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Abstract 

The roles of corticotrophin-releasing factor (CRF), opioid peptides, leptin and ghrelin in 
anorexia nervosa (AN) were discussed in this paper. CRF is the key mediator of the hypo-
thalamo-pituitary-adrenal (HPA) axis and also acts at various other parts of the brain, such as 
the limbic system and the peripheral nervous system. CRF action is mediated through the 
CRF1 and CRF2 receptors, with both HPA axis-dependent and HPA axis-independent ac-
tions, where the latter shows nil involvement of the autonomic nervous system. CRF1 re-
ceptors mediate both the HPA axis-dependent and independent pathways through CRF, while 
the CRF2 receptors exclusively mediate the HPA axis-independent pathways through uro-
cortin. Opioid peptides are involved in the adaptation and regulation of energy intake and 
utilization through reward-related behavior. Opioids play a role in the addictive component of 
AN, as described by the “auto-addiction opioids theory”. Their interactions have demon-
strated the psychological aspect of AN and have shown to prevent the functioning of the 
physiological homeostasis. Important opioids involved are β-lipotropin, β-endorphin and 
dynorphin, which interact with both µ and κ opioids receptors to regulate reward-mediated 
behavior and describe the higher incidence of AN seen in females. Moreover, ghrelin is known 
as the “hunger” hormone and helps stimulate growth hormone (GH) and hepatic insu-
lin-like-growth-factor-1(IGF-1), maintaining anabolism and preserving a lean body mass. In 
AN, high levels of GH due to GH resistance along with low levels of IGF-1 are observed. 
Leptin plays a role in suppressing appetite through the inhibition of neuropeptide Y gene. 
Moreover, the CRF, opioid, leptin and ghrelin mechanisms operate collectively at the HPA 
axis and express the physiological and psychological components of AN. Fear conditioning is 
an intricate learning process occurring at the level of the hippocampus, amygdala, lateral 
septum and the dorsal raphe by involving three distinct pathways, the HPA axis-independent 
pathway, hypercortisolemia and ghrelin. Opioids mediate CRF through noradrenergic stim-
ulation in association with the locus coeruleus. Furthermore, CRF’s inhibitory effect on 
gonadotropin releasing hormone can be further explained by the direct relationship seen 
between CRF and opioids. Low levels of gonadotropin have been demonstrated in AN where 
only estrogen has shown to mediate energy intake. In addition, estrogen is involved in reg-
ulating µ receptor concentrations, but in turn both CRF and opioids regulate estrogen. 
Moreover, opioids and leptin are both an effect of AN, while many studies have demonstrated 
a causal relationship between CRF and anorexic behavior. Moreover, leptin, estrogen and 
ghrelin play a role as predictors of survival in starvation. Since both leptin and estrogen are 
associated with higher levels of bone marrow fat they represent a longer survival than those 
who favor the ghrelin pathway. Future studies should consider cohort studies involving 
prepubertal males and females with high CRF. This would help prevent the extrapolation of 
results from studies on mice and draw more meaningful conclusions in humans. Studies should 
also consider these mechanisms in post-AN patients, as well as look into what predisposes 
certain individuals to develop AN. Finally, due to its complex pathogenesis the treatment of 
AN should focus on both the pharmacological and behavioral perspectives. 
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INTRODUCTION 

Anorexia Nervosa (AN) is an eating disorder 
that continues to show devastating effects on both 
adolescents and adults, worldwide. The Diagnostic 
and Statistical Manual of Mental Disorders has de-
fined AN as an eating disorder in which people refuse 
to maintain a minimally required healthy weight for 
their age and height (body weight less than eighty five 
percent of expected), have an intense fear of gaining 
weight and significantly misinterpret their body and 
shape (1).  

CLASSIFICATION 

Kaye WH (1996) for academic purposes has 
classified patients into three different categories, low 
weight, short-term recovered and long-term recov-
ered (2). The American Psychiatric Association (1994) 
has subdivided AN into two distinct categories. The 
first category is the restrictive type (RAN), where pa-
tients exhibit “restricted food intake without binge 
eating or purging,” while the second category is the 
binge-eating/purging type (BPAN), involving both 
“binge eating/purging episodes during anorexia and 
bulimia phases” (3). In addition, both categories can 
also be differentiated by their hormonal profiles, such 
that lower leptin levels have been found in RAN (4). 
On the other hand, increased impulsivity and higher 
rate of self-harm have been observed in BPAN (4-6).  

CLINICAL PRESENTATION 

There are repeated acts of “body checking” 
where anorexics constantly and obsessively monitor 
their body image to assure that they are thin (7). 
Clinically, AN is differentiated on the basis of RAN 
and BPAN. In RAN, patients experience weight loss 
by significantly reducing their total calorie intake 
along with exaggerated physical work-outs. In BPAN, 
patients resort to vomiting and the use of laxatives or 
diuretics to stay thin (1).  

Moreover, the clinical features of AN can be 
further divided as mental and physical. In general, 
anorexics secretly use aberrant, unusual behavior to 
lose weight. They gradually refuse eating with family 
and out in public (1). Although, a loss of appetite is 
seen late in the course of the disorder, collecting reci-
pes and preparing fancy meals for others is evidence 
that the individual is constantly thinking of food (1). 
Moreover, carrying large amounts of candy in pock-
ets, hiding food throughout the house, disposing food 

in napkins and cutting meals into small pieces and 
rearranging them on the plate are important details 
that give insight into the character of this disorder (1). 
In addition, compulsive stealing of candy and laxa-
tives are also seen (1). Anorexics find opportunities to 
stay physically active, ranging from athletics and 
dance to acts as simple as, preferring to stand rather 
than sit (7). Nevertheless, they show resistance when 
offered help, and refuse to talk when confronted 
about their unusual behavior (1). Although, perfec-
tionists by nature, anorexics are socially-isolated in-
dividuals that also frequently suffer from depression, 
anxiety and obsessive-compulsive disorder (OCD) (1). 
Suicidal tendencies are commonly encountered in 
patients suffering from BPAN (1). A mental status 
examination reveals that the individual is alert, ori-
ented and knowledgeable on the topic of nutrition (1).  

The profound weight loss observed in AN re-
sults in hypothermia (body temperature of about 35 
degrees Celsius), hypotension, dependent edema, 
bradycardia, lanugo and various metabolic changes 
(1). Changes like amenorrhea, poor sexual adjustment 
and epigastric complaints are also commonly ob-
served (1). In BPAN, patients suffer from hypoka-
lemic alkalosis due to self-induced vomiting and the 
abuse of purgatives (1). Moreover, an electrocardio-
gram reflects a flattening and inversion of T waves, 
depression of ST segment and lengthening of QT in-
terval in the emaciated stage (1). Rare complications 
like gastric dilation and superior mesenteric artery 
syndrome have also been noted (1). 

EPIDEMIOLOGY 

AN is common between the ages of ten to thirty 
years, with the greatest incidence seen at seventeen to 
eighteen years of age (1). The prevalence of AN is 
between 0.3-0.6% (8,9) with a mortality rate of 5-18% 
per decade, possibly due to cachexia and suicide 
(1,10,11). A survival analysis performed by Carter JC 
et al. (2004) demonstrated an overall relapse rate of 
35% and mean survival time of eighteen months (12). 
The high risk period for relapse was defined between 
six to seventeen months after discharge (12). Key 
predictors for relapse were history of previous treat-
ment, history of suicide attempt, associated OCD 
symptoms at presentation, concern for body image at 
discharge and initiation of excessive physical activity 
after discharge (12). Moreover, Talbot Y (1983) re-



Int. J. Med. Sci. 2011, 8 

 

http://www.medsci.org 

681 

ported a cure rate of 70% (13). Recent sources have 
suggested that 75-85% of anorexics are likely to fully 
recover (14). This estimate would increase to 90% if 
patients undergoing profound recovery were to be 
included (14). In addition, AN is a female dominant 
disorder. For every one to three males, nine females 
have shown to suffer from AN (8,9).  

Traditionally, AN was a disorder giving equal 
emphasis on the biological, psychological and socio-
logical dysfunction. However, recent evidence has 
found a higher predilection towards the biological 
perspective, shifting from the bio-psycho-social mod-
el to the biological model. Twin studies have sug-
gested a moderate to high heritability (50-85%) of AN 
(15-19). In support, an adoption study performed by 
Klump KL et al. (2009) found similar findings 
(59-82%) (16), while other studies also showed herita-
bility of 70% (9,20).  

Furthermore, research on AN has looked into the 
dysfunction of various neuropeptides at the level of 
the central nervous system (CNS) and the peripheral 
nervous system (PNS). Therefore, this paper will re-
view the evidence supporting the implications of cor-
ticotrophin-releasing factor (CRF), opioid peptides, 
ghrelin and leptin in the pathogenesis of AN. 
Uniquely, this paper will take an integrative approach 
to bring this evidence together to propose a more ho-
listic and complete model for AN.  

STARVATION MODEL 

It is essential to understand the physiology of 
starvation to better understand AN. Many effects of 
AN are regulated through the starvation response. 
The starvation response consists of three phases (21). 
Phase one is the period when the consumed meal has 
been digested and the body has entered the 
post-absorptive phase (22). The first phase is brief and 
usually does not store any glucose or glycogen for 
energy (22). The total body glucose and glycogen 
stores are four hundred eighty grams, which are usu-
ally exhausted within twenty-four hours (23). Phase 
two becomes prominent when glycogen stores com-
pletely deplete. A greater mobilization of fat is seen 
during this stage. This stage is responsible for many of 
the physiological and biochemical alterations in the 
body (22). Increase in free fatty acids (FFA) lead to an 
increase in the peroxisome proliferator-activated re-
ceptor (PPAR)-α and PPAR- ɣ (24,25). Next, PPAR-α 
increases levels of fibroblast growth factor-21. Fibro-
blast growth factor-21 mediates growth hormone 
(GH) resistance and reduces (insulin-growth-factor-1) 
IGF-1 levels (26,27). Further, if starvation continues, 
the fat stores exhaust and the body enters phase three 
of starvation. During this phase, there is a breakdown 

of muscle tissue and the amino acids liberated are 
used in the formation of glucose for maintaining brain 
function. This is called “protein wasting” (21,28). 
Therefore, adapting to starvation involves reducing 
energy expenditure by suppressing metabolic rate, 
body temperature and delaying growth/reproduction 
(29-31). 

CRF MECHANISM  

CRF is a 41-amino acid hypothalamic peptide 
vital for regulating adrenocorticotrophic hormone 
(ACTH) secretion (32-34) and neuroendocrine and 
behavioral stress-related responses (35-39). Numerous 
studies have demonstrated many visceral and be-
havioral effects of CRF (40). CRF has shown to acti-
vate the hypothalamo-pituitary-adrenal (HPA) axis 
and other various parts of the brain, specifically, the 
limbic system (34,37,38,41). Autoradiography has 
identified CRF receptors in the CNS and the PNS 
demonstrating various physiological actions of CRF 
(40).  

Central and Peripheral Effects of CRF 

CRF is governed by two groups of receptors, 
CRF1 and CRF2, belonging to the seven transmem-
brane family of receptors (42-44). The CRF1 receptors 
are found in the cerebral cortex and the anterior lobe 
of the pituitary gland mediating anxiogenic effects of 
CRF (45-54), while the CRF2 receptors have been 
found in the ventromedial hypothalamus (VMH) and 
the paraventricular nucleus of the hypothalamus 
(PVNH) (34). In addition, CRF-containing cell bodies 
have been identified in the PVNH with projections to 
the median eminence (55,56). Moreover, three splice 
variants of the CRF2 receptor, α, β and ɣ, have been 
recognized (57-60). The CRF2-α receptor, abundantly 
expressed in the hypothalamus and the limbic system, 
mediates anxiety, depression and feeding behavior 
(61), while CRF2-α protein and mitochondrial ribo-
nucleic acid (mRNA), densely present in the septum, 
regulates emotional responses of fear, anxiety and 
aggression (62,63).  

Moreover, CRF is also present in the nucleus 
accumbens, lateral hypothalamus, parabrachial nu-
cleus and dorsal motor nucleus of the vagus, regulat-
ing control pathways for nutrient intake, independent 
of pituitary control (55,64,65). In addition, CRF is also 
found in those areas of the limbic system that control 
the central autonomic function (56,66-68).  

The amygdala is responsible for causing reac-
tions of arousal, attention, fear and rage associated 
with sympathetic nervous system (SNS) activation 
(69). Similar reactions have been observed after ad-
ministrating CRF intracerebroventricularly (32). 
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Therefore, the amygdala and the presence of CRF 
receptors are an important topic of discussion in AN. 
CRF receptors are densely located along the pathways 
to the frontal, orbital, cingulated, temporal and insu-
lar cortices (40). Moreover, the connections between 
the amygdala and the cortices are both afferent and 
efferent. Afferent connections are from the locus co-
eruleus, hypothalamus and dorsomedial thalamic 
nucleus, while the efferent connections are from the 
dorsomedial thalamic nucleus, nucleus stria termi-
nalis, preoptic area, septal regions and the arcuate 
nucleus of the hypothalamus (ARCH), all of which 
contain CRF receptors (40). The other areas of the 
limbic lobe, such as, the cingulated, parahippocampal 
cortex and the hippocampus, all contain high concen-
trations of CRF receptors and are closely related to the 
hypothalamus and the neocortex (70).  

The CRF receptors of rats and monkeys are 
found in the preoptic area and the ARCH, and have 
shown to regulate gonadotropin secretion (40). When 
CRF was injected into the ARCH and VMH of female 
rats, there was a decline in luteinizing hormone levels 
and inhibition of sexual behavior, suggesting that 
CRF mediates sexual behavior (71). Similarly, these 
observations were also seen in humans during condi-
tions of prolonged stress (40).  

Claes SJ (2004) suggested, “corticotrophin re-
leasing hormone (CRH) is the most important hypo-
thalamic peptide that controls HPA axis activity” (72). 
Intracerebroventricular administration of CRF to rats, 
dogs and monkey’s activated both the HPA axis and 
the SNS, with visceral, metabolic (32,33,73) and be-
havioral changes (32,74). A study on CRH gene 
knockout demonstrated the impairment of the HPA 
axis function in mice (75). 

Moreover, the locus coeruleus is connected to the 
hypothalamus, hippocampus, cerebral cortex, olfac-
tory bulb, cerebellum and the spinal cord (40). Valen-
tino RJ et al. (1983) noted the activation of local neu-
rons when CRF was injected into the locus coeruleus 
of rats (76). Therefore, the locus coeruleus plays an 
“integrative role” within the CNS, endocrine system, 
autonomic system and the behavioral system due to 
its various connections and the presence of immuno-
reactive CRF and CRF receptors (40). This also sug-
gests that CRF plays the role of a common neural 
transmission mediator (40).  

Immunoreactive CRF and its receptors have 
been identified in peripheral tissues like the adrenal 
medulla and have shown to regulate the SNS (77-79). 
Activation of these CRF receptors affects the secretory 
activity of adrenal glands (40). Udelsman R et al. 
(1986) demonstrated that incubating CRF-containing 
cells for 24 hours resulted in dose-dependent stimu-

lation of epinephrine, noradrenaline (NA) and 
met-enkephalin (80).  

OPIOID PEPTIDES 

Opioid peptides are responsible for adaptation 
and regulation of energy intake and utilization 
through reward-mediated behavior (81). They are the 
key mediators of hedonic balance and emotional re-
sponse in food choice and intake (82).The opioid pep-
tides, β-lipotropin (β-LP) and β β-endorphin (β-EP) 
are pro-opiomelanocortin (POMC)-derived and help 
regulate reward-mediated behavior (83,84). Another 
opioid peptide, dynorphin, a precursor of protein 
prodynorphin (83,84), maintains homeostasis through 
appetite control and circadian rhythms (83).  

Types of opioid peptides 

Opioid peptides are categorized as δ, µ and κ. 
These opioids occupy the nucleus tractus solitarius, 
PVNH, VMH, amygdala, the perifornical area, nu-
cleus accumbens and the forebrain regions (85-87). 
While µ and κ opioids regulate reward-mediated be-
havior, δ opioids are involved in self-stimulation (88).  

GHRELIN 

Ghrelin is an important gastrointestinal peptide 
hormone synthesized and secreted by the X/A-like 
cells in the oxyntic glands of the gastric fundic mucosa 
(89) and proximal small intestine (90). Ghrelin is an 
essential “hunger” hormone secreted during starva-
tion (91). It regulates energy homeostasis by signaling 
the CNS to increase food intake and reduce energy 
expenditure (90,91). Ghrelin secretion occurs in a 
pulsatile manner, starting with a gradual pre-prandial 
rise, later peaking at meal initiation and finally re-
ducing to baseline levels one hour after food intake 
(92-95). In sum, ghrelin secretes in response to re-
duced gastrointestinal content and returns to baseline 
levels upon food intake (92).  

Ghrelin appears as a 117-amino acid 
pre-prohormone which breaks down 
post-translational into a 28-amino acid peptide (96) 
and acylates at its serine-3-residue by ghrelin 
O-acyl-transferase (GOAT) (97,98). Two forms of 
ghrelin have been identified, the active (acyl ghrelin) 
and inactive (des-acyl ghrelin) forms (99). When acyl 
ghrelin is released into the circulation, it lives a 
half-life of thirty-minutes and subsequently converts 
into its inactive form (99). Moreover, ghrelin presents 
as an endogenous ligand for the GH secretogogue-1a 
receptor in the hypothalamus and pituitary gland 
(90,100,101).  

Ghrelin plays an essential role in feeding be-
havior. During meal initiation, ghrelin directly acti-
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vates the medial ARCH neurons (102). 
Ghrelin-mediated stimulation of the hypothalamic 
GH secretogogue-1a receptor results in an anabolic 
response. This is evident by the exaggerated release of 
orexigenic peptides, neuropeptide Y (NPY) and 
agouti-related protein (AgRP), leading to an increase 
in food intake and decrease in energy expenditure 
(103-105). 

Moreover, ghrelin stimulates the secretion of GH 
from the anterior pituitary gland with an indirect re-
lease of IGF-1 (90,106,107). Together, GH and IGF-1 
help maintain lean body mass through anabolism 
(108-110). But in catabolic conditions like AN, GH 
encourages lipolysis and decreases glucose and pro-
tein oxidation in order to preserve lean body mass 
(109). 

Injections of exogenous ghrelin have shown to 
increase the adiposity in rodents through its orexi-
genic effect (111-114). Similar findings are also 
demonstrated in humans through stimulation of ap-
petite in the healthy and chronically-ill individuals 
(107,115,116). At pharmacological doses, ghrelin in-
creases prolactin, ACTH and cortisol secretion (106). 
Lastly, episodes of food intake directly correlate with 
the levels of endogenous ghrelin (117) in both humans 
(94) and rats (118). 

LEPTIN 

 Leptin is a four-helical structure consisting of 
167-amino acids. It is analogous to a cytokine and is 
also known as a “prototypical adipokine” (119,120). 
Although, largely produced in the adipose tissue, 
leptin is expressed in various tissues like the placenta, 
ovary, mammary epithelium, bone marrow and 
lymphoid tissue (121,122).  

Leptin secretion follows a circadian rhythm with 
the greatest secretion seen between midnight to early 
morning and lowest during early-to-mid-afternoon 
(123-125). Leptin has shown to suppress appetite by 
inhibiting NPY gene expression at the ARCH (126). 
Moreover, leptin concentrates directly correlate with 
the amount of adiposity in an individual, generally 
low during starvation and high in obesity (127). 
However, sudden changes in food intake, especially 
energy deprivation, results in wide fluctuation in the 
levels of leptin (128-130).  

Moreover, females demonstrate greater plasma 
leptin concentrates than males, but these levels sig-
nificantly decline after menopause (131). These dif-
ferences are largely independent of body mass index 
(BMI), but can be attributed to differences in sex 
hormones, fat mass and body fat distribution 
(131-133). In addition, females tend to accumulate 
more peripheral amounts of body fat, while men ex-

hibit an android distribution of fat. As a result, higher 
concentrates of leptin mRNA have been identified in 
the subcutaneous fat, but are scarcely present in the 
omentum (133,134). Therefore, this gives insight into 
why higher leptin levels are observed in females.  

 Leptin exerts its action through binding at the 
ObRs receptor in the CNS and at various peripheral 
tissues (135). Six isoforms of the ObRs receptor have 
been identified, ObRa, ObRb, ObRc, ObRd, ObRe and 
ObRf (136). Isoforms, ObRa and ObRc are vital in 
transporting leptin across the blood-brain barrier 
(137,138), while ObRb is primarily involved in leptin 
signaling (136,137,139). ObRb is chiefly demonstrable 
in the hypothalamus, regulating energy homeostasis 
and neuroendocrine function (135,140). 

NEURO-PERIPHERY MECHANISMS OF 
ANOREXIA NERVOSA 

CORTICOTROPHIN-RELEASING FACTOR 

Physiological Perspective 

Existing literature has attributed AN to the dys-
function of the CRF mechanism, with increased levels 
of CRH (141). Hotta et al. (1986) demonstrated high 
levels of CRF in the cerebrospinal fluid (CSF) of ano-
rexics (308). Moreover, starvation has shown to acti-
vate the HPA axis (142-145). However, over-activity 
of the axis has been demonstrated by Carol BJ (1980) 
in depressed individuals (146). CRF receptors of the 
cerebral cortex and the limbic system manifest the 
visceral and behavioral components of depression 
(40). The clinical features attributed to CRF dysfunc-
tion and HPA-axis hyperactivity are: excessive phys-
ical activity, suppressed reproductive hormones re-
sulting in decreased sexual behaviour and amenor-
rhea, cardiovascular changes like hypotension and 
bradycardia, anxiety, blunted social interaction, in-
creased vigilance and altered immune system func-
tion (147-149). CRF has also shown to reduce food 
intake (39,149,150) and blunt weight gain 
(39,73,151-154), affecting both energy intake and uti-
lization. However, Krahn et al. (1990) demonstrated 
that a persistent elevation of CRH was required to 
cause an AN-like syndrome, and an intermittent ele-
vation had no effect (39). Anorexics possibly differ 
from healthy individuals in being unable to adapt to 
CRH elevations (39).  

Smagin GN et al. (1998) found that CRF2 and not 
CRF1 antisense administration attenuated the effect of 
CRF on appetite (155). Urocortin (UCN), a 
CRH-related neuropeptide, demonstrates 20-40 times 
higher natural affinity to CRF2 receptors than CRF 
itself, resulting in suppression of appetite, independ-
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ent of the HPA-axis and glucocorticoid release 
(156,157). Therefore, when dissociated from the pitu-
itary, agonists to the CRF2 receptors have shown to 
suppress appetite, while the antagonists have shown 
to enhance appetite. 

Cullen MJ et al. (2001) studied the effects of an-
tisauvignine-30 (ASV-30), a CRF2-selective antago-
nist, on energy balance through the central infusion of 
CRF and UCN (44). Consequently, central infusion of 
CRF resulted in a negative energy balance attributed 
to decreased food intake and increased SNS activity. 
However, UCN only showed a minimum effect ac-
counted by reduced food intake and nil involvement 
of the SNS. On the other hand, ASV-30 reversed the 
effects of both CRF and UCN by increasing food in-
take. However, ASV-30 failed to alter the effects of 
CRF on the HPA-axis variables like levels of corti-
costerone, increased adrenal weight, reduced thymus 
and splenic weight. Also, ASV-30 had a selective af-
fect on CRF2 receptors, but demonstrated no meta-
bolic effects of CRF (44). Moreover, Bornstein SR et al. 
(1998) suggested the role of CRH2 receptors in the 
anorexic effect of CRH through antalarmin admin-
istration, a CRH1 receptor antagonist (151). Finally, a 
series of other studies have demonstrated this rela-
tionship by performing an adrenalectomy in genet-
ically obese animals. Results indicated that an in-
crease in endogenous CRF in such animals resulted in 
reduced food intake and increased sympathetic activ-
ity (158-161).  

Several studies have found a negative correlation 
between food intake and sympathetic activity 
(158,162,163). As a result of sympathetic innervation, 
brown adipose tissue (BAT) has the ability to undergo 
non-shivering thermogenesis, resulting in weight loss 
of CRF-infused rats. Sympathetic stimulation elevates 
norepinephrine, increases heart rate and releases 
glucocorticoids (164-171). Sympathetic stimula-
tion-induced-lipolysis is supported by a rise seen in 
the levels of cholesterol, triglycerides and FFA in the 
circulation (158,162,163). More importantly, the sym-
pathetic mechanism of the BAT functions inde-
pendently of other bodily tissues (158,162,163). 

Other studies have looked at CRF in the reverse 
relationship between food intake and energy utiliza-
tion, mediated by the SNS (44). Arase K et al. (1988) 
explored the acute and chronic effects of CRF infusion 
in the third ventricle of rats (149). Acutely, CRF re-
duced food intake, but significantly increased sym-
pathetic activity, while chronically, a prolonged but 
steady loss in weight was noted (149). Arase K et al. 
(1988) demonstrated that food intake and sympathetic 
stimulation were reciprocally-related when exploring 
the diurnal rhythm between both groups of rats (149). 

Moreover, rats under CRF-treatment demonstrated a 
low fat pad weight, suggesting that fat and muscle are 
possible sources of tissue loss under CRH-treatment. 
However, Cullen MJ et al. (2001) put forth that fat pad 
weight was an insensitive measure (44) and carcass fat 
is what was actually reduced after chronic central 
CRF infusion (172). 

CRF in Conditioned Fear 

An important component of AN is persistent 
fear. This fear is irrational and conditioned to weight 
gain. The model described for fear involves the for-
mation of memory after an acute stressful event 
(173-175). The CRF released into the HPA-axis as a 
result of stress, further requires an interplay of several 
molecular processes (176) and hippocampal CRF re-
ceptor activation (173) for the formation of memory. 
As depicted in Figure 3, memory formation requires 
the interaction of two core signaling pathways, cyclic 

adenosine monophosphate -dependent protein ki-
nases (PEK) and mitogen-activated extracellular sig-
nal-regulated kinases (Mek-1/2) (177-179). El-
liott-Hunt CR et al. (2002) demonstrated that CRF 
helps in the activation of both PEK and Mek-1/2 
through CRF1 and CRF2 receptors (180-182), and in-
creased expression of CRF2 mRNA was shown to 
promote associative and stress-enhanced learning 
(176).  

Radulovic et al. (1999) found that injecting a 
nonselective CRF receptor antagonist, astressin, pre-
vented the augmentation of fear conditioning (173). 
However according to Sananbenesi F et al. (2003), 
administering a selective CRF2 receptor antagonist, 
ASV-30, prevented fear conditioning after an acute 
stressful event (176).  

Moreover, Ho et al. (2001) further evaluated the 
role of CRF2 receptors in fear conditioning by ob-
serving the shock-induced freezing response (61). 
Rats, treated with antisense oligonucleotides for 7 
days, showed a 60-80% reduction in the overall effect 
of CRF2 receptors. Analgesic tests were used to con-
trol for loss of pain sensation. Therefore, inhibition of 
the CRF2 receptors in the lateral septum was shown to 
significantly reduce contextual fear conditioning (61). 
In addition, Hammack et al. (2003) also suggested that 
CRF2 receptors in the dorsal raphe were probably 
involved in the stress-mediated fear conditioning 
(183).  

Nevertheless, it is important to consider the in-
volvement of the amygdala in the formation of 
CRF-induced emotion arousing memories. The baso-
lateral complex (BLA) and central nuclei of the 
amygdala have projection neurons with densely pop-
ulated CRH receptors (184-186). Roozendaal B et al. 
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(2002) found that injecting a CRF antagonist, α-helical 
CRF, in the BLA of the amygdala immediately 
post-training resulted in dose-dependent inhibitory 
avoidance retention impairment (175). Therefore, this 
suggests that the antagonist interfered with memory 
formation at the level of the BLA. In conclusion, the 
hippocampus, amygdala, lateral septum and dorsal 
raphe work collectively in the process of CRF-induced 
fear conditioning. Further, this sheds light upon the 
potential pharmacological interventions for treating 
fear complexes in AN.  

Hypercortisolemia 

Hypercortisolemia with elevated CRH is com-
monly seen in protein-caloric depleted anorexic pa-
tients (2). Hypercortisolemia is associated with exces-
sive fear, atherosclerosis, osteoporosis and decreased 
immune function (72). Elevated cortisol has shown to 
suppress the mesolimbic-doparminogenic system 
(172), responsible for the reward-mediated behavior 
(187). Cortisol also regulates the negative feedback 
mechanism for CRH secretion. Possibly, the intense 
fear seen in AN can be explained by the rise in CRH 
and cortisol levels.  

Psychological Perspective 

Heinrichs et al. (1993) studied the mechanism of 
CRF-mediated feeding and proposed that NPY and 
CRF work collectively to regulate feeding behavior 
(188). CRF and endogenous NPY were found to work 
in opposite directions in modifying the behavioral 
and physiological effects of AN (189-192). Moreover, 
NPY has found to be most potent when injected 
nearby to the CRF neurons at the PVNH (193-196) and 
during HPA-axis activation (197-198). NPY has also 
shown to potentiate feeding through a negative glu-
cocorticoid feedback mechanism and by a direct re-
ceptor antagonism at the PVNH (188). High levels of 
NPY and greater mRNA expression in the NPY neu-
rons have been demonstrated in food deprived rats. 
However, these levels return to baseline upon 
re-feeding (189-201). Many behavioral studies have 
observed a psychological basis of how NPY invokes 
feeding behavior. It has been thought that NPY helps 
motivate eating. Therefore, dysfunctional NPY with 
CRF function influence the nature of feeding observed 
in AN, resulting in psychological alterations like, mo-
tivation towards dieting, psychosocial influences and 
stress (2).  

Moreover, CRH production takes place at both 
the hypothalamus and the amygdala. CRH from the 
hypothalamus is reactive to the physiological aspects 
of AN, while that from the amygdala is reactive to 
psychological stress (72). Since AN consists of both a 

physiological and psychological component, this im-
plies that CRH from both the hypothalamus and 
amygdala are responsible for anorexic behavior as a 
function of stress. Further, Kaye WH (1996) found a 
correlation between depression and CRH in those 
individuals that were psychologically dissatisfied 
with their weight, and not in subjects of constitutional 
thinness (SOCT) (2). In support, Pacak et al. (2002) 
also looked at depressed individuals with suicidal 
tendencies and demonstrated high levels of CRH in 
the locus coeruleus, median raphe and caudal dorsal 
raphe by 30%, 39% and 45%, respectively (172).  

OPIOID PEPTIDES 

Neurological Perspective 

Opioids are responsible for regulating feeding 
behavior (81). Hubner HF (1993) found that adminis-
tering naloxone (opioid antagonist) to anorexics re-
sulted in weight gain, suggesting that opioids were 
potential mediators of anorexic behavior (202). A 
study by Abbate-Daga G et al. (2007) compared opi-
ate-addicts to anorexic men and found similarities in 
the following personality traits: anxiety, fearfulness 
and antisocial features (203). However, there were 
distinct differences between both groups. Anorexic 
men displayed a higher persistence, but a low re-
ward-dependence, while opiate-addicts were high 
novelty seekers and scored better on 
self-transcendence (203). Therefore, key differences in 
the pathogenesis of opiate-addiction and AN do 
clearly exist. Furthermore, an atypical endogenous 
opioid system seems to be present in anorexics, thus 
biologically predisposing them to develop AN (204). 
As discussed earlier, this supports the high heritabil-
ity of AN, and suggests that the psychological com-
ponent of AN is perhaps biologically-determined.  

 Lesem et al. (1991) observed that CSF levels of 
dynorphins were at normal values during all stages of 
AN (2). Moreover, opioids like β-EP are considered 
important in symptom perpetuation and relapses seen 
in AN. However, β-EP levels have shown to normal-
ize after weight gain (202,205-207). Studies have also 
found a normal to reduced β-EP level in the CSF of 
anorexics (208). Hubner HF (1993) suggested that 
β-EP levels exhibit a biphasic effect on food and 
weight regulation (202). Therefore, both low and high 
levels of β-EP have shown to inhibit feeding (2,141). 
Kaye WH et al. (1987) further concluded that low lev-
els of β-EP persist, but as patients recover, β-EP levels 
also normalize (206). Moreover, while low levels of 
plasma β-EP have been demonstrated in anorexics 
(84, 209), Tepper et al. (1992) found a significantly 
elevated level of β-EP in AN (210). In addition, Bram-
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billa F et al. (1991) have demonstrated elevated levels 
of β-LP in anorexics (209).  

To add to this phenomenon, Brambilla F et al. 
(1991) studied the dynamic peripheral secretion of 
β-EP and β-LP in AN (209). It was observed that both 
peptides were constantly elevated over a 24-hour pe-
riod, particularly during the night (209). This suggests 
the involvement of the POMC system. However, a 
disassociation in the secretion of β-EP and β-LP was 
noticed, where β-EP was secreted only during the 
early hours of the night, and β-LP was secreted both 
during the day and at night (209). This implies that 
independent sources and regulatory methods for both 
peptides exist (209). Furthermore, studies have found 
an intermediate layer that exists in the human pitui-
tary between the anterior and posterior lobes. This 
layer contains β-EP staining cells that have shown to 
increase during physiological and pathological con-
ditions. Therefore, the disassociation between both 
peptides is possibly due to secretion from an alternate 
focus (209,211,212). In support, Brambilla F et al. 
(1991) concluded that the anterior pituitary POMC 
hypersecretion was due to starvation (209). However, 
β-EP has no such relation. Also, β-LP, not β-EP, was 
linked to weight loss, suggesting that β-EP secretes 
from an alternate focus (209). All in all, eating disor-
ders which range from obesity to AN have three 
dysfunctional components affecting hunger and sa-
tiety: abnormal levels of peripheral β-EP and β-LP 
secretion, dysfunctional circadian rhythm and POMC 
peptide disassociation (209). 

 Brambilla F et al. (1991) also observed disruption 
in the normal rhythmicity of β-EP and β-LP secretion, 
while cortisol secretion continued to follow a normal 
pattern (209). This further supports the disassociation 
seen in the POMC-derived peptides, suggesting a 
disassociation of the hypothalamic and suprahypo-
thalamic function (209). 

Moreover, Glass et al. (2003) experimented with 
rats and provided evidence on the effect of different 
opioids on deprivation-induced feeding (213). When 
δ2-opioid antagonist, naltrindole isothiocyanate, was 
injected into the ventral tegmentum, depriva-
tion-induced feeding showed insignificant changes. 
However, when κ antagonist, norbinaltorphimine was 
injected, deprivation-induced feeding significantly 
declined. Similarly, µ opioids demonstrated the most 
significant decline in food intake among all opioids 
(213). Since there was a profound reduction in food 
intake, this implies that AN is perhaps due to the 
malfunction of the facilitation of reward system me-
diated by the antagonistic κ and µ opioids (213). 
Moreover, the CSF of wasted anorexics has shown 
high levels of those substrates that are mediated 

through the µ receptors (207). Certain antagonistic δ 
receptors have also shown a statistically significant 
effect on reduced food intake. Moreover, 
self-stimulation plays a role in regulating anorexic 
behavior. An opioid antagonist, naltrexone alleviates 
symptoms of AN. This produces an opposite reaction 
where the perifornical lateral hypothalamus creates 
an expression of self-stimulation and further pro-
motes the “hunger” response (88).  

Pharmacological Perspective 

Ciccocioppo R et al. (2004) provides insight into 
a potential pharmacological drug with anti-anorexic 
effects (214). Researchers found that neuropeptides, 
nociceptin/orphanin FQ (N/OFQ) and Ro 64-6198 
[synthetic nociceptin (NOP) receptor agonist], exhibit 
anti-anorexic properties (214). N/OFQ, structurally 
related to dynorphin A, binds to the NOP receptors in 
the brain (215,216). When rats were injected three to 
four micrograms of N/OFQ intracerebroventricularly 
and two and half milligrams/kilogram of Ro 64-6198 
intraperitoneally, they fed at an abnormally high rate 
(214). Moreover, the effects of N/OFQ along the dif-
ferent sects of the CRF mechanism have been ex-
plored. Injecting N/OFQ at the VMH (0.5 Ag/site), 
the PVNH (0.5 Ag/site), the central nucleus of the 
amygdala (0.5 Ag/site), the locus coeruleus and the 
dorsal raphe nucleus (1.0 Ag/rat) demonstrated no 
change in anorexic behavior (214). However, injecting 
0.025–0.25 Ag of N/OFQ in the bed nucleus of the 
stria terminalis in mice diminished the anorexic be-
havior (217). Gene knockout experiments performed 
on mice also demonstrated a high level of reaction to 
stress in the absence of the N/OFQ gene (218). 
Moreover, the medial section of bed nucleus of the 
stria terminalis has been associated with the emo-
tional aspects of stress (214). In conclusion, future 
drugs should focus on the NOP receptor system with 
drugs similar to N/OFQ and Ro 64-6195 for the 
treatment of AN.  

Psycho-bio-evolutionary perspective 

The mechanism proposed by Yeomans MR et al. 
(2002) provides a psycho-neurochemical under-
standing of the opioid system in AN (81). According 
to the model, AN initially begins with dieting. This 
leads to a release of opioids and produces a pleasant 
mood. The second part of the model operates inde-
pendently and counteractively from the first where 
the desire to eat inclines, in order to balance the initial 
self-induced starvation. Finally, the third step in-
volves adapting to starvation by reducing energy 
output (81). In AN, the first and final steps dominate, 
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so that the individual becomes addicted to dieting 
and adapts to starvation (88).  

Moreover, Davis C et al. (1998) studied the act of 
self-starvation, aggravated by physical exercise (219). 
This, itself, is thought to be an addiction to the en-
dogenous opioid system (219). On the Eysenck Per-
sonality Questionnaire’s addiction scale, anorexics 
seemed to score high, being similar to the scores of 
drug addicts and alcoholics. Anorexics also mani-
fested high levels of addictiveness and OCD traits 
towards weight loss and exercise. The auto-addiction 
opioid theory hypothesizes that “chronic eating dis-
orders are an addiction to the body's endogenous 
opioids” (219). Moreover, starvation and excessive 
physical activity have also shown to increase levels of 
β-EP, further stimulating dopamine in the mesolimbic 
reward centers (220,221).  

On the other hand, the opioid system involve-
ment in AN has thought to have undergone evolu-
tionary changes. Therefore, this suggests that AN is a 
result of opioid-mediated mechanisms that have 
helped animals and humans adapt to short-term food 
restrictions (81). This mechanism also helps reduce 
the psychological effects associated with food depri-
vation.   

GHRELIN 

During the acute stages of AN, ghrelin levels are 
distinctly elevated up to two-folds and return to 
normal levels after weight restoration (95,222-229). 
Several studies (Figure 1) have demonstrated a nega-
tive correlation between BMI and ghrelin levels 
(95,222,229,230). This reflects a state of negative en-
ergy balance. Moreover, fluctuations in the levels of 
ghrelin are not always influenced by food intake in 
AN. This suggests some impairment in the regulation 
of ghrelin (231), perhaps due to chronic adaptation to 
long-standing food restriction (232). 

A study by Tolle V et al. (2003) compared ghrelin 
levels and other nutritional parameters in anorexics 
and SOCT (229). In AN, patients demonstrated a lim-
ited intake of food, BMI <17.5 and reduced body fat, 

coupled with multiple endocrine changes like hyper-
cortisolism (233,234), hypothyroidism (235), amenor-
rhea (236), hypoleptinemia (127,237), hyperghreline-
mia (91) and alteration of the GH-IGF-1 axis with GH 
hypersecretion and low IGF-I (238,239). On the con-
trary, while SOCT and anorexics both displayed par-
allel BMIs, SOCT underwent normal menstruation 
and lacked the abnormal feeding behavior. This was 
further supported by a normal triiodothyronine level, 
a precise indicator of calorie restriction, in SOCT 
(229,240,241). In addition, SOCT exhibited results of 
other endocrine factors (17-β-estradiol, cortisol, GH 
and IGF-1) similar to the healthy control group. 
Therefore, these factors are possible indicators of AN 
(229). Moreover, the normal circadian rhythm in 
ghrelin secretion has been demonstrated in SOCT 
(229), as also earlier demonstrated in healthy indi-
viduals (94). However, this rhythmicity is absent in 
AN, with a maximal peak occurring only during the 
night (229). Moreover, intermediate levels of ghrelin 
have been observed in SOCT. This signifies that 
ghrelin partly depends on fat content. This is further 
supported by the negative correlation (Figure 1) seen 
between BMI and ghrelin levels (95,223,229). 

Moreover, circulating acyl-ghrelin is raised 
during all phases of an oral glucose tolerance test in 
AN (222,230). Further studies have described a much 
higher level of acyl-ghrelin in anorexics than their 
BMI-matched control group (225-229,242,243). This 
indicates that persistent hyperghrelinemia possibly 
impairs ghrelin sensitivity and contributes to the 
pathogenesis of AN (91). This can be compared to the 
leptin resistance observed in obesity where subjects 
are persistently hyperleptinemic (91). Furthermore, 
persistent hyperghrelinemia possibly impairs the 
GH/IGF-1 axis, resulting in elevated GH with a par-
adoxical fall in IGF-1 levels (244-247). Moreover, an-
other study in search of a theory behind “ghrelin re-
sistance” discovered the presence of naturally occur-
ring auto-antibodies to ghrelin (248).  

 
 

 

Figure 1: This diagram shows a gradient relationship between both ghrelin levels and body fat mass in a normal, SOCT and 

AN patients.  
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In physiological conditions, these au-
to-antibodies regulate ghrelin levels in plasma. 
However, Terashi M et al. (2011) found a significant 
drop in the levels of acyl-ghrelin immunoglobulin G, 
immunoglobulin M and immunoglobulin A au-
to-antibodies in anorexics, persisting to over a month 
after renutrition (248).  

Furthermore, many studies have explored the 
effects of ghrelin treatment in AN. In a study by Hotta 
M et al. (2009), six anorexic patients were intrave-
nously infused with three micrograms/kilogram of 
ghrelin two times daily for fourteen days (249). As a 
result, energy intake increased by 12-36% with re-
duced complains of epigastric discomfort and con-
stipation in four patients (249). Also, a significant in-
crease in hunger scores, evaluated by the visual ana-
logue scale, was observed. In another study by 
Broglio F et al. (2004), a bolus injection of intravenous 
ghrelin (one microgram/kilogram) brought out a 
feeling of hunger in six of the nine patients studied 
(250). In conclusion, ghrelin demonstrated no adverse 
side effects in the subjects (101,249), but rather it 
seemed to bring out beneficial changes. An increase in 
blood glucose levels were observed (251), supporting 
earlier results suggesting that ghrelin prevented death 
by maintaining normoglycemia in GOAT -/- mice 
during periods of starvation (252). 

Miljic et al. (2006) studied the effects of pro-
longed ghrelin infusion, using a five hour protocol, on 
appetite, sleep and neuroendocrine responses in ano-
rexics (101). As a result, such infusions were unable to 
bring forth normal GH and appetite responses. 
However, they suggested that a persistent alteration 
in the levels of ghrelin and GH response to ghrelin in 
a partially-recovered anorexic subject, implied per-
sistence of the eating disorder (101). Moreover, in-
creased sleepiness was observed after the fifth hour of 
infusion (101). In addition, previous studies have 
demonstrated the role of ghrelin in maintaining 
slow-wave sleep in humans (253). However, sleep 

curtailment has shown to limit the secretion of both 
ghrelin and GH (254-256). 

LEPTIN 

Leptin exerts its action through binding at two 
different groups of neurons at the ARCH. The pe-
ripheral peptide accesses its receptor (ObRb) through 
a modified blood brain barrier (257). Binding to the 
ObRb receptor, the neurons are immediately excited 
and result in secretion of POMC, a protein that further 
disintegrates into α-melanocyte stimulating hormone 
(α-MSH) (258). α-MSH, an anorexigenic neuropep-
tide, activates the melanocortin-4 (MC4R) and mela-
nocortin-3 (MC3R) receptors and reduces food intake 
(259,260,261). In addition, secretion of POMC leads to 
cocaine-and amphetamine-regulated transcript 
(CART), which further suppresses appetite (262). On 
the contrary, leptin inhibits the AgRP and NPY neu-
rons, shown to express orexigenic neuropeptides 
(260). While AgRP has shown to hinder 
α-MSH/MC4R signaling (261,263), NPY increases 
food intake and decreases energy loss (264,265). 
Moreover, the ARCH accounts for only 15-20% of 
ObRb receptors in the CNS (261,266). Another crucial 
site for leptin action is at the VMH. Two anorexigenic 
neuropeptides, steroidogenic factor-1 (SF-1) and 
brain-derived neurotrophic factor are secreted when 
leptin binds to the VMH (265,267). SF-1 is a transcrip-
tion factor essential for the development of the VMH 
(265,267), while brain-derived neurotrophic factor, a 
neurotrophin, supports brain growth and controls 
food consumption (268). 

Furthermore, Tolle V et al. (2003) demonstrated 
significantly low levels of leptin over a twen-
ty-four-hour sampling period in anorexics (229). 
However, these levels returned to baseline upon re-
nutrition (127,229,237,269-271). As demonstrated in 
Figure 2, intermediate levels of leptin are found in 
SOCT, falling in between AN and the healthy control 
group (229). 

 

 

Figure 2: This diagram shows a gradient relationship between both leptin levels and body fat mass in a normal, SOCT and 

AN patients. 
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Moreover, body fat mass directly correlates with 
leptin levels (272,273). Even though anorexics and 
SOCT follow parallel BMIs, the body composition of 
the latter group corresponds better with the control. 
In AN, an excessive diminution of body fat mass is 
undoubtedly seen. Since SOCT exhibit a greater net 
body mass than that of anorexics, the intermediate 
levels of leptin evidently correspond better with 
SOCT (Figure 2) (229). Moreover, a partial recovery in 
weight demonstrates an inverse relation between lep-
tin levels and relapse after a one year follow-up (274). 
In recent weight-recovered anorexics, leptin levels 
were found to be greater than of their BMI-matched 
control group. Therefore, this poses difficulties in the 
further treatment of AN (237,274,275). Moreover, 
Holtkamp et al. (2003) demonstrated a negative cor-
relation between leptin levels and scores for motor 
restlessness (276). As a result, pre-clinical and clinical 
studies have supported hypoleptinemia as the key 
factor underlying exaggerated physical activity in AN 
(277).  

SEX DIFFERENCES IN THE CRF, 
OPIOIDS, GHRELIN AND LEPTIN 

Understanding the sex differences within the 
CRF and opioid mechanisms helps stratify their ef-
fects in AN. A study by Rivest S et al. (1989) explores 
the effects of sex differences on energy balance (164). 
When CRF, representing stress/exercise (278-280), 
was infused intraventricularly over fourteen days, 
food intake (protein and fat gain), body weight and 
energy were reduced in male rats. However, no such 
changes were seen in females (164). Moreover, the 
male and female sex hormones, testosterone and es-
trogen, respectively, are important for mediating CRF 
and sex differences. The estrogen receptor 1 and es-
trogen receptor 2 genes, coding for estrogen α and β 
receptors, are located with CRF and co-regulate its 
expression (281,282). In addition, Versini A et al. 
(2010) associated estrogen receptor 1 gene with the 
RAN subtype (283). Moreover, same-sex and oppo-
site-sex twin studies further support the greater inci-
dence of AN in females (9,15-20). This is probably due 
to the intrauterine exposure of sex hormones. Also, 
while estrogen has shown to regulate feeding behav-
ior in females, testosterone has shown minimal effect 
in males (153).  

Administering a selective estrogen α-receptor 
agonist to ovariectomized rats led to decreased food 
intake and body weight (284). These agonists also 
produced varying effects of “social learning of food 
preference” (285). Furthermore, CRF demonstrates an 
inhibitory role on gonadotropin-releasing hormone, 
and subsequently gonadotropin in both sexes. This 

action is regulated through the opioid-mediated in-
hibiting action (286-288). Also, CRF reduces estrogen 
and limits its effect on anorexic behavior in females 
(289-292), suggesting that low estrogen encourages 
energy intake (289,293,294). Other studies have sug-
gested that both estrogen and progesterone inhibit 
feeding under basal (295,296) and inflammatory con-
ditions (297). Estrogen has shown to mediate inhibi-
tory signals for gastric distension and cholecystokinin 
during digestion (298). Moreover, Miller KK et al. 
(2005) suggests that testosterone attenuates the 
symptoms of AN (299), but other studies have 
demonstrated no effect between low testosterone level 
and food intake (153,300). In support, Leal et al. (1997) 
found no relationship between food restriction and 
diurnal variation of plasma testosterone and andros-

tenedione level in male rats (301). Therefore, the ad-
renal secretion of corticosterone less likely mediates 
the diurnal change seen in the male sex hormones. 
Moreover, many studies have shown sex differences 
in the sympathetically-driven BAT thermogenesis 
(301). They found that CRF infusion resulted in high 
levels of BAT protein in males, but no such effect was 
seen in females (301).  

Sex differences have shown to influence the 
functioning of the opioid system. This provides in-
sight into why AN is ten to twenty times more prev-
alent in females (1). Preliminary research on animals 
demonstrated that µ opioids are more potent in fe-
males and κ opioids are more potent in males. How-
ever, δ opioids demonstrated similar effects in both 
sexes (302). Therefore, further research is necessary to 
understand the sex differences in the effects of µ, κ 
and δ opioids. Moreover, a pharmacodynamic basis in 
the sex difference of the opioid mechanism exists. 
Pharmacodynamic differences include the distribu-
tion and density of opioid receptors at different areas 
of the brain. Research suggests that the male and fe-
male hypothalamus exhibit a significant difference in 
the density of opioid receptors. Accordingly, studies 
have found higher densities of µ opioids in the male 
hypothalamus. Gonadal hormones like estrogen have 
also shown to mediate the levels of opioid and opioid 
receptor concentration (302).  

Studies have shown that females who suffer 
through chronic illnesses experience early satiety, and 
present with a high anorexic response related to leptin 
and tumour necrosis factor– α (303,304). Gayle DA et 
al. (2006) supported the differential feeding regulation 
between male and female rats (305). The sex differ-
ences in the levels of ghrelin and leptin were studied 
through administering an orexigenic (calorie re-
striction) and anorexigenic (inflammatory) stimuli. In 
both instances, females showed a more positive and 
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stronger response than their male counterparts. In 
females, the orexigenic stimuli led to increased feed-
ing and high levels of plasma ghrelin, whereas the 
anorexigenic stimuli only led to a high plasma leptin 
level. In the inflammatory phenomena, the sex inter-
actions of cytokines, interleukin-1-β and tumour ne-
crosis factor-α with leptin and ghrelin further describe 
the differential feeding in males and females (305). 
Accordingly, cytokines have shown to increase leptin 
(306,307) and decrease ghrelin levels (308). Moreover, 
basal leptin levels are generally greater in females. 
Therefore, since high leptin levels are thought to be 
anorexigenic, this provides insight into why female 
prevalence is greater in AN. 

DISCUSSION 

The CRF, opioids, ghrelin and leptin mecha-
nisms operate collectively to demonstrate the under-
lying physiological and psychological changes in 
feeding behavior of anorexics (Figure 3). Moreover, 
these mechanisms have shown to overlap at the HPA 
axis. These interactions are complex and provide a 

holistic account for both the physiological and psy-
chological manifestations of AN. 

Firstly, the CRF mechanism plays a central role 
in AN. Literature has suggested that the dysfunction 
of the CRF mechanism plays a considerable role in the 
pathogenesis of AN (141). Its actions are broadly dis-
tributed within the CNS and PNS, accounting for the 
various visceral and behavioral manifestations of AN 
(40). The hyperactivity of the HPA axis, resulting in 
elevated CRF levels in the CSF (39), has been impli-
cated in the pathogenesis of AN (309). The hyperac-
tivity of the HPA axis results in a negative energy 
balance, disturbances in sexual function, cardiovas-
cular changes and mood disturbances (147-149). 
Moreover, CRF1 and CRF2 receptors have shown to 
mediate the actions of CRF (42-44). In specific, CRF2 
receptors have shown to mediate CRF actions of en-
ergy intake, independent of the HPA axis (155). The 
HPA axis-independent pathway functions through 
the CRF2 receptors, mediated by UCN (156,157). 
Therefore, CRF regulates energy balance through two 
independent pathways.  

 

 

Figure 3: Interaction of CRF, opioids, ghrelin and leptin mechanisms in AN. This diagram represents the key pathways 

involved in the spectrum of physiological and psychological symptoms of AN. 
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However, it is important to note the effect of 
each pathway on energy balance. The HPA ax-
is-dependent pathway acts at the central and periph-
eral level, producing a negative energy balance with 
activation of the SNS (32,33,73). While, the HPA ax-
is-independent pathway affects energy intake, it lacks 
peripheral activation (44). The implications of this 
dual relationship are two-fold. Both pathways have 
shown to regulate energy balance through CRF and 
UCN.  

However, in support of Baranowska B (1990), the 
CRF mechanism better accounts for the negative en-
ergy balance seen in AN (141). Therapeutically, both 
pathways need to be fully considered, overlooking 
either one could result in inadequate treatment of AN.  

Irrational and persistent fear is an important 
component of AN (1). The CRF mechanism plays a 
central role in forming a fear response (173). There are 
two HPA-axis related pathways, the independent and 
dependent pathways that have shown to regulate 
fear. Mediation of fear and memory formation occurs 
through an acute stress stimulus (173-175). Moreover, 
the hippocampus (173), amygdala (175), dorsal raphe 
(183) and lateral septum (61), work collectively to 
produce the fear response. The hippocampus helps in 
the formation of memory, as well as generates a fear 
response following an acute stress stimulus. At the 
hippocampus, CRF mediates its actions through both 
the CRF1 and CRF2 receptors (180-182). In addition to 
both the psychological (72) and physiological com-
ponents of the fear response, the amygdala is respon-
sible for arousal, fear and rage reactions through ac-
tivation of the SNS (310). Therefore, fear conditioning 
is not fully independent of the HPA axis. The activa-
tion of the SNS indicates partial HPA-axis involve-
ment. The effects of amygdala are perhaps mediated 
through the CRF1 receptors, since the CRF2 receptors 
have shown to be independent of the HPA axis. The 
functions of the dorsal raphe (183) and the lateral 
septum (61) are mediated by the CRF2 receptors. 
Moreover, the short-term fear response is regulated 
through the CRF1 receptors while the long-term fear 
response is regulated through the CRF2 receptors 
(176). Both receptors have shown to activate the initial 
signaling pathways (177-179), but only the CRF2 re-
ceptors promote associative and stress-related learn-
ing (176,180-182). Moreover, the hippocampus is in-
volved in both short-term and long-term effects of 
fear conditioning, through the action of CRF on both 
receptors, in the hippocampus. In addition, the hip-
pocampus has shown to consolidate short-term 
memories into long-term memories (311). CRF also 
regulates short-term and working memory, seen in 
fear conditioning, through the CRF1 receptor. There-

fore, long-term changes in memory are mediated 
through UCN, being the predominant agonist to 
CRF2 receptors. All in all, the hippocampus integrates 
the actions of both the CRF1 and CRF2 receptors to 
form durable memories. The interaction of the dorsal 
raphe and the lateral septum, through the CRF2 re-
ceptors, suggests their involvement in the long-term 
learning process of AN. 

Moreover, cortisol represents another 
CRF-mediated pathway involved in the fear response. 
This pathway is HPA axis-dependent. Claes SJ (2004) 
suggests that hypercortisolemia is linked with exces-
sive fear (72). However, it remains unclear if the fear 
induced by cortisol is qualitatively representative of 
the fear seen in AN. Based on the scarce evidence in 
support of cortisol involvement, it is expected that the 
HPA axis-independent pathway chiefly modulates 
fear in AN. 

The second component of the model is the opioid 
system (84). We must note the overlap of the opioids 
and CRF mechanism at the HPA axis, particularly at 
the PVNH. Opioid peptides regulate CRF through the 
NA system (312,313). When clonidine stimulates the 
NA system, a blunting of the β-EP and β-LP secretion 
is observed (209). This suggests sub-sensitivity at the 
postsynaptic NA receptor level (209).  

The locus coeruleus is involved in the sympa-
thetic stimulation mechanism through the release of 
NA during stress (314). The locus coeruleus, along 
with the other bodily systems, help regulate stress 
(40), and mediate CRF through the action of opioids. 
Interestingly, starvation inhibits the NA stimulation 
of CRF, leading to a depressed locus coeruleus 
(312,313). However, since stress is a component of 
AN, the locus coeruleus is probably activated. There-
fore, the possibilities are two-fold. Firstly, the effect of 
the locus coeruleus could be biphasic, and secondly, 
the discharge of NA could be from alternate foci. 
Since starvation reduces the secretion of ACTH and 
cortisol through the NA pathway (312,313), and hy-
percortisolemia has thought to be associated with AN 
(2), an alternate source of cortisol secretion is ex-
pected. Therefore, taking into account the biphasic 
effect of the locus coeruleus, therapeutic intervention 
in AN should be cautiously performed.  

Hypercortisolemia has shown to suppress the 
mesolimbic doparminogenic system (172), suggesting 
the involvement of antagonistic opioids in AN. This 
may have an effect on hypercortisolemia and mediate 
the reward-mediated and anorexic behavior. There-
fore, high levels of cortisol are probably a result of 
dysfunctional opioid peptides (141). Moreover, opioid 
agonists to the µ receptors may help alleviate symp-
toms of AN related to hypercortisolemia. In addition, 
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N/OFQ and Ro 64-6198 have also demonstrated an-
ti-anorexic effects (214).  

Moreover, it is essential that we also consider the 
reverse and more direct relationship between CRF 
and opioid peptides. The dysfunctional CRF mecha-
nism seems to directly affect the opioid system. First-
ly, this direct link could explain the inhibitory effect of 
CRF on gonadotropin-releasing hormone through 
opioid-mediated inhibiting action (286-288). This in-
teraction provides insight into the overlap seen be-
tween CRF and opioid peptides. Moreover, Brambilla 
F et al. (1991) observed a normal secretion of β-EP and 
β-LP after CRH stimulation in anorexics (209). The 
reasoning is two-fold. Firstly, this suggests a loss in 
rhythmicity of opioid secretion due to dysfunctional 
opioids at the level of hypothala-
mus/suprahypothalamus. Secondly, this provides 
insight into the location of the overlap between CRF 
and opioid peptides.  

The regulation of ghrelin adds another dimen-
sion to the pathogenesis of AN. It is important to dif-
ferentiate anorexics from SOCT. Germain N et al. 
(2007) concluded that SOCT were characterized by 
high peptide YY concentration, low ghrelin and 
low-to-normal levels of glucagon-like-peptide-1 and 
leptin, while anorexics demonstrated a low peptide 
YY, high ghrelin and low leptin concentration, sug-
gesting an orexigenic adaptive mechanism of appetite 
regulation in response to low food intake in AN (243). 
Regardless of an orexigenic profile, anorexics refuse 
any sort of food intake. This implies that “psycholog-
ical determinism” plays an important role (243). 
Moreover, the psycho-behavioral aspects of opioids 
emphasize the addictiveness of anorexic behavior. 
Therefore, both addictiveness and the element of fear 
should be considered in the suppression of the normal 
physiological response. Current evidence suggests 
that the physiological component outweighs the 
psychological component. However, according to the 
integration model proposed by this paper, the psy-
chological component seems to be an indispensible 
component of AN.  

According to Germain N et al. (2007), SOCT ex-
hibit an equilibrated energy metabolism, while ano-
rexics demonstrate a negative energy balance (243). 
While anorexics have a constant fear of gaining 
weight, SOCT put in all efforts towards gaining 
weight, and often overfeed with the same intent 
(243,315). Therefore, this suggests that low body 
weight is not an effective measure of AN. However, 
measures like body fat content and other nutritional 
parameters (discussed earlier), may be useful in dif-
ferentiating the two entities. Moreover, CRF and 
ghrelin also overlap at the hypothalamus. The high 

ghrelin levels result in high ACTH levels, and subse-
quently, hypercortisolemia (233,234). This suggests an 
additional pathway for fear conditioning. Moreover, 
the element of fear and its neurophysiology in AN can 
be understood by three distinct pathways: CRF, cor-
tisol and ghrelin. 

Ghrelin dysfunction provides an alternative 
mechanism in which low estrogen levels result in 
musculoskeletal disturbances in AN. Ghrelin dis-
turbances are also mediated through the HPA-axis. 
High levels of GH and low levels of IGF-1 result in a 
state of catabolism, which helps maintain the leanness 
of AN (108-110).  

Researchers have identified the role of leptin in 
dysfunctional feeding behavior. Leptin overlaps with 
CRF at the hypothalamus through NPY (260). Both 
leptin and opioids are involved in the secretion of the 
POMC peptide, resulting in the release of α-MSH, 
CART and β-LP (84,258,262). Leptin regulates energy 
balance through α-MSH and CART, (258,262) while 
opioids utilize β-LP (84). 

Moreover, evidence shows that ghrelin and lep-
tin function in opposite directions. Ghrelin is orexi-
genic and adipogenic in action (93,111-113,115,316), 
while leptin is anorexigenic and supports adipolysis 
(317,318). These effects are due to the action of 
NPY/AgRP on ghrelin and leptin receptors in the 
hypothalamus (319,320). Ghrelin activates the 
NPY/AgRP neurons (114,316), whereas leptin inhibits 
them (126,321). Consequently, the negative energy 
balance seen in AN, reduces leptin levels; while a 
positive energy balance seen in obesity, increases lep-
tin levels and decreases plasma ghrelin levels (322). 
Nonetheless, “If ghrelin behaves like an orexigenic 
factor, the increase in endogenous ghrelin levels in 
AN could be considered an adaptive mechanism, 
promoting energy intake and increasing body fat 
stores in response to a deficit in energy balance” (229). 
Therefore, endogenous ghrelin levels in AN could be 
used as a prognostic marker, differentiating a positive 
outcome from a poor one. In addition to its prognostic 
value, various studies have demonstrated the thera-
peutic use of ghrelin in anorexics (101,249-252). Fi-
nally, future studies should further evaluate the effi-
cacy of ghrelin in AN.  

Differential action of sex hormones gives rea-
soning to AN being more prevalent in females. In 
SOCT, physiological gonadal activity is intact, but in 
anorexics, this activity is absent. The high ghrelin and 
low leptin levels with abnormal CRH activity has 
shown to suppress the reproductive system (323-325). 
Moreover, studies have implicated estrogen in the 
regulation of energy intake and “social learning of 
food preference” (285). Also, estrogen has shown to 
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mediate the opioid system and its receptor concentra-
tion through the reverse pathway (302). Perhaps, es-
trogen controls µ receptors and their sex distribution. 
Females have shown to have a greater concentration 
of µ receptors in the CNS than their male counterparts 
(302). Therefore, µ receptors contribute to anorexic 
behavior as well as to increased female prevalence in 
AN.  

Since µ receptors are involved in re-
ward-mediated behavior (88), it is important to ex-
plore the addictiveness and OCD traits of AN. Davis 
C et al. (1998) provides insight into the understanding 
of the addictive component through the “au-
to-addiction opioids theory” (219). Moreover, re-
search has demonstrated associated OCD traits in 
individuals suffering from AN (219). Therefore, sex 
hormones like estrogen, which mediate the opioid 
system are associated with the addictive and OCD 
traits of AN. As a result, the addictiveness and com-
pulsiveness are probably sex-determined since opi-
oids favor AN in females. Moreover, males may 
demonstrate the physiological changes of AN similar 
to females. However, the addictive and OCD attrib-
utes of opioid function are perhaps inactive in males 
due to differential sex distribution of µ receptors. The 
implications of this are two-fold. Firstly, AN cannot 
be disassociated from its psychological component. 
Secondly, the opioid system is a vital component that 
should be targeted in the treatment of AN. Therefore, 
males may only manifest the physiological aspects of 
feeding and never overtly present as AN. This is 
perhaps due to the masking effect of the regulatory 
mechanisms present in males. In females, the active 
psychological component of AN takes the upper hand 
and prevents the physiological correction from taking 
place, making the disorder explicit. This notion can be 
further supported by the resistance observed in the 
regulation of ghrelin (231). A similar resistance is also 
seen with leptin levels, which poses difficulties in 
recovering from AN (91).  

Moreover, female dominance in AN can be ex-
plained through the leptin mechanism. In general, 
females demonstrate a higher baseline level of leptin 
than in males. Since leptin is anorexigenic and sup-
ports adipolysis (317,318), this explains the selective 
sex-dominance in AN.  

In sum, it is important to highlight the cause and 
effect relationship among the different mechanisms of 
AN. Integrating the various dimensions seen in Fig-
ure 3, this would aid clinicians in the management of 
anorexic patients. Studies have linked HPA-axis acti-
vation with starvation (142-145). This association 
could be an effect of starvation, where starvation ac-
tivates the HPA-axis and regulates various mecha-

nisms. Brambilla F et al. (1991) further links POMC 
hypersecretion with starvation (209). Since POMC 
regulates both leptin and opioids, their involvement 
in starvation is inevitable. Again, this hypersecretion 
is an effect of starvation. According to the Yeomans MR et 

al. (2002) model, initial starvation in AN leads to a re-
lease of opioid peptides (81). This induces a pleasant 
mood, creates an addiction towards dieting and later 
results in chronic adaptation to starvation (81). 
Moreover, opiate-addicts and AN patients have key 
differences in their presentations, this further rein-
forces that opioids are not causally implicated in AN. 
Also, there seems to be an overlap with the physical 
attributes between both groups (203). Most im-
portantly, both groups are physically anorexic; how-
ever, the personality attributes of each group differ 
(203). This supports the atypical functioning of opi-
oids giving sufferers a unique spectrum of clinical 
manifestations in AN (204).  

On the other hand, leptin directly correlates with 
adiposity (127). Devlin MJ (2011) discusses the key 
role of leptin in regulating bone marrow fat deposi-
tion during starvation (22). Studies have found high 
amounts of marrow fat in ob/ob mice lacking leptin 
and db/db mice lacking leptin receptors, irrespective 
of obesity (22). However, leptin treatment in ob/ob 
mice was shown to reduce bone marrow fat (326-328). 
Lower leptin levels lead to a persistence of bone 
marrow fat, because it promotes autophagy by inhib-
iting the mTOR protein (329,330). The mTOR protein 
has shown to inhibit autophagy and promote lipo-
genesis (329,330). Furthermore, bone marrow fat is 
resistant to lipolysis until depletion of other fat stores 
occur (22). Syed et al. (2008) have also found high 
levels of bone marrow fat in post-menopausal wom-
en, suggesting that low estrogen levels are associated 
with high bone marrow fat (331). In conclusion, these 
experiments highlight the mechanism through which 
starvation triggers bone marrow fat deposition (22).  

On the contrary, mice experiments have demon-
strated a deficiency of liver IGF-1 with high levels of 
GH associated to low levels of bone marrow fat (332). 
This pattern is similar to the ghrelin level paradigm 
seen in AN. The implications of these findings are 
several-fold. Firstly, leptin and estrogen mechanisms 
of AN function independent of one another. Secondly, 
since bone marrow fat is protective and increases 
survival rate during starvation (22), AN mediated 
through leptin and estrogen seem to be protective, 
whereas AN mediated through ghrelin has detri-
mental outcomes (Figure 4). Thirdly, since all mecha-
nisms seem to interact with one another, only certain 
factors help favor a single mechanism, either the lep-
tin and estrogen mechanism or the ghrelin mecha-
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nism, to take precedence. Therefore, future studies 
should consider exploring the causes of preference in 
either pathway. Thus, these three mechanisms seem 
to predict the survival rate for AN. Patients with low 
levels of leptin and estrogen will perhaps survive 
longer than those with high ghrelin levels. This also 
sheds light upon males possibly having a better sur-
vival outcome over females in AN.  

 
 

 

Figure 4: This diagram portrays the three survival pre-

dictors and their relationship with bone marrow fat in 

starvation. 

 

A Comment on Future Direction 

This paper reviewed the recent and historic evi-
dence of various neurological mechanisms involved 
in the pathogenesis of AN. Most of the evidence 
gathered came from experiments performed on mice. 
Experiments on mice help standardize tests and 
eliminate the element of false information. However, 
mice can only be used in understanding the biological 
aspect of AN, since the psychosocial perspective can 
only be assessed on human subjects. However, ob-
taining an accurate and truthful history is a challenge 
encountered with human subjects. Moreover, this 
paper highlights the intricate relation of the psycho-
logical component of AN. Previous experiments have 
strictly examined the physiological component of AN, 
like energy balance. Thus, it would be highly inap-
propriate for us to assume that experiments can in-
duce AN in mice. Also, most studies have isolated 
single mechanisms and have analyzed their effects. 

Therefore, it is recommended that future studies ex-
plore the interrelation of various mechanisms in AN. 
Ideally, a cohort study on both prepubertal males and 
females, showing high levels of CRF, should be per-
formed with observations made at regular intervals to 
determine the development of AN. This would elim-
inate the need for extrapolating data from mice onto 
humans. Finally, future studies should explore the 
interactions between these mechanisms in post-AN 
patients.  

It is important to understand that starvation 
does not necessarily imply AN. If two individuals 
suffering from starvation are compared, the question 
arises, are both individuals equally likely to develop 
AN? In underdeveloped countries, where young 
children suffer from starvation due to a lack of food, it 
is important to consider the likelihood of these chil-
dren developing AN later in life. As a matter of fact, 
forced starvation will rarely develop into AN. This 
suggests that voluntary and involuntary starvation 
are distinct entities having unique mechanisms. Tra-
ditionally, AN has predominantly affected the west-
ern hemisphere. Therefore, it is essential that we in-
quire whether those that suffer from AN are predis-
posed to it. Moreover, what causes starvation to 
evolve into AN needs to be addressed in future stud-
ies. It is quite evident that the thin body image por-
trayed through the media has an important role in 
AN. The weight loss industries along with the media 
are very affluent industries, and constantly promote 
the glorification of being thin. About 47% of girls en-
rolled between the fifth and the twelfth grades have 
shown the desire to lose weight as a result of maga-
zine photos (333), while another 69% of girls have 
agreed that magazines have influenced their image of 
the ideal body shape (333). Since, young adolescents 
are constantly being exposed to media, it is vital to 
explore the psychological and biological components 
predisposing an individual to develop AN. Moreover, 
cultural effects seem to intensify the desire to be thin. 
The western culture has been a forerunner in pro-
moting the thin body image. However, with the 
western influence percolating, there seems to be a 
recent increase of AN in the eastern hemisphere. It is 
also worth mentioning that many religious groups 
promote the importance of being healthy by staying 
thin. In conclusion, the adolescents of today are being 
constantly overwhelmed with the perception of being 
thin, ultimately, forcing an individual to incorporate 
this into their self-concept.  

Understanding these mechanisms is crucial to-
wards developing newer innovative techniques for 
the management of AN. Research has predominantly 
looked at the CRF and opioid mechanisms separately, 
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and have developed drugs that function individually. 
Therefore, future pharmacological research should 
integrate knowledge from both systems, and find a 
common functionality for drugs. This will result in a 
drug collectively involving both systems and treating 
a larger array of symptoms. Pharmacological research 
should further consider the involvement of ghrelin 
and leptin. Moreover, this paper delineates the vari-
ous pathways in the manifestation of key symptoms 
in AN. It is imperative to pharmacologically target all 
identified pathways to alleviate these symptoms. 
Since all four mechanisms overlap at the HPA-axis, 
targeting the HPA-axis, pharmacologically, is benefi-
cial. However, it must be noted that drugs affecting 
that area would present with a plethora of adverse 
side effects. Therefore, drugs targeting the 
HPA-independent pathways should be developed. 
Although, being specific in action, this would ensure a 
narrow spectrum of adverse effects. Moreover, since 
adolescents are greatly affected, various different be-
havioral techniques should be attempted. Apart from 
the usual, newer therapies such as provocative ther-
apy, including laughter therapy has been used in the 
treatment of AN (334). In a recent study on the bene-
ficial effects of laughter, moderate levels of laughter 
were shown to promote health, while low and high 
levels demonstrated no effect (335).  

Lastly, to better understand the sex differences in 
AN, future studies should explore AN in those males 
showing excessive female characteristics. This would 
help understand the role of sex hormones in AN. 
Moreover, survival in both sexes should be explored 
by inducing the various pathways and observing the 
differences in survival time.  

Finally, since many decades AN has been a 
feeding epidemic in both adolescents and adult fe-
males worldwide. However, it is slowly emerging 
into the developing countries. AN continues to re-
quire more investigations and academic inquires in 
order to achieve a more comprehensive understand-
ing. Therefore, it is imperative that future studies in-
vestigate additional neural mechanisms that would 
account for more of the yet unknown in the field of 
AN. 
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