copper

Several research groups have explored the use of porphyrin ligands with different
functional groups as potential chelators for 64Cu-based radiopharmaceuticals due to their
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ability to form stable complexes under physiological conditions. The advantage of this
approach is the interaction of porphyrins with tumor cells, the minimal toxicity of the 64Cu–
porphyrin complex, and that the chelation reaction does not alter the biodistribution and
pharmacokinetics of the host porphyrin molecules [58–63]. The structures of the studied
porphyrin ligands are presented in Figure 2.

Mukai et al. [58] studied the chelation reactions of various porphyrins, such as pro-
toporphyrin IX (PPIX), 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), 5,10,15,20-
tetrakis(4-sulfophenyl)porphyrin (TSPP), and 5,10,15,20-tetrakis(4-carboxy phenyl)porphyrin
(TCPP), with 64Cu in acetate buffer (pH 6.0) containing 0.5% (w/v) Tween 20. Intensive
heating was required for each porphyrin: 60 min at 50 ◦C for PPIX and TSPP; 5 min at
100 ◦C for TAPP; and 60 min at 100 ◦C for TCPP. The addition of ethanol increased the
efficiency of chelation from 58.6% to 80.4% for TCPP and from 19.7% to 68.6% in the case
of TSPP. The authors also synthesized [64Cu]PPIX-PEG6-BBN conjugate, which contains
bombesin (BBN) analog, a peptide that interacts with the gastrin-releasing peptide receptor
(GRPR) attached to the PPIX molecule through PEG6 spacer. It showed significantly higher
uptake of PC-3 (prostate cancer) cells than 64Cu-labeled PPIX. Moreover, it was found that
ethanol is a good radiolytic stabilizer for labeling [58].
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Faster formation of Cu–TCPP complex was obtained in the presence of some reduc-
ing agents such as hydroxylamine, ascorbic acid, or morin (a biologically active natural
antioxidant that occurs widely in plants) [59]. As the ionic radius of Cu(I) is significantly
larger than that of Cu(II), the formation of SAT complex involves more favorable kinetics.
The best reaction rate was achieved in borate buffer at pH 9 and a ratio of the reactants
Cu:TCPP:ascorbic acid of 1:1:10. Under these conditions, the reaction was almost im-
mediate, below 1 min (Figure 3). The chosen reducing agent is safe and can be used in
radiopharmaceutical applications.
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The reaction of 64Cu with 5-(4-aminophenyl)-10,15,20-triphenyl)porphyrin was con-
ducted in DMSO at 37 ◦C for 60 min with the use of acetate buffer at pH 5.65 [60]. Ascorbic
acid was used for the reduction of Cu(II) to Cu(I) to take advantage of the SAT complex,
with a labeling yield > 95%. The complex showed high resistance towards transchelation
and 85% of the complex remained intact in an excess of EDTA after 48 h of incubation.
It also exhibited good stability (>95%) for up 48 h when incubated with human serum.
Animal PET studies showed rapid clearance of the complex from healthy mice and rats,
which is beneficial in the view of further research.
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Fazaeli et al. [61] synthesized 64Cu complex with 5,10,15,20-tetrakis(pentafluoro
phenyl)porphyrin (TFPP) in the presence of acetate buffer at pH 5.5. The addition of
fluoride groups in the periphery of the porphyrin increased the hydrophilic character of
the ligand and its solubility in water. The mixture of the reagents was refluxed at 100 ◦C
for 60 min. Incubation of the 64Cu–TFPP complex in human serum showed no loss of
radionuclides for up to 2 days. Imaging showed quick (4 h) renal clearance while the
injection of free 64CuCl2 resulted in higher liver uptake.

Recently, porphyrin-based nanomaterials have received much attention due to their
excellent imaging capacities [64–67]. 64Cu-labeled pentafluorophenylporphyrin complex
was successfully grafted onto mesoporous silica functionalized with 3-amino propyltri-
etoxysilane groups [66]. Its biodistribution in fibrosarcoma-bearing rats showed high
tumor uptake and fast excretion from the body. Other authors prepared polyethylene
glycol (PEG)-modified TCPP nanoparticles labeled with 64Cu that could help to evaluate
renal clearance [67,68]. The scheme for their synthesis with various molecular weights of
PEG chains is presented in Figure 4. 64Cu–TCPP–PEG nanoparticles with a larger molecular
weight (30K) showed higher tumor uptake due to an enhanced permeability and retention
effect, while the lower ones (2K) were more suitable for renal clearance. The prepared
radiotracers were found to be highly stable in serum for 48 h, even in the presence of NOTA
competitive conditions; thus, they are suitable for in vivo PET imaging.

Luo et al. proposed the synthesis of a multifunctional system based on poly (vinyl
alcohol)–porphyrin conjugate, which was labeled with 64Cu [69]. The PVA–porphyrin
conjugate was prepared through ester formation, the polymer was then dissolved in DMSO,
and dialysis was performed against water. A chelation reaction with 64Cu was carried
out by simple stirring of the reagents at room temperature for 2 h. PET imaging showed
that 64Cu-labeled poly (vinyl alcohol)–porphyrin nanoparticles started to accumulate at
tumor sites 16 h after injection. This theranostic nanoplatform integrates cancer optical
imaging, positron emission tomography, photodynamic and photothermal therapy, and
drug delivery functions in one formulation [63,70].
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Fan et al. [71] proposed a porphyrin-based molecule for multimodal tumor imaging.
The 64Cu–Pyro–3PRGD2 molecule combining a porphyrin derivative, an RGD dimer
peptide (3PRGD2), and 64Cu, exhibited high tumor specificity in both positron emission
tomography and optical imaging in vivo. Additionally, a highly hydrophilic polyethylene
glycol (PEG) chain as the linker between the porphyrine macrocycle and peptide ligand
increased the water solubility of the conjugate. The tripeptide Arg-Gly-Asp (RGD) is a
high-affinity ligand of integrin αvβ3 targeting the RGD-conjugated molecular probes or
nanoparticles to αvβ3-overexpressing cancer cell lines.

3.2. Gallium

Ga(III) and Fe(III) have the same ionic charge, similar ionic radii (62 pm for Ga(III) and
65 pm for Fe(III), respectively), and both tend to form six-coordinated complexes [71,72].
Due to this similarity, ligand exchange with the abundant blood serum protein transferrin
can occur in vivo, resulting in lung, liver, and bone accumulation of 68Ga. Precipitation of
Ga(OH)3, which starts at pH > 3, makes radiolabeling difficult. The presence of weakly
coordinating anions (citrate, acetate, or oxalate) can prevent this undesirable process [72].
The presence of metal ion impurities, such as Cu(II), Fe(III), or Pb(II), in the generator
eluent could reduce the yield of 68Ga labeling [73]. Complexation of gallium ions within
the porphyrin core often requires reaction temperatures above 100 ◦C, which is unsuitable
for temperature-sensitive moieties. Gallium–porphyrin complexes are suitable for the
development of agents for theranostic applications involving tumor diagnosis using PET
and PDT for targeted tumor therapy [74,75].

The complexation of 68Ga with tetrapyrrole derivatives, such as hematoporphyrin (HP),
protoporhyrin IX (PPIX), and tetraphenylporphyrin (TPP), was conducted by Zoller et al. [76,77].
PPIX is a native porphyrin derivative present in the body as part of the heme protein. As
labeling experiments of water-soluble HP and PPIX porphyrins in a water/acetone mixture
and heating in an oil bath at 90 ◦C for 15 min produced a low reaction efficiency, microwave-
enhanced radiosynthesis was applied. Using this approach, labeling yields of 69% for 68Ga-
HP after 5 min and 49% for 68Ga-PPIX after 7 min were obtained (Figure 5). Complexation
with liphophilic TPP was achieved in chloroform solution using anhydrous conditions
via the indirect nuclear reaction with 68Ga-acetyloacetone as the labeling agent [69]. This
resulted in a labeling yield of 82% after 5 min with microwave irradiation. Transchelation
of 68Ga to DTPA solution or apo-transferrin was not observed over a period of 2 h.
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As was mentioned above, the introduction of substitutes on the peripheral positions of
the porphyrin core increases the hydrophilicity of porphyrin derivatives to promote renal
clearance over hepatobiliary clearance [78]. Some hydrophilic porphyrin derivatives have
been proposed for complexation with 68Ga, such as 5,10,15,20-tetrakis(pentafluorophenyl)
porphyrin (log Po/w = 0.62) [79], 5,10,15,20-tetrakis(2,4,6-tri methoxyphenyl)porphyrin
(log Po/w = −1.14) [80], 5,10,15,20-tetrakis(p-carboxy- methyleneoxyphenyl)porphyrin
(log Po/w = −0.25) [75], and 5,10,15,20-tetrakis(4-methyl-pyridyl)porphyrin (log Po/w = −4.3) [81].
Complexation reactions with Ga(III) were conducted in the presence of acetate buffer in a
boiling water bath for a period in the range of 15 [74] to 60 min [79].

Pan et al. synthesized the water-soluble bimetallic gallium–porphyrin–ruthenium–
bipyridine complex (68GaporRu) with an 85% yield using microwave irradiation for
15 min [82]. Its structure is presented in Figure 6. In comparison with a similar com-
plex with zinc (ZnporRu), gallium complex also inhibits cancer cells’ growth in their early
stages. The acidity of 68GaporRu (pKa = 3.45) enables specific subcellular localization in
the lysosome, while ZnporRu exhibits mitochondria specificity. Thus, it was considered a
novel functional bioprobe for PET imaging and a photodynamic therapy agent.
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The effects of structural variation and the number of positive charges in the tetraca-
tionic and tricationic porphyrin derivatives on the tumor targeting efficacy were studied
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by Guleria et al. [83]. In vivo experiments in a tumor-bearing animal model revealed
a relatively longer retention of tetracationic 68Ga-labeled porphyrin in the tumor lesion
compared to the of 68Ga-labeled tricationic derivatives.

An extended study of neutral, polycationic, and polyanionic metalloporphyrins la-
beled with 68Ga showed extremal flexibility for modifications of the porphyrin cores [84].
The addition of nitroimidazole or sulfonamide groups, which were used as vectors, im-
proved the pharmacokinetics of porphyrin tags and the stability in serum. However, it did
not influence the fluorescent properties, allowing in vitro confocal studies and visualization.
The conjugation of porphyrins with peptides was also achieved and provided effective
targeting of the overexpressed receptors on tumor cells. Porphyrin probes were successfully
tested as the bifunctional chelator scaffolds for PET with 68Ga and for SPECT as the central
metal ions.

3.3. Technetium

Due to the difficulties in the chelation of 99mTcO4
−, obtained from a molybdenum

generator after elution by saline solution, with a porphyrin core, Wang et al. proposed the
use of acetylacetone (acac) as a conjugator to first form 99mTc(acac) complex (refluxing at
150 ◦C for 30 min with slow nitrogen flow) and then labeling with 5,10,15,20-tetrakis(4-
carboxyphenyl)porphyrin (TCPP) [33]. The labeling efficiency of the formed complex was
about 99% and log P was equal to -0.86, showing its hydrophilic nature. As most of the
radioactivity accumulated in the liver, the 99mTc(acac)–TCPP complex seems to suitable as
an imaging agent for this organ.

3.4. Zirconium

Hexadentate siderophore desferrioxamine (DFO) is mainly used for 89Zr chelation
in immuno-PET imaging [33,34]. However, zirconium complexes with DFO are partially
unstable and released radiometal can accumulate in bone tissue. It was explained that DFO
occupies only six coordination sites while Zr(IV) forms octacoordinated complexes. For
this reason, alternative bifunctional chelating agents are being evaluated, mostly containing
hydroxamate coordinating units [85–87].

The reaction of Zr-acetylacetone with p-methoxy-meso-tetraphenylporphyrin [88] and
meso-tetraphenylporphyrin [89] in the presence of phenol and its derivatives in chloroform
(conducted at 200–220 ◦C over a salt bath) resulted in the formation of corresponding
axially ligated complexes [Zr(p-OCH3TPP)(Y)(X)] and [Zr(TPP)(Y)(X)], where Y = acac and
X = phenolates. The coordination number of zirconium in both complexes was reported
as seven, and due to the large ionic radius of Zr(IV), the metal is out of the plane of the
porphyrin ring. There is no research on the application of these complexes in nuclear
medicine imaging techniques. It was reported that among all the complexes studied,
Zr(TPP)(acac)(p-NO2PhO) showed the highest antibacterial sensitivity against the bacterial
strains [88].

3.5. Other Radiometals

Complexation of 111In with 5,10,15,20-tetrakis(3,5-dihydroxyphenyl)porphyrin, TDHPP),
5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin, THPP), and 5,10,15,20- tetrakis (3,4-
dimethoxyphenyl) porphyrin, TDMPP) was prepared for SPECT imaging [90]. The mix-
ture of reagents was heated at 80 ◦C for 60 min in acetic buffer. They showed more than
99% radiochemical purity and no loss of radionuclides in freshly prepared human serum
over 2 days at 37 ◦C. The partition coefficients (calculated as log Po/w) for 111In-TDHPP,
111In-THPP, and 111In-TDMPP were 0.88, 0.8, and 1.63, respectively; thus, the dihydroxy
complex of 111In-TDHPP showed more hydrophilicity compared to the mono-hydroxyl
compounds. The obtained complexes accumulated mainly in the liver and kidney of the
rat tissues, which are typical accumulation sites of porphyrins.

Under similar reaction conditions (heating at 100 ◦C for 60 min), 111In was labeled with
5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, TFPP) [91]. The octanol/water partition
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coefficient for this complex was found to depend on the pH of the solution and at pH 7,
the log Po/w was 0.69. For better comparison, a biodistribution study was also performed
on free 111InCl3 solution in wild-type rats. The indium cation was rapidly removed from
the circulation, and accumulated in the liver, and a major fraction was excreted slowly
in 24 h through the kidney, in an almost steady manner. The 111In–TFPP complex also
accumulated in the kidney but additionally in the spleen, gradually up to 15%, and its
excretion significantly increased after 24 h.

Tamura et al. developed multicomponent PET tracers based on PDT agents by label-
ing 62Zn with glycosylated 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, which has
S-glycosylated groups (Figure 7) [56,92]. The total time required from the synthesis (heat-
ing at 60 ◦C for about 10 min, concentrated under reduced pressure, and dissolved in
EtOH/PEG-400/water mixture in a volume ratio of 2:3:5) to administering them into mice
was less than 30 min. The cellular uptake and cancer cell-selective accumulation of these
complexes depend on the numbers of S-glycosylated groups and their orientation (cis or
trans), being the highest for trans isomer with two groups. Their distribution in the blood
was maintained over 24 h and slightly decreased in the liver, kidney, and spleen.
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Manganese porphyrins are used as paramagnetic contrast agents, with low toxicity,
high electronic spins, a fast water exchange rate, and high complex stability [93–95]. The
most extensively investigated, Mn(III) tetraphenyl porphyrin sulfonate (MnTPPS4), exhib-
ited no demetallation in vitro in human plasma for up to 9 days and only about 1% degree
of demetallation in vivo in the liver and kidney up to 4 days post administration [95].
Klein et al. demonstrated the possibility of labeling MnTPPS4 with the no-carrier-added
positron emitter 51Mn [96]. Thus, the labeled compound could allow non-invasive de-
termination of the pharmacokinetics in humans and additionally could serve as a new
tumor-localizing radiopharmaceutical. The complex formation kinetics were investigated,
and the apparent rate constants were determined as 0.0244 s−1M−1 at 44 ◦C and 5.9 s−1M−1

at 108 ◦C. Gawne et al. described a new method for the radiochemical synthesis of 52Mn–
porphyrin complexes using six porphyrin ligands with various lipophilicities and charges
and then assessed their liposome labeling properties [97]. Using a microwave synthesizer
and heating at 165 ◦C for 1 h, radiochemical yields > 95% were achieved at a ligand concen-
tration of 0.6–0.7 mM. In contrast, heating at 70 ◦C for 1 h without microwave irradiation
resulted in low radiochemical yields (0–25%) and most porphyrins did not reach completion
after 24 h.

4. Conclusions

Nuclear medical imaging is a field of molecular diagnostics that is still developing.
There is a continuous need for new efficient chelators that can satisfy all the requirements.
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Porphyrins are promising candidates for ligands in radiopharmaceutical development.
They form stable complexes in vivo, which prevents the release of radionuclides. As
porphyrins have an affinity for tumor cells, they can accumulate in tumor tissue, allowing
for accurate imaging. The properties of the designed radiotracer can be easily adjusted
through modification of the peripheral functional groups, as it has little effect on the
labeling efficiency. This article provides an overview with great perspective for further
development of the next generations of PET radiopharmaceuticals.
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