

Review

Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

Peng Song ^{1,†}, Lei Wu ^{2,†} and Wenxian Guan ^{1,*}

Received: 22 September 2015; Accepted: 16 November 2015; Published: 1 December 2015

- ¹ Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; pengsong90@126.com
- ² Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; leiwu90@gmail.com
- * Correspondence: wenxian_guan@126.com; Tel.: +25-681-82098
- + These authors contributed equally to this work.

Abstract: The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)-were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69–0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52) for nitrites, and 1.34 (95% CI, 1.02–1.76) for NDMA (*p* for heterogeneity was 0.015, 0.013 and <0.001, respectively). The study type was found as the main source of heterogeneity for nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings.

Keywords: diet; nitrates; nitrites; nitrosamines; gastric cancer

1. Introduction

Over recent decades, the incidence and mortality rate of gastric cancer showed a modest decline globally. In 2012, an estimated almost one million new stomach cancer cases and 700,000 deaths occurred, making it the fifth most common malignancy and the third leading cause of cancer related deaths worldwide [1]. Nearly half of the world's new cases occurred in Eastern Asia, especially China. Geographic differences were observed in gastric cancer incidence, indicating that some modifiable factors (e.g., diet) could play a critical role in the etiology of this malignancy [2,3]. Therefore, it is an urgent demand to identify risk factors that can have a marked impact on this disease.

The typical diet in most countries contains nitrates, nitrites, and nitrosamines. Nitrates and nitrites occur naturally in fruit and vegetables, which are regarded as an important part of a healthy diet due to the powerful evidence of beneficial health effects against cancer [4,5]. In the same time, nitrates and nitrites are often used as food additives in processed meats such as ham, bacon, sausages,

and hot dogs, to retard microbial spoilage, and preserve meat products recognizable appearance and flavor as well. A high consumption of processed meats is linked to an increased gastric cancer risk, and many people consider nitrates/nitrites as the main reason for that [6]. Nitrosamines are produced by chemical reactions of nitrates, nitrites and other proteins. *N*-nitrosodimethylamine (NDMA) is one of the most frequently occurring nitrosamines in our dietary foods [7,8]. NDMA is a potent carcinogen, capable of inducing malignant tumors in various animal species in a variety of tissues, including liver, lung, and stomach [9,10].

So far, numerous epidemiologic studies have been published which attempted to assess the potential risk of gastric cancer about the dietary nitrates, nitrites, and nitrosamines intake, but yielded discrepant findings. It would be of interest to evaluate, on the basis of current epidemiologic data, whether consumption of nitrates, nitrites, and NDMA had an effect on gastric carcinogenesis. To clarify their relations, we systematically reviewed all the available evidence and conducted a meta-analysis.

2. Methods

2.1. Literature Search and Selection

We searched PubMed and Embase databases through August 2015 using the following search terms: (1) nitrate AND (gastric cancer OR stomach cancer); (2) nitrite AND (gastric cancer OR stomach cancer); and (3) (nitrosamine OR *N*-nitrosodimethylamine OR NDMA) AND (gastric cancer OR stomach cancer). The manual search was supplemented by scrutinizing the reference lists from those retrieved articles to identify any relevant studies.

For inclusion, the study must meet the following criteria: (1) cohort or case-control design; (2) exposure of interest was dietary nitrates, nitrites, and NDMA intake; (3) the endpoint of interest was gastric cancer; (4) risk estimates with corresponding 95% confidence intervals (95% CIs) were provided; (5) published in English. When study populations were overlapped or duplicated in some studies, we chose the most complete and suitable research. Three authors evaluated the retrieved literature and any discrepancy was resolved through discussion.

2.2. Data Extraction and Quality Assessment

Two investigators using a standardized form to extract the following characteristics independently: first author's name, publication year, population information, study location and period, sample size, follow-up years, nitrates and nitrites and NDMA intake assessment, and relative risk (RR)/hazard ratio (HR)/odds ratio (OR) with 95% CI from the most fully adjusted model for each category.

Quality of the included studies was assessed using Newcastle-Ottawa Scale (NOS) with a score ranging from 0 to 9 [11]. Each study was evaluated based on three aspects: selection, comparability, and assessment of outcome or ascertainment of exposure. Studies with score \geq 7 were defined as being of high quality.

2.3. Statistical Analysis

RR was used to measure the association between the dietary nitrates, nitrites, and NDMA intake and the risk of stomach cancer. Because the absolute risk of gastric cancer was low, OR and HR approximated the RR [12]. Considering the variations within-study and between-study, a random-effects model was employed to calculate the summary RR by pooling each study risk estimate. Statistical heterogeneity among studies was assessed with the χ^2 -based Q and I^2 index. If three or more studies were available for the same characteristic, subgroup analyses were conducted.

For the dose-response analysis, we used the method proposed by Orsini *et al.* to calculate the risk trend [13]. This method required the number of case and control subjects, or cases and person-years, and median level of dietary nitrates or nitrites or NDMA intake for at least three quantitative exposure

categories. The median or mean consumption of each category was assigned to the corresponding dose of consumption. We assumed that open-ended category had the same amplitude as the ahead or behind category. Potential nonlinear association was assessed using restricted cubic splines with four knots at percentiles 5%, 35%, 65%, and 95% of the distribution. If linear dose-response regression with no heterogeneity was detected, we used it directly.

Meta-regression was employed to explore the possible heterogeneity, and study design, geographic area, and publication year were examined in the model. We also undertook sensitivity analysis to evaluate whether a single study could affect the overall outcome. Publication bias was assessed by funnel plot, with Egger's regression asymmetry test and Begg's adjusted rank correlation test, and the Duval and Tweedie "trim and fill" method was performed if bias was detected [14]. All analyses were completed using STATA version 12.0 (Stata, College Station, TX, USA). A two-sided p < 0.05 was considered statistically significant.

2.4. Disease Assessment and Dietary Assessment

As indicated above, the scope of this meta-analysis was the association between dietary nitrates/nitrites/NDMA intake and stomach cancer. The cases should be confirmed with reliable medical records such as surgical, pathology reports or linkage of authoritative tumor registries. The methods of exposure ascertainment will be extracted, which could vary considerably by the following factors: estimates from various food items and based on different food composition databases.

3. Results

3.1. Literature Search and Quality Assessment

Based on the search strategy, a total of 22 articles consisting of 49 studies were included in our meta-analysis (Figure 1). Of the 22 papers, there were seven prospective cohort studies and 15 case-control studies. Among them, 15 eligible articles (19 studies) were retrieved for nitrates, 14 articles (19 studies) analyzed nitrites, and eight articles (11 studies) focused on NDMA. Tables 1 and 2 showed the detailed characteristics of these studies. Most of the studies were carried out in North America and Europe. The publication years were from 1985 to 2013. The sample size ranged from 220 to 494,979 and the number of gastric cancer patients varied from 79 to 1016. Methods of dietary exposure differed across studies. Briefly, all included studies generally used a questionnaire to assess dietary nitrates/nitrites/NDMA intake, and that was computed by multiplying the frequency of intake of each unit of food item by the nutrient content values from food composition databases. Studies included met quality criteria of 6–9 stars (Supplemental Table S1 and Supplemental Table S2).

First Author, Year, Location	Cohort Size	Follow-u (Years)	p No. of Cases (Age/Definition)	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted RR (95% CI)	Adjusted Variables
Galanis,	5610 men		108 (NA/form Hawaii Tumor Registry, a member of the Surveillance,	short questionnarire (weekly frequency of intake of 13 foods		combined frequency of intake of dried fish, pickled	0–3	1.0 (Referent)	Age, years of education, Japanese place of birth, gender.
1998 [<mark>15</mark>], Hawaii	and 6297	14.8	Epidemiology, and End Results (SEER) program	and food groups, and the daily	Nitrates times/week	vegetables and processed meats/based on previous	4–7	1.30 (0.80–2.00)	Analyses among men were also adjusted for
	women		of the National Cancer Institute)	frequency of intake of 6 beverages)		published literature	≥8	0.90 (0.50–1.40)	cigarette smoking and alcohol intake status
							59.8	1.0 (Referent)	
							84.7	1.25 (0.84–1.86)	
					Nitrates mg/day	derived from vegetables	104.4	0.74 (0.47–1.15)	Age, sex, smoking,
Van	1688		282 (mean: 63.0 years, SD: 4.1/exclude cases			(considered loss during preparation) and drinking	127.3	0.92 (0.59–1.44)	education, coffee consumption, intake of vitamin C and
Loon, 1998 [<mark>16</mark>],	men and	6.3	self-reported, <i>in situ</i> carcinoma, or without	150-item semiquantitative		water/from State Institute for Quality Control of	179.8	0.90 (0.53–1.55)	beta-carotene, family history of stomach
the Netherland:	1812 s women		microscopically confirmed diagnosis)	FFQ		 Agricultural Products solely on the intake of cured meat/from TNO Nutrition 	0.01	1.0 (Referent)	cancer, prevalence of stomach disorders, use of refrigerator or
						and Food Research Institute	0.04	1.20 (0.78–1.86)	freezer
					Nitrites mg/day		0.09	1.18 (0.77–1.82)	
							0.16	0.88 (0.56–1.37)	
							0.35	1.44 (0.95–2.18)	

Table 1. Characteristics of prospective cohort studies in the meta-analysis.

Table 1. Cont.

First Author, Year, Location	Cohort Size	Follow-up (Years)	No. of Cases (Age/Definition)	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted RR (95% CI)	Adjusted Variables
						derived from vegetables	Q1	1.0 (Referent)	
				pre-formed	Nitrates	(91.9%)/based on foods tables	Q2	1.01 (0.56–1.84)	
				qeustionnaire	Quartiles	in Finland and other countries in northern Europe	Q3	0.52 (0.25–1.08)	
			68 (15–49 years: 18 cases,			1	Q4	0.56 (0.27–1.18)	_
Knekt,	9985		50–59 years: 28, cases,			derived mainly from cured	Q1	1.0 (Referent)	Age, sex,
1999 [17],	men	24	60–99 years: 22		Nitrites	meats and sausages (94.2%)/based on foods tables	Q2	1.10 (0.58–2.11)	municipality,
Finnish		cases/through the nationwide Finnish		Quartiles	in Finland and other countries	Q3	1.88 (1.01–3.49)	smoking and energy intake	
		Cancer Registry) in northern Europe		Q4	0.71 (0.28–1.78)	8/			
						derived from smoked and salted	Q1	1.0 (Referent)	
					NDMA	fish (51.9%), cured meats and susages(48.1%)/based on foods	Q2	1.03 (0.55–1.95)	
					Quartiles	tables in Finland and other	Q3	0.78 (0.39–1.56)	
						countries in northern Europe	Q4	0.75 (0.37–1.51)	
								1.0 (Referent)	Full cohort analysis:
								0.87 (0.64–1.20)	stratified center and age. Sex, height,
								0.99 (0.69–1.41)	weight, education
	153,447					matched food items on the		Cardia	level, tobacco
Jakszyn,	men		314 (mean: 59.2 years, SD:	country-specific	NDMA	country-specific questionnaires	T1	1.0 (Referent)	smoking, cigarette smoking intensity,
2006 [<mark>8</mark>],	and	6.6	7.48/confirmed by a	validated	Tertiles	with a food database of	T2	0.74 (0.41–1.34)	work and leisure
European	368,010 women		panel of pathologists)	questionnaires		potential carcinogens/based on country-specific values	T3	0.68 (0.34–1.37)	physical activity,
	wonten					to any of the second		Non-cardia	citrus and non-citrus fruits
								1.0 (Referent)	intake, vegetables
								1.04 (0.66–1.63)	intake, energy
								1.09 (0.65–1.81)	intake and nitrites

Table 1. Cont.

First Author, Year, Location	Cohort Size	Follow-u (Years)	p No. of Cases (Age/Definition)	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted RR (95% CI)	Adjusted Variables
Larsson, 2006 [18], Sweden	of the study po 006 [18], 61,433 18 0 with the nation		156 (NA/through linkage of the study population with the national and regional Swedish Cancer registers)	67-item FFQ (before 1997) 97-item FFQ (after 1997)	NDMA µg/day	estimated by matching questionnaire food items/based on foods tables on the Swedish market	<0.041 0.041-0.078 0.079-0.120 0.121-0.193 ≥0.194	1.0 (Referent) 1.03 (0.61–1.77) 1.66 (1.00–2.75) 1.60 (0.93–2.76) 1.96 (1.08–3.58)	Age, education, body mass index, intakes of total energy, alcohol, fruits and vegetables
Cross,	Sweden women regional Swedish Cancer registers) 295,305	124-item FFQ	Nitrates μg/1000kcals	derived from processed meats/using a database of measured values from ten types of processed meats in US	24.2 66.9 112.7 174.5 298.0	Cardia 1.0 (Referent) 1.17 (0.77–1.77) 0.64 (0.40–1.02) 0.94 (0.61–1.45) 0.81 (0.52–1.25) Non-cardia 1.0 (Referent) 0.90 (0.60–1.35) 0.89 (0.59–1.33) 0.91 (0.61–1.37) 1.04 (0.69–1.55)	Age, education, sex, BMI, ethnicity, smoking, alcohol drinking, physical		
2011 [19], USA	and 199,674 women	10	probabilistic linkage with state cancer registries)	124-nem 172	Nitrites μg/1000kcals	processed meats/using a database of measured values from ten types of processed meats in US	12.1 34.6 61.4 102.9 199.2	Cardia 1.0 (Referent) 0.72 (0.47–1.11) 0.88 (0.58–1.32) 0.87 (0.58–1.31) 0.71 (0.47–1.08) Non-cardia 1.0 (Referent) 0.77 (0.51–1.15) 0.79 (0.53–1.18) 1.04 (0.71–1.52) 0.93 (0.63–1.37)	 activity daily intake of fruits , vegetables, saturated fat and calories

Table 1. Cont.

First Author, Year, Location	Cohort Size	Follow-up (Years)	No. of Cases (Age/Definition)	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted RR (95% CI)	Adjusted Variables
Keszei, 2013 [20], the Netherlands	120,852 men and women	16.3	663 (Women, Cardia, mean: 62.6 years, SD: 4.2; Women, Non-cardia, mean: 62.6 years, SD: 4.3; Men, Cardia, mean: 61.4 years, SD: 4.1; Men, Non-cardia, mean: 62.4 years, SD: 4.0/through linkage to the	questionnaire including 150 items on food	Nitrates Tertiles (mg/day)	derived from summing dietary intake (considered loss during preparation) and nitrate from water/based on databank of the State Institute for Quality Control of Agricultural Products	T1: women 66.4; men, 68.1 T2: women, 98.5; men 100.8 T3: women 142.7; men 146.2	Women, Cardia 1.0 (Referent) 1.01 (0.30–3.42) 1.61 (0.32–8.06) Women, Non-cardia 1.0 (Referent) 0.73 (0.47–1.11) 0.78 (0.44–1.39) Men, Cardia 1.0 (Referent) 1.06 (0.68–1.65) 1.01 (0.57–1.77) Men, Non-cardia 1.0 (Referent) 1.23 (0.90–1.68) 1.05 (0.70–1.59)	Age, smoking statu years of cigarette smoking, number of cigarettes smoked p day, total energy intake, BMI, alcoho intake, vegetable intake, fruit intake, level of education, and nonoccupation physical activity
			Netherlands Cancer Registry and the Nationwide Network and Registry of Histo- and Cytopathology in the Netherlands)		Nitrites Tertiles (mg/day)	processed meat/based on analyses conducted by the National Public Health Institute in 1984	T1: women, 0.02; men 0.03 T2: women, 0.08; men 0.12 T3: women, 0.20; men 0.28	Women, Cardia 1.0 (Referent) 0.97 (0.36–2.58) 0.62 (0.20–1.90) Women, Non-cardia 1.0 (Referent) 0.94 (0.62–1.41) 1.08 (0.71–1.63) Men, Cardia 1.0 (Referent) 0.80 (0.51–1.27) 1.18 (0.75–1.86) Men, Non-cardia 1.0 (Referent) 1.10 (0.80–1.50) 1.23 (0.89–1.70)	Age, smoking statu years of cigarette smoking, number of cigarettes smoked p day, total energy intake, BMI, alcoho intake, vegetable intake, fruit intake, level of education, and nonoccupation physical activity

First Author, Follow-up No. of Cases Intake Analytical **Definition/Nutrient** Consumption Adjusted RR Cohort **Adjusted Variables** (Age/Definition) (95% CI) Year, Size (Years) Assessment Category **Content Values** Categories Location Women, Cardia 1.0 (Referent) Age, smoking status, 0.97 (0.34-2.78) years of cigarette 1.02 (0.33-3.14) smoking, number of T1: women, *N*-nitrosodimethylamine Women, cigarettes smoked per 0.03; men values in food items Non-cardia day, total energy 0.04 together with the frequency 1.0 (Referent) NDMA intake, BMI, alcoholic T2: women, of consumption and serving 1.37 (0.92-2.02) Tertiles 0.04; men beverages not sizes/N-nitrosodimethylamine 0.90 (0.58-1.42) 0.08 including beer, (µg/day) value for food items used in Men, Cardia vegetable intake, fruit T3: women, the Netherlands Cohort 1.0 (Referent) intake, level of 0.07; men Study 1.00 (0.64–1.56) education, and 0.25 0.94 (0.59-1.49) nonoccupational Men, physical activity. Non-cardia 1.0 (Referent) 1.09 (0.79–1.50) 1.31 (0.95-1.81)

Table 1. Cont.

NDMA: N-nitrosodimethylamine; RR: relative risk; CI: confidence interval; BMI: body mass index; FFQ: food frequency questionnaire; SD: standard error; NA: Not Applicable.

First Author, Year, Location	No. of Cases (Age/Definition)	No. and Type of Controls	Study Period	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted OR (95% CI)	Adjusted Variables	
Risch, 1985 [21],	246 (35–79 years/by province-wide	246	1979–1982	diet frequent	Nitrates mg/day	estimated by matching FFQ food items/food - composition tables were	NIA	1.0 (Referent) 0.66 (0.54–0.81)	NA	
Canada	tumor registries, and surgical, pathology, and medical records)	population- based	1979–1982	questionnaire	Nitrites modified and extended mg/day to Canadian items		NA	1.0 (Referent)	NA	
	and medical records)				ing/ auy	to Canadian items		1.71 (1.24–2.37)		
							53	1.0 (Referent)		
					Nitrates		81	0.90 (0.70–1.10)		
					mg/day		103	0.90 (0.60–1.10)		
	1016 (≤75	1159			item estimated by ma		130	0.70 (0.50–0.90)	Non-dietary	
Buiatti, 1990	years/histologic	population-	on- 1985–1987 questionna	1985–1987	146-item questionnaire f		questionnaire food	193	0.90 (0.70–1.20)	variables and
[22], Italy	confirmation)	based		questionnaire		Items/using several Italian sources	2.1	1.0 (Referent)	kilocalories	
					Nitrites	fundit sources	2.8	1.00 (0.80–1.40)		
					mg/day		3.4	1.20 (0.90–1.70)		
					0, ,		4.1	1.40 (1.00–2.00)		
							5.9	1.90 (1.30-2.70)		
							Q1	1.0 (Referent)		
D 1001	143 (32–80 years/			74-item		estimated by matching	Q2	0.93 (0.53-1.64)		
Boeing, 1991 [23], Germany	histologically	579 hospital- based	1985–1988	standardized	Nitrates Quintiles	questionnaire food items/German Federal	Q3	0.61 (0.32–1.19)	Age, sex, and hospital	
	confirmed)	based		questionnaire	Quintines	Agency of Nutrition	Q4	0.61 (0.30-1.27)	noopnui	
							Q5	1.26 (0.59–2.70)		
						estimated by matching	23	1.0 (Referent)	Age, gender,	
Hansson, 1994	338 (40–79	679 	1989–1992	45-item FFO	Nitrates	FFQ food items (considered loss in	34	0.85 (0.57-1.25)	ascorbic acid,	
[24], Sweden	years/histologically confirmed)	population- based	1989–1992	45-item FFQ	mg/day	cooked dishes)/based on data from several Swedish sources	45 69	0.99 (0.65–1.52) 0.97 (0.60–1.59)	β -carotene. and α -tocopherol	

Table 2. Characteristics of case-control studies in the meta-analysis.

First Author, Year, Location	No. of Cases (Age/Definition)	No. and Type of Controls	Study Period	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted OR (95% CI)	Adjusted Variables	
							62.95	1.0 (Referent)		
					Nitrates		80.70	0.64 (0.49–0.83)		
					mg/die		96.33	0.50 (0.38–0.67)	Age, sex,	
				20.11	8,	estimated by matching	116.88	0.52 (0.39-0.70)	education, family history	
La Vecchia,	723 (19–74 years/histologically	2024	1985–1992	29-item standard		questionnaire food items/based on Italian	>116.88	0.43 (0.32–0.59)	of gastric	
1994 [25], Italy	confirmed)	hospital-based	1900 1992	questionnaire		tables of food	1.91	1.0 (Referent)	 cancer, body mass index, and 	
					Nite	composition	2.41	0.98 (0.72–1.33)	total energy	
					Nitrites mg/die		2.94	0.99 (0.72–1.36)	intake	
					8,		3.64	1.15 (0.84–1.59)		
							>3.64	1.35 (0.96–1.88)		
							T1	1.0 (Referent)		
					Nitrates Tertiles	derived from dairy	T2	0.49 (0.24–1.01)		
					Tertileb	products, meat and	T3	0.76 (0.38–1.50)		
D 1 1 1005 [2(1	92 (mean: 66.6 years, SD:	128		diet history		eggs, fish, flour	T1	1.0 (Referent)	Age, sex,	
Pobel, 1995 [26], France	10.4/histologically	hospital-based	1985–1988	questionnaire	Nitrites Tertiles	products, fruit, vegetables,	T2	0.83 (0.41–1.67)	occupation and total calorie	
	confirmed)	Ĩ		1	Tertileb	beverages/using a	T3	0.88 (0.44–1.79)	intake	
						 composition table based on literature data 	T1	1.0 (Referent)	-	
					NDMA Tertiles	on merature data	T2	4.13 (0.93–18.27)		
							T3	7.00 (1.85–26.46)		

Table 2. Cont.

Table 2. Cont.

First Author, Year, Location	No. of Cases (Age/Definition)	No. and Type of Controls	Study Period	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted OR (95% CI)	Adjusted Variables
La Vecchia,	746 (19–74	2053		29-item	NDMA	estimated by matching questionnaire food	≼0.13	1.0 (Referent)	Age, sex, education, family history of gastric cancer,
1995 [<mark>27</mark>], Italy	years/histologically confirmed)	hospital- based	1985–1993	structured questionnaire	NDMA µg∕day	items/based Italian survey on selected foods or from other	0.13–0.19	1.11 (0.90–1.40)	combined food score index, intake of β-carotene, vitamin C,
	communea)	buseu		1		published data	>0.19	1.37 (1.10–1.70)	total calories, nitrite and nitrate intake
					derived from fried, broiled, or		≼0.14	1.0 (Referent)	
De Stefani, 1998 [<mark>28</mark>],	340 (25–84 years/ microscopically	698 hospital-	1993–1996	FFO	NDMA	derived from fried, broiled, or salted meat/according to	0.15-0.18	2.07 (1.36–3.18)	Age, sex, residence, urban/rural status, tobacco duration, total
Uruguay	confirmed)	based	1770 1770		µg/day	previous literature data	0.19–0.26	3.23 (2.13-4.89)	alcohol consumption
							≥0.27	3.62 (2.38–5.51)	
							62.6	1.0 (Referent)	
					Nitrates mg/day		93.2	0.70 (0.50–1.00)	
	382 (<50 years, 30					estimated by matching FFQ	132.9	0.60 (0.40-0.90)	
Palli, 2001	cases; 50–64 years, 130 cases;	561		181-item		food items/based on Italian food composition tables	2.5	1.0 (Referent)	Age, sex, social class, family history of gastric cancer, area of
[29], Italy	> 64 years, 222 cases/histologically	population- based	1985–1987	FFQ	Nitrites mg/day	estimated by matching FFQ food items/based on Italian	3.5	1.40 (1.00–2.00)	rural residence, BMI, total energy and the residuals of each
	confirmed)					food composition tables	5.4	1.40 (1.00–2.00)	nutrient of interest.
							0.12	1.0 (Referent)	-
					NDMA		0.20	1.10 (0.80–1.60)	
							0.33	1.10 (0.80–1.50)	

Table 2. Cont.

First Author, Year, Location	No. of Cases (Age/Definition)	No. and Type of Controls	Study Period	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted OR (95% CI)	Adjusted Variables
	629 (30–79						Men, Women	1.0 (Referent)	
Engel,	years/histologic reports from	695 population-	1002 1005	FFQ	Nitrites	estimated by matching FFQ food items/based	1.7–5.8, 1.9–5.3 5.9–7.5, 5.4–6.9	1.50 (1.00-2.40)	NA
2003 [<mark>30</mark>], USA	surgery, radiology, and	based	1995-1995	ng	mg/day	on a nitrite database used in North America	7.6–9.9, 7.0–9.1 10–39.2,	1.80 (1.10–3.00)	NA
	endoscopy)						9.2–31.2	2.50 (1.40-4.30)	
López-	211 (≥20 years/	454		semi-		derived from specific	0-0.11	1.0 (Referent)	Age, gender, residence, energy change in
Carrillo, 2004 [<mark>31</mark>],	histologically	hospital-	1994–1996	quantitative questionnaire	Nitrites portions/day	food consumption that is typical of each	0.12-0.26	0.95 (0.62–1.46)	socioeconomic level, years
Mexico	confirmed)	based		questionnaire		geographical region	0.27-2.25	1.24 (0.81–1.90)	of education, Hp/CagA status, and ascorbic acid
Kim, 2007	136 (mean: 57.2	136		84-item		estimated by matching	240	1.0 (Referent)	Age, sex, socioeconomic
[32],	years, SD: 13.9/histologically	hospital-	1997–1998	semiquantitativ	e Nitrates mg/day	FFQ food items/base on National Nutrition	458	1.13 (0.54–2.36)	status, family history, refrigerator use, H. pylori
Korea	confirmed)	based		FFQ		Survey Report in Koera	811	1.13 (0.42–3.06)	infection, and foods
						derived from	<16.9	1.0 (Referent)	
					Nitrates	vegetables, processed meats, and water/based	16.9–26.2	1.20 (0.60–2.50)	
				short Health	mg/day	on previous published	26.2–38.8	1.40 (0.70–2.90)	Year of birth, gender,
Ward, 2008 [<mark>33</mark>],	79 (≥21 years/histologically	321 population-	1988–1994	Habits and		literature	>38.8	1.60 (0.70–3.60)	education, smoking, alcohol, total calories,
USA	confirmed)	based		History Questionnaire		derived from breads,	<0.36	1.0 (Referent)	vitamin C, fiber, and carbohydrate
					Nitrites mg/day	cereals, processed meats/based on	0.36-0.52	1.10 (0.40–2.70)	carbonyurate
						previous published	0.52–0.67	0.80 (0.30-2.20)	
						literature	>0.67	1.10 (0.30–3.40)	

Table 2. Cont.

First Author, Year, Location	No. of Cases (Age/Definition)	No. and Type of Controls	Study Period	Intake Assessment	Analytical Category	Definition/Nutrient Content Values	Consumption Categories	Adjusted OR (95% CI)	Adjusted Variable
	228 (median: 59				Nitrates		≤90.4	1.0 (Referent)	Energy, age, gende
Hernández-	years, P25-P75:	467 population			_mg/day	 estimated by matching FFQ food items/based on 	>90.4–141.7 >141.7	0.93 (0.62–1.39) 0.61 (0.39–0.96)	Hp/CagA status, schooling and
Ramírez, 2009 [34], Mexico	49–67 years/ histologically	467 population- based	2004–2005	5 127-item FFQ		several published	<u>≤1.0</u>	1.0 (Referent)	consumptions of
	confirmed)		Nitrites literature		literature	>1.0-1.2	>1.0–1.2 1.07 (0.69–1.65) salt, chili,		
					mg/day		>1.2	1.52 (0.99–2.34)	alcohol
								Cardia	
								1.0 (Referent)	
								1.13 (0.70–1.82)	
Navarro	255 cardia, 352					estimated by matching	Q1	1.75 (1.03–2.96)	Gender, age, site,
Silvera, 2011	non-cardia (30–79	687 population-	1993–1995	104-item FFO	Nitrites	FFQ food items/based on	Q2	1.82 (0.91–3.65)	race, income, education, proxy
[35], USA	years/pathology	based	1770 1770	~	Quartiles	Nutrition Coding Center Nutrient Data system	Q3 Q4	Non-Cardia	status, and energy
	reports)					Nuthent Data system	Q4	1.0 (Referent)	intake
								1.89 (1.23–2.92)	
								2.03 (1.23-3.35)	
								2.40 (1.25-4.62)	

RR: relative risk; CI: confidence interval; BMI: body mass index; FFQ: food frequency questionnaire; SD: standard error; NA: Not Applicable.

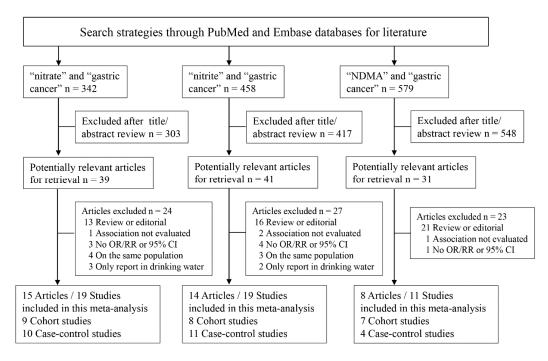


Figure 1. Flowchart of literature search and articles identified.

3.2. Dietary Nitrates, Nitrites, and NDMA Intake and the Risk of Gastric Cancer

There were nine cohort studies and 10 case-control studies of the relationship between the nitrates intake and gastric cancer risk [15–17,19–26,29,32–34]. Comparing the highest *versus* the lowest categories, the summary RR was 0.80 (95% CI, 0.69–0.93; Figure 2A) with significant heterogeneity ($I^2 = 46.1\%$, p = 0.015). To explore the heterogeneity, we conducted subgroup analysis according to some key characteristics. In stratified analysis by study design, significant inverse association was observed in population-based case-control studies (RR, 0.76; 95% CI, 0.62–0.94) with acceptable heterogeneity ($I^2 = 47.8\%$, p = 0.088). Stratifying by geographic area, the RR was 0.79 (95% CI, 0.64–0.98) in Europe. Besides, the associations between nitrates intake and risk of stomach cancer were similar in these subgroups (publication year < 2000, sample size < 2000, quality score < 7 stars; Table 3).

In pooled analysis of eight cohort studies and 10 case-control studies for nitrites [16,17,19–22,25,26,29–31,33–35], a significant association was observed. Overall, individuals with highest nitrites consumption, compared with the lowest, increased the risk of gastric cancer (pooled RR, 1.31; 95% CI, 1.13–1.52, Figure 2B). In the subgroup analysis by study design, the association was detected in both population-based case-control studies (RR, 1.72; 95% CI, 1.47–2.02) and hospital-based case-control studies (RR, 1.25; 95% CI, 1.09–1.44) with no heterogeneity. The risk for developing gastric cancer was significantly higher in Europe (RR: 1.30; 95% CI, 1.12–1.50). The risk effect of nitrites was also found in subgroups (publication year, before and after 2000; sample size < 2000; quality score < 7 stars; Table 3).

A total seven cohort studies and four case-control studies were pooled together to assess the association between NDMA consumption and stomach cancer risk [17,18,20,26–29,36]. The pooled RR for high *versus* low intake was 1.34 (95% CI, 1.02–1.76), with obvious evidence of heterogeneity ($I^2 = 75.8\%$, p < 0.001; Figure 2C). Study design, geographic area, cancer type, publication years, and sample size in association of NDMA consumption and gastric cancer were assessed separately. These RR estimates obtained from these subgroups showed no significant association (Table 3). Additionally, a slight association was observed in high quality studies (score ≥ 7 stars; RR, 1.30; 95% CI, 0.97–1.75).

Study	Year	Reference	ce RR (95% Cl)	% Weig
Cohort				
Galanis	1998	[15]	0.90 (0.50, 1.40)	5.13
van Loon	1998	[16]	0.90 (0.53, 1.55)	4.87
Knekt				3.12
	1999	[17]	0.56 (0.27, 1.18)	
Cross (C)	2011	[19]	• 0.81 (0.52, 1.25)	6.17
Cross (N)	2011	[19]	1.04 (0.69, 1.55)	6.70
Keszei (W C)	2013	[20] -	1.61 (0.32, 8.06)	0.80
Keszei (W N)	2013	[20]	0.78 (0.44, 1.39)	4.45
Keszei (M C)	2013	[20]	1.01 (0.57, 1.77)	4.54
Keszei (M N)	2013	[20]	1.05 (0.70, 1.59)	6.61
Subtotal (I-square			0.91 (0.77, 1.09)	42.40
Case-control				
Risch	1985	[21]	0.66 (0.54, 0.81)	10.66
Buiatti	1990	[22]		9.25
Boeing	1991	[23]	→ 1.26 (0.59, 2.70)	2.97
La Vecchia	1994	[25] -	• 0.43 (0.32, 0.59)	8.51
Hansson	1994	[24]	0.97 (0.60, 1.59)	5.48
Pobel	1995	[26]	• 0.76 (0.38, 1.50)	3.47
Palli	2001	[29]	0.60 (0.40, 0.90)	6.69
Kim	2007	[32]	1.13 (0.42, 3.06)	1.92
Ward	2008	[33]		2.65
Hernández-Ramíre		[34]	0.61 (0.39, 0.96)	5.99
Subtotal (I-square	ed = 61.2%,	p = 0.006)	0.74 (0.60, 0.93)	57.60
Overall (I-squared	= 46.1%, p	= 0.015)	0.80 (0.69, 0.93)	100.0
NOTE: Weights a	re from rando	om effects ana		
	0.1		1 10	
Study	0.1 Year	Reference	1 10 (A)	% We
-		Reference	1 10 (A)	% We
Cohort	Year		1 10 (A) RR (95% CI)	
Study Cohort van Loon	Year 1998	[16]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18)	6.2
Cohort van Loon Knekt	Year 1998 1999	[16] [17] -	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78)	6.2 2.1
Cohort van Loon Knekt Cross (C)	Year 1998 1999 2011	[16] [17] - [19]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08)	6.2 2.1 6.2
Cohort van Loon	Year 1998 1999	[16] [17] -	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78)	6.2 2.1 6.2
Cohort van Loon Knekt Cross (C) Cross (N)	Year 1998 1999 2011	[16] [17] - [19]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08)	6.2 2.1 6.2 6.6
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C)	Year 1998 1999 2011 2011 2013	[16] [17] – [19] [19] [20] –	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90)	6.2 2.1 6.2 6.6 1.5
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N)	Year 1998 1999 2011 2011 2013 2013	[16] [17] – [19] [19] [20]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63)	6.2 2.1 6.2 6.6 1.5 6.2
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C)	Year 1998 1999 2011 2011 2013 2013 2013	[16] [17] – [19] [19] [20] [20] [20]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86)	6.2 2.1 6.2 6.6 1.5 6.2 5.6
Cohort van Loon Knekt Cross (C)	Year 1998 1999 2011 2011 2013 2013 2013 2013	[16] [17] – [19] [20] [20] [20] [20] [20]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared	Year 1998 1999 2011 2011 2013 2013 2013 2013	[16] [17] – [19] [20] [20] [20] [20] [20]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p	[16] [17] - [19] [20] [20] [20] [20] [20] [20] = 0.274)	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42.
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control Risch	Year 1998 1999 2011 2013 2013 2013 2013 i = 19.7%, p 1985	[16] [17] - [19] [20] [20] [20] [20] [20] [20] = 0.274)	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990	[16] [17] - [19] [20] [20] [20] [20] [20] [20] = 0.274)	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti	Year 1998 1999 2011 2013 2013 2013 2013 i = 19.7%, p 1985	[16] [17] - [19] [20] [20] [20] [20] [20] [20] = 0.274)	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995 2001	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26] [29]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.90 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel	Year 1998 1999 2011 2013 2013 2013 2013 i = 19.7%, p 1985 1990 1994 1995 2001 2003	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26] [29] [30]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.09 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo	Year 1998 1999 2011 2013 2013 2013 2013 3 2013 3 2013 5 19.7%, p 1985 1990 1994 1995 2001 2003 2004	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26] [29] [30] [31]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995 2001 2003 2004 2008	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26] [29] [30]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.09 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M C) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995 2001 2003 2004 2008	[16] [17] - [19] [20] [20] [20] [20] [20] = 0.274) [21] [22] [25] [26] [29] [30] [31]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward Hernández-Ramírez	Year 1998 1999 2011 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995 2001 2003 2004 2008	[16] [17] - [19] [20] [22] [25] [26] [30] [31] [33] [34]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.71 (1.24, 2.37) 1.90 (1.30, 2.70) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90) 1.10 (0.30, 3.40)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3 6.0
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward Hernández-Ramírez Navarro Silvera (C)	Year 1998 1999 2011 2013 2013 2013 2013 2013 1 = 19.7%, p 1985 1990 1994 1995 2001 2003 2004 2008 2009 2011	[16] [17] [19] [20] [22] [25] [26] [30] [31] [33] [34] [35] [35]	1 10 (A) RR (95% Cl)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3 6.0 3.3
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward Hernández-Ramírez Navarro Silvera (N)	Year 1998 1999 2011 2013 2013 2013 2013 1917, p 1985 1990 1994 1995 2001 2003 2004 2003 2004 2008 2009 2011 2011	[16] [17] - [19] [20] [30] [33] [33] [35]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.35 (0.96, 1.88) 0.88 (0.44, 1.79) 1.40 (1.00, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90) 1.01 (0.30, 3.40) 1.52 (0.99, 2.34)	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.0 7.5 3.2 7.3 4.4 6.0 1.3 6.0 3.3 3.6
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward	Year 1998 1999 2011 2013 2013 2013 2013 19197 1985 1990 1994 1995 2001 2003 2004 2003 2004 2008 2009 2011 2013 1995 1995 2001 2003 2004 2008 2009 2011 2013 1995 2011 2013 1995 2001 2003 2004 2003 2004 2008 2009 2011 2011 2013 2013 1995 2001 2003 2004 2008 2009 2011 2011 2013 2013 2013 2013 1995 2001 2003 2004 2008 2009 2011 2011 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2014 2015 2001 2015 2015 2017	[16] [17] - [19] [20] [30] [31] [33] [35]	1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.81, 1.90) 1.04 (0.10, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90) 1.02 (0.99, 2.34) 1.52 (0.	6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3 6.0 3.3 3.6 57.
Cohort van Loon Knekt Cross (C) Cross (N) Keszei (W C) Keszei (W N) Keszei (M N) Subtotal (I-squared Case-control Risch Buiatti La Vecchia Pobel Palli Engel López-Carrillo Ward Hernández-Ramírez Navarro Silvera (C) Navarro Silvera (N) Subtotal (I-squared	Year 1998 1999 2011 2013 2013 2013 2013 1919,7%, p 1985 1990 1994 1995 2001 2003 2004 2008 2009 2011 2011 2013 1995 2001 2003 2004 2009 2011 2013 2013 2013 2013 1995 2001 2001 2001 2001 2003 2001 2001 2003 2001 2003 2001 2003 2004 2005	[16] [17] [19] [20] [30] [31] [35] [35] [35] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [35] [30] [35] [35] [30] [35] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [35] [30] [1 10 (A) RR (95% Cl) 1.44 (0.95, 2.18) 0.71 (0.28, 1.78) 0.71 (0.28, 1.78) 0.71 (0.47, 1.08) 0.93 (0.63, 1.37) 0.62 (0.20, 1.90) 1.08 (0.71, 1.63) 1.18 (0.75, 1.86) 1.23 (0.89, 1.70) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.87, 1.25) 1.04 (0.100, 2.00) 2.50 (1.40, 4.30) 1.24 (0.81, 1.90) 1.10 (0.30, 3.40) 1.52 (0.99, 2.34) 1.52 (0.99, 2.34) 1.57 (1.36, 1.81) 1.31 (1.13, 1.52)	% We 6.2 2.1 6.2 6.6 1.5 6.2 5.6 7.7 42. 7.7 7.0 7.5 3.2 7.3 4.4 6.0 1.3 6.0 3.3 3.6 57.1 100

Figure 2. Cont.

Study	Year	Reference			RR (95% CI)	% Weig
Cohort						
Knekt	1999	[17]			0.75 (0.37, 1.51)	7.16
Jakszyn	2006	[8]	-		0.99 (0.69, 1.41)	11.14
Larsson	2006	[18]			1.96 (1.08, 3.58)	8.25
Keszei (W C)	2013	[20]	-		1.02 (0.33, 3.14)	4.08
Keszei (W N)	2013	[20]			0.90 (0.58, 1.42)	10.04
Keszei (M C)	2013	[20]			0.94 (0.59, 1.49)	9.85
Keszei (M N)	2013	[20]			1.31 (0.95, 1.81)	11.56
Subtotal (I-squ	ared = 18.9%	, p = 0.285)	\diamond		1.09 (0.89, 1.33)	62.09
			Ĩ			
Case-control						
La Vecchia	1995	[27]	÷		1.37 (1.10, 1.70)	12.69
Pobel	1995	[26]	! <u> </u>	*	→ 7.00 (1.85, 26.46)	3.20
De Stefani	1998	[28]		-	3.62 (2.38, 5.51)	10.38
Palli	2001	[29]			1.10 (0.80, 1.50)	11.65
Subtotal (I-squ	ared = 88.6%	, p = 0.000)	$\langle \rangle$		2.05 (1.14, 3.67)	37.91
Overall (I-squa	red = 75.8%,	p = 0.000)	\diamond		1.34 (1.02, 1.76)	100.00
NOTE: Weights	s are from ran	dom effects analysis				
		0.1	1	10		
			(C)			

Figure 2. Dietary nitrates, nitrites and NDMA intake and the risk of gastric cancer for the highest *versus* lowest categories. (**A**) nitrates; (**B**) nitrites; (**C**) NDMA. (C, cardia; N, non-cardia; M, male; W, women).

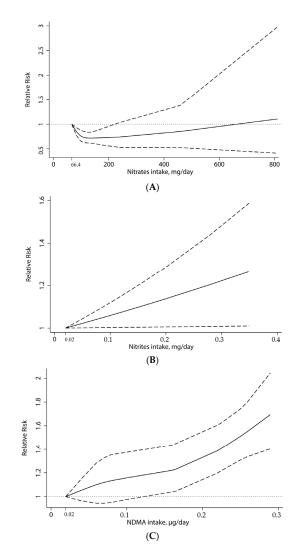

		Nit	rates				Nit	trites				ND	MA		
Variable	n ^a	RR (95% CI)	Het	erogene	ity Test	n ^a	RR (95% CI)	Het	erogeneit		а	RR (95% CI)	Het	erogeneity	y Test
	n"	KK (95% CI)	Q	<i>p</i> ^b	$I^2\%$	n "	KK (95% CI)	Q	<i>р</i> ^ь	I ² %	- n ^a	KK (95% CI)	Q	р ^ь	I^2 %
Total	19	0.80 (0.69–0.93)	31.39	0.015	46.1	19	1.31 (1.13–1.52)	33.87	0.013	46.9	11	1.34 (1.02–1.76)	41.35	< 0.001	75.8
Study design															
Cohort	9	0.91 (0.77-1.09)	3.71	0.882	0.0	8	1.04 (0.87-1.25)	8.71	0.274	19.7	7	1.09 (0.89–1.33)	7.4	0.258	18.9
Case-control							× ,					, ,			
Population based	6	0.76 (0.62–0.94)	9.58	0.088	47.8	8	1.72 (1.47–2.02)	5.21	0.634	0.0	1	1.10 (0.80–1.50)	NA	NA	NA
Hospital based	4	0.75 (0.42–1.35)	9.91	0.019	69.7	3	1.25 (1.09–1.44)	1.16	0.559	0.0	3	2.81 (1.16-6.80)	20.54	< 0.001	90.3
Geographic area															
Europe	12	0.79 (0.64–0.98)	24.03	0.013	54.2	10	1.30 (1.12–1.50)	10.14	0.339	11.3	10	1.18 (0.97–1.43)	16.89	0.050	46.7
North America	5	0.80 (0.62–1.04)	8.22	0.084	51.3	9	1.41 (1.06–1.87)	23.62	0.003	66.1	0	NA	NA	NA	NA
Other	2	0.94 (0.60-1.49)	0.16	0.690	0.0	0	NA	NA	NA	NA	1	3.62 (2.38-5.51)	NA	NA	NA
Cancer type															-
cardia	3	0.90 (0.64-1.27)	0.88	0.644	0.0	4	1.01 (0.65–1.58)	6.64	0.084	54.8	3	0.87 (0.60-1.25)	0.66	0.718	0.0
non-cardia	3	0.99 (0.76-1.28)	0.79	0.672	0.0	4	1.22 (0.90-1.65)	6.21	0.102	51.7	3	1.14 (0.90-1.44)	1.81	0.404	0.0
Publication															
year															
<2000	9	0.75 (0.60–0.93)		0.012	59.1	6	1.46 (1.17–1.81)	7.38	0.194	32.3	4	2.02 (0.96-4.24)	25.62	< 0.001	88.3
≥2000	10	0.86 (0.72–1.03)	10.59	0.305	15.0	13	1.26 (1.05–1.53)	23.40	0.025	48.7	7	1.12 (0.95–1.31)	6.22	0.399	3.6
Sample size															
<2000	8	0.76 (0.62–0.94)	9.99	0.189	29.9	9	1.56 (1.31–1.87)	9.26	0.321	13.6	3	2.69 (0.95–7.60)	24.06	< 0.001	91.7
≥2000	11	0.82 (0.66–1.01)	22.50	0.013	55.6	10	1.15 (0.95–1.40)	17.85	0.037	49.6	8	1.16 (0.97–1.39)	9.84	0.198	28.9
Quality score															
<7 stars	7	0.70 (0.54-0.90)	16.83	0.010	64.3	6	1.58 (1.11-1.49)	7.76	0.170	35.6	2	2.47 (0.41–14.91)	7.04	0.008	85.8
≥7 stars	12	0.90 (0.77–1.04)	8.59	0.660	0.0	13	1.18 (0.99–1.40)	18.12	0.112	33.8	9	1.30 (0.97–1.75)	34.01	< 0.001	76.5

Table 3. Stratified analysis of the association between nitrates, nitrites, and NDMA intake and stomach cancer risk.

RR: relative risk; CI: confidence interval; NA: Not Applicable. ^a Number of comparisons; ^b*p* Value of Q-test for heterogeneity test.

3.3. Dose-Response Analysis

Four articles (7 studies) were eligible for the dose-response analysis of dietary nitrates intake and gastric cancer risk [16,20,25,32]. A nonlinear association was detected ($p_{non-linearity} = 0.001$, Figure 3A), with a significantly decreased risk at the nitrates intake level ranged from about 66.4 to 220 mg/day. After evaluating the dose-response pattern for nitrites (2 articles/5 studies) [16,20], some evidence of a linear association of gastric cancer was found ($p_{linearity} = 0.041$, Figure 3B). Accordingly, the summary RR for 0.1 mg/day increment of nitrites consumption was 1.07 (95% CI, 1.00–1.15) without heterogeneity (p = 0.876). Four papers (seven studies) were included in the dose-response analysis for NDMA [18,20,27,28]. We observed a nonlinear trend toward gastric cancer risk with increasing NDMA intake ($p_{non-linearity} < 0.001$), following an increase in the risk of NDMA intake up to 0.12 µg/day (Figure 3C).

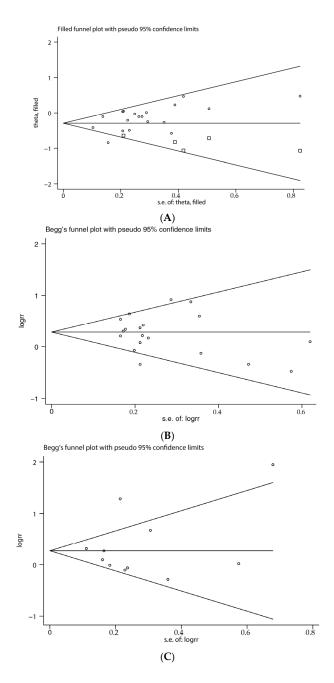
Figure 3. Dose-response analysis of dietary nitrates, nitrites and NDMA intake and the risk of gastric cancer. (**A**) the median value of the lowest reference interval (66.4 mg/day) was used to estimate all relative risks for nitrates; (**B**) the median value of the lowest reference interval (0.02 mg/day) was used to estimate all relative risks for nitrites; (**C**) the minimum value of the lowest reference interval (0.02 μ g/day) was used to estimate all relative risks for NDMA. The solid line represents estimated RRs and dashed lines are their 95% CIs. The dotted line represents the null hypothesis of no association.

3.4. Meta-Regression

As shown in Table 4, study design seemed to influence the overall heterogeneity mostly for the association of nitrates intake and gastric cancer risk. In univariate meta-regression analysis, study design alone could explain 58.14% (0.025/0.043) of the estimated between-study variance (τ^2). When all the variables (study design, geographic area, and publication year) in the meta-regression model, the τ^2 was reduced from 0.041 to 0.009 for nitrites, and from 0.139 to 0.026 for NDMA. Moreover, we found that study type was the main source of heterogeneity for nitrites, which interpreted 89.1% (0.041/0.046) of the τ^2 . Although geographic area could explain 92.1% (0.128/0.139) of the τ^2 for NDMA, the subgroups stratifying by this variable still had non-negligible heterogeneity.

Variable -	Coefficient	Nitrates <i>p</i> Value	95% CI	Coefficient	Nitrites <i>p</i> Value	95% CI	Coefficient	NDMA p Value	95% CI
Study design	-0.154	0.184	-0.390 to 0.082	0.406	0.011	0.106 to 0.705	0.200	0.363	-0.286 to 0.686
Geographic area	0.023	0.846	-0.225 to 0.271	-0.030	0.831	-0.326 to 0.265	0.912	0.057	-0.035 to 1.860
Publication year	0.063	0.696	-0.275 to 0.400	-0.029	0.845	-0.343 to 0.285	0.097	0.807	-0.806 to 0.999

Table 4	Mata magnasia	m amalusia
Table 4.	Meta-regressio	m analysis.


CI: confidence interval.

3.5. Sensitivity Analysis

We confirmed the associations between dietary nitrates, nitrites, and NDMA intake and gastric cancer risk were relatively stable using sensitivity analysis. After removing one study at a time, the ranges of pooled RRs were 0.67–0.97, 1.10–1.57, and 0.97–1.89 for nitrates, nitrites, and NDMA, respectively (Supplementary Figure S1). As shown in Supplementary Figure S1A, the study conducted by La Vecchia *et al.* seemed to cause the heterogeneity [25]. This phenomenon was verified through the Galbraith plot (Supplementary Figure S2). Exclusion of this study, the heterogeneity was not detected ($I^2 = 8.8\%$, p = 0.349), and the summary RRs were 0.82 (95% CI, 0.73–0.92) in the overall study and 0.79 (95% CI, 0.66–0.95) in the case-control study. Supplementary Figure S1C displayed that one study performed by De Stefani *et al.* influenced the overall pooled estimates for the association between NDMA intake and gastric cancer [28]. After this study was removed, the overall RR was 1.18 (95% CI, 0.97–1.43), with moderate heterogeneity ($I^2 = 46.7\%$, p = 0.050).

3.6. Publication Bias

As shown in Figure 4, these funnel plots did not reveal obvious signs of asymmetry. Moreover, the Egger and Begg test provided statistical evidence of bias for nitrates (Egger, p = 0.047; Begg, p = 0.327), nitrites (Egger, p = 0.542; Begg, p = 0.576), and NDMA (Egger, p = 0.821; Begg, p = 1.000). Adjusting the possible publication bias for nitrates using "trim and fill" method did not influence the conclusion (RR: 0.745; 95% CI, 0.646–0.860; Figure 4A).

Figure 4. Funnel plot of nitrates, nitrites and NDMA consumption and gastric cancer risk. (**A**) Base on trim and fill method, hypothetical dummy studies indicated by squares are added to the genuine studies for nitrates; (**B**) nitrites; (**C**) NDMA.

4. Discussion

This is the first meat-analysis evaluating relationships between dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer. We found that consumption of food rich in nitrates was related to a decreased risk of gastric cancer, and that high intake of nitrites and NDMA resulted in an elevated risk of cancer. Stratifying analysis for study design, similar results were observed in the case-control studies, and the cohort studies also indicated the consequences of this trend. The dose-response analysis further showed that the inverse association between nitrates and stomach cancer appeared to be pronounced with nitrates intake level ranged from about 66.4 to 220 mg/day. Estimated in linear dose-response model for nitrites, the risk increased in gastric cancer was 7%

corresponded to each 0.1 mg/day increment of nitrites intake. When daily NDMA intake reached 0.12 μ g, the harmful effect to human became more obvious.

In order to understand the mechanisms of nitrates, nitrites, and NDMA, we need to know its chemical and potential biologic property. Nitrates and nitrites are two types of inorganic compounds, which compose of a single nitrogen atom (N) and a number of oxygen atoms (O); and the chemical symbols are NO_3 and NO_2 for nitrate and nitrite, respectively. It is believed that nitrates themselves are relatively inert, until they are reduced to nitrites. Nitrates can turn into nitrites by bacteria in the mouth and then be swallowed. As nitrites hit the highly acidic juices in stomach, it is converted to nitrous acid, which reacts with amines to form nitrosamines [37]. In our life, processed products such as meats are heated at high temperatures, the nitrites of which can also turn into nitrosamines. Animal models were used to test the carcinogenic potential of these chemical substances. In 2010, International Agency for Research on Cancer (IARC) have concluded that there was no substantial evidence implicating nitrates as animal carcinogen [38]. Besides, nitrites in combination with amines or amides were proved to be carcinogenic to animals. Most nitrosamines can induce animal carcinogenesis by causing gene mutation and DNA adductions. Thereafter, a well-done systematic review performed by Bryan et al. elaborated the animal toxicology of these molecules and drew a consistent conclusion [39]. Whereas human diet is a potentially modifiable exposure, it remains difficult to attribute the etiology of cancer to a single nutrient. Recently, the data from prospective cohort studies, indicating that estimated intake of nitrates, nitrites, and NDMA in the diet was not significantly associated with a risk of gastric cancer [15–17,19,20,40]. Thus, it is necessary to conduct a meta-analysis to reveal a trend that may not be obvious in a single study.

In the present study, high nitrates consumption demonstrated a protective effect for gastric cancer, in line with some previous studies [25,29,34]. Because dietary nitrates are mainly provided by vegetables, and its protection is likely to be reflected by fiber, vitamin C, and other anti-oxidants. As is known to all, the daily intake of nitrates in Korea is highest, due to the consumption of nitrate-rich green leafy vegetables such as Kimchi, and this country is also a high-risk region for gastric cancer in Asia. Kim and his colleagues reported that the estimated values of nitrates from the Korea Food Balance Sheet (390–742 mg/day) were considerably higher, compared to European countries (52–156 mg/day) and China (422.8 mg/day). Their research also showed that a higher intake of nitrates was not related to a greater cancer risk [32]. In contrast, higher nitrates intake relative to anti-oxidants was associated with an increase the gastric cancer risk. Considering the collinearity of nitrates and antioxidant vitamins intake, we further took a meta-analysis of these studies that had adjusted for vitamin C, vegetables, or fruits, and the pooled RR was 0.97 (95% CI, 0.81–1.17) with no heterogeneity ($I^2 = 0.0\%$, p = 0.849) [16,19,20,33]. Therefore, studies with validated methodologies quantifying the source of exposure as much as possible in the diet are needed to validate this finding.

Strengths of our meta-analysis included the large number of total subjects (650,826 for nitrates; 663,634 for nitrites; 742,038 for NDMA), dose-response relationship, reliable sources of heterogeneity, and the stable results in the sensitivity analysis. Here, some limitations were pointed out as follows. First, food frequency questionnaires were used to record the usual dietary consumption and classify them to estimate daily nitrates, nitrites, and NDMA intake. As a result, measurement error in different studies was inevitable, which might contribute to attenuation of the true relationship [41]. Second, there was a wide range of nitrates/nitrites/NDMA intake values between the lowest and highest categories, which might lead to the heterogeneity in the pooled analysis and conclusions limited. Third, only few articles were available for the stratified analysis of cancer type (cardia and non-cardia gastric cancer), and the dose-response analysis, especially for the nitrites (two papers/five studies), so we should treat the results with caution. More well-designed studies with detailed clinical characteristics are needed to answer these questions more completely. Fourth, significant heterogeneity was detected for NDMA, even after we confined to the stratified analysis, heterogeneity still existed in the subgroups. Fifth, *Helicobacter pylori* infection is a well-known risk factor for the development of distal gastric cancer. In this meta-analysis, only three case-control studies concerned

this problem [31,32,34]. Lastly, during the long follow-up for cohort studies, the level of nitrates, nitrites, and nitrosamines in food have been marked changed due to the development of food processing technology. In addition, participants may have changed their diets and eating habits. Therefore, further prospective studies with complete questionnaires and updated diet information timely are warranted.

As diet is a very complex exposure variable, knowledge of beneficial factors and risk factors provide us an opportunity to improve heath and even prevent cancer. According to the report from WCRF/AICR [42], non-starchy vegetables as well as fruits with a relatively high content of anti-oxidants, ascorbic acid, and fiber probably protect against stomach cancer. However, salt and also salt-preserved foods have been proposed for probably causing this cancer. There is limited evidence suggesting dietary nitrates, nitrites, and NDMA intake increase the cancer risk. A review of previous research, studies of low quality tended to support the hypothesis of an increased risk with consumption of nitrite intake, while most research including better designed and conducted studies regarded NDMA as a potential human carcinogen. These results were in accord with our stratified analysis by sample size and quality score.

5. Conclusions

In summary, this meta-analysis suggested that dietary nitrates intake was associated with a reduced risk of gastric cancer, and high consumption of nitrites and NDMA could increase the risk. Considering the limitations and confounding factors, we could not absolutely confirm the reliability of these findings. More well-designed large prospective studies are needed to help us understand these substances in the etiology of gastric cancer.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/7/12/5505/s1, Table S1: Methodologic quality of cohort studies included in the meta-analysis, Table S2: Methodologic quality of case-control studies included in the meta-analysis, Figure S1: Influence analysis of the summary relative risks for dietary nitrates, nitrites and NDMA intake. (A) nitrates; (B) nitrites; (C) NDMA, Figure S2: Galbraith plots of nitrates intake and gastric cancer. The central solid line and two outer parallel lines represent the estimated RRs and 95% CIs, respectively.

Acknowledgments: This work was supported by the grants from National Natural Science Foundation of China (81372364).

Conflict of Interest: The authors declare no conflict of interest.

References

- 1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. *CA Cancer J. Clin.* **2015**, 65, 87–108. [CrossRef] [PubMed]
- 2. Abnet, C.C.; Corley, D.A.; Freedman, N.D.; Kamangar, F. Diet and upper gastrointestinal malignancies. *Gastroenterology* **2015**, *148*, 1234–1243. [CrossRef] [PubMed]
- 3. Petrick, J.L.; Steck, S.E.; Bradshaw, P.T.; Trivers, K.F.; Abrahamson, P.E.; Engel, L.S.; He, K.; Chow, W.H.; Mayne, S.T.; Risch, H.A.; *et al.* Dietary intake of flavonoids and oesophageal and gastric cancer: Incidence and survival in the United States of America (USA). *Br. J. Cancer* **2015**, *112*, 1291–1300. [CrossRef] [PubMed]
- 4. Bradbury, K.E.; Appleby, P.N.; Key, T.J. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European prospective investigation into cancer and nutrition (EPIC). *Am. J. Clin. Nutr.* **2014**, *100* (Suppl. S1), 394S–398S. [CrossRef] [PubMed]
- Gonzalez, C.A.; Lujan-Barroso, L.; Bueno-de-Mesquita, H.B.; Jenab, M.; Duell, E.J.; Agudo, A.; Tjonneland, A.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Touillaud, M.; *et al.* Fruit and vegetable intake and the risk of gastric adenocarcinoma: A reanalysis of the European prospective investigation into cancer and nutrition (EPIC-EURGAST) study after a longer follow-up. *Int. J. Cancer* 2012, *131*, 2910–2919. [CrossRef] [PubMed]
- 6. Larsson, S.C.; Orsini, N.; Wolk, A. Processed meat consumption and stomach cancer risk: A meta-analysis. *J. Natl. Cancer Inst.* **2006**, *98*, 1078–1087. [CrossRef] [PubMed]

- Tricker, A.R.; Pfundstein, B.; Theobald, E.; Preussmann, R.; Spiegelhalder, B. Mean daily intake of volatile N-nitrosamines from foods and beverages in west Germany in 1989–1990. *Food Chem. Toxicol.* 1991, 29, 729–732. [CrossRef]
- 8. Jakszyn, P.; Agudo, A.; Berenguer, A.; Ibanez, R.; Amiano, P.; Pera, G.; Ardanaz, E.; Barricarte, A.; Chirlaque, M.D.; Dorronsoro, M.; *et al.* Intake and food sources of nitrites and *N*-nitrosodimethylamine in Spain. *Public Health Nutr.* **2006**, *9*, 785–791. [CrossRef] [PubMed]
- 9. Tricker, A.R.; Preussmann, R. Carcinogenic *N*-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. *Mutat. Res.* **1991**, 259, 277–289. [CrossRef]
- Anderson, L.M.; Souliotis, V.L.; Chhabra, S.K.; Moskal, T.J.; Harbaugh, S.D.; Kyrtopoulos, S.A. N-nitrosodimethylamine-derived O(6)-methylguanine in DNA of monkey gastrointestinal and urogenital organs and enhancement by ethanol. *Int. J. Cancer* 1996, *66*, 130–134. [CrossRef]
- 11. Stang, A. Critical evaluation of the newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur. J. Epidemiol.* **2010**, *25*, 603–605. [CrossRef] [PubMed]
- 12. Greenland, S. Quantitative methods in the review of epidemiologic literature. *Epidemiol. Rev.* **1987**, *9*, 1–30. [PubMed]
- Orsini, N.; Li, R.; Wolk, A.; Khudyakov, P.; Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software. *Am. J. Epidemiol.* 2012, 175, 66–73. [CrossRef] [PubMed]
- 14. Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* **2000**, *56*, 455–463. [CrossRef] [PubMed]
- Galanis, D.J.; Kolonel, L.N.; Lee, J.; Nomura, A. Intakes of selected foods and beverages and the incidence of gastric cancer among the Japanese residents of hawaii: A prospective study. *Int. J. Epidemiol.* 1998, 27, 173–180. [CrossRef] [PubMed]
- Van Loon, A.J.; Botterweck, A.A.; Goldbohm, R.A.; Brants, H.A.; van Klaveren, J.D.; van den Brandt, P.A. Intake of nitrate and nitrite and the risk of gastric cancer: A prospective cohort study. *Br. J. Cancer* 1998, 78, 129–135. [CrossRef] [PubMed]
- 17. Knekt, P.; Jarvinen, R.; Dich, J.; Hakulinen, T. Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and *N*-nitroso compounds: A follow-up study. *Int. J. Cancer* **1999**, *80*, 852–856. [CrossRef]
- 18. Larsson, S.C.; Bergkvist, L.; Wolk, A. Processed meat consumption, dietary nitrosamines and stomach cancer risk in a cohort of Swedish women. *Int. J. Cancer* **2006**, *119*, 915–919. [CrossRef] [PubMed]
- Cross, A.J.; Freedman, N.D.; Ren, J.; Ward, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R.; Abnet, C.C. Meat consumption and risk of esophageal and gastric cancer in a large prospective study. *Am. J. Gastroenterol.* 2011, *106*, 432–442. [CrossRef] [PubMed]
- 20. Keszei, A.P.; Goldbohm, R.A.; Schouten, L.J.; Jakszyn, P.; van den Brandt, P.A. Dietary *N*-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands cohort study. *Am. J. Clin. Nutr.* **2013**, *97*, 135–146. [CrossRef] [PubMed]
- Risch, H.A.; Jain, M.; Choi, N.W.; Fodor, J.G.; Pfeiffer, C.J.; Howe, G.R.; Harrison, L.W.; Craib, K.J.; Miller, A.B. Dietary factors and the incidence of cancer of the stomach. *Am. J. Epidemiol.* 1985, 122, 947–959. [PubMed]
- Buiatti, E.; Palli, D.; Decarli, A.; Amadori, D.; Avellini, C.; Bianchi, S.; Bonaguri, C.; Cipriani, F.; Cocco, P.; Giacosa, A.; *et al.* A case-control study of gastric cancer and diet in Italy: II. Association with nutrients. *Int. J. Cancer* 1990, 45, 896–901. [CrossRef] [PubMed]
- 23. Boeing, H.; Frentzel-Beyme, R.; Berger, M.; Berndt, V.; Gores, W.; Korner, M.; Lohmeier, R.; Menarcher, A.; Mannl, H.F.; Meinhardt, M.; *et al.* Case-control study on stomach cancer in germany. *Int. J. Cancer* **1991**, *47*, 858–864. [CrossRef] [PubMed]
- 24. Hansson, L.E.; Nyren, O.; Bergstrom, R.; Wolk, A.; Lindgren, A.; Baron, J.; Adami, H.O. Nutrients and gastric cancer risk. A population-based case-control study in sweden. *Int. J. Cancer* **1994**, *57*, 638–644. [CrossRef] [PubMed]
- 25. La Vecchia, C.; Ferraroni, M.; D'Avanzo, B.; Decarli, A.; Franceschi, S. Selected micronutrient intake and the risk of gastric cancer. *Cancer Epidemiol. Biomarkers Prev.* **1994**, *3*, 393–398. [PubMed]
- 26. Pobel, D.; Riboli, E.; Cornee, J.; Hemon, B.; Guyader, M. Nitrosamine, nitrate and nitrite in relation to gastric cancer: A case-control study in marseille, france. *Eur. J. Epidemiol.* **1995**, *11*, 67–73. [CrossRef] [PubMed]

- 27. La Vecchia, C.; D'Avanzo, B.; Airoldi, L.; Braga, C.; Decarli, A. Nitrosamine intake and gastric cancer risk. *Eur. J. Cancer Prev.* **1995**, *4*, 469–474. [CrossRef] [PubMed]
- 28. De Stefani, E.; Boffetta, P.; Mendilaharsu, M.; Carzoglio, J.; Deneo-Pellegrini, H. Dietary nitrosamines, heterocyclic amines, and risk of gastric cancer: A case-control study in Uruguay. *Nutr. Cancer* **1998**, *30*, 158–162. [CrossRef] [PubMed]
- 29. Palli, D.; Russo, A.; Decarli, A. Dietary patterns, nutrient intake and gastric cancer in a high-risk area of italy. *Cancer Causes Control* **2001**, *12*, 163–172. [CrossRef] [PubMed]
- Engel, L.S.; Chow, W.H.; Vaughan, T.L.; Gammon, M.D.; Risch, H.A.; Stanford, J.L.; Schoenberg, J.B.; Mayne, S.T.; Dubrow, R.; Rotterdam, H.; *et al.* Population attributable risks of esophageal and gastric cancers. *J. Natl. Cancer Inst.* 2003, *95*, 1404–1413. [CrossRef] [PubMed]
- 31. López-Carrillo, L.; Torres-López, J.; Galván-Portillo, M.; Muñoz, L.; López-Cervantes, M. Helicobacter pylori-caga seropositivity and nitrite and ascorbic acid food intake as predictors for gastric cancer. *Eur. J. Cancer* **2004**, *40*, 1752–1759. [CrossRef] [PubMed]
- 32. Kim, H.J.; Lee, S.S.; Choi, B.Y.; Kim, M.K. Nitrate intake relative to antioxidant vitamin intake affects gastric cancer risk: A case-control study in korea. *Nutr. Cancer* 2007, *59*, 185–191. [CrossRef] [PubMed]
- Ward, M.H.; Heineman, E.F.; Markin, R.S.; Weisenburger, D.D. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. *Int. J. Occup. Environ. Health* 2008, 14, 193–197. [CrossRef] [PubMed]
- 34. Hernández-Ramírez, R.U.; Galván-Portillo, M.V.; Ward, M.H.; Agudo, A.; González, C.A.; Oñate-Ocaña, L.F.; Herrera-Goepfert, R.; Palma-Coca, O.; López-Carrillo, L. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico city. *Int. J. Cancer* 2009, 125, 1424–1430. [CrossRef] [PubMed]
- 35. Navarro Silvera, S.A.; Mayne, S.T.; Risch, H.A.; Gammon, M.D.; Vaughan, T.; Chow, W.H.; Dubin, J.A.; Dubrow, R.; Schoenberg, J.; Stanford, J.L.; *et al.* Principal component analysis of dietary and lifestyle patterns in relation to risk of subtypes of esophageal and gastric cancer. *Ann. Epidemiol.* **2011**, *21*, 543–550. [CrossRef] [PubMed]
- 36. Jakszyn, P.; Bingham, S.; Pera, G.; Agudo, A.; Luben, R.; Welch, A.; Boeing, H.; del Giudice, G.; Palli, D.; Saieva, C.; *et al.* Endogenous versus exogenous exposure to *N*-nitroso compounds and gastric cancer risk in the European prospective investigation into cancer and nutrition (EPIC-EURGAST) study. *Carcinogenesis* 2006, 27, 1497–1501. [CrossRef] [PubMed]
- Kobayashi, J.; Ohtake, K.; Uchida, H. No-rich diet for lifestyle-related diseases. *Nutrients* 2015, 7, 4911–4937. [CrossRef] [PubMed]
- 38. World Health Oganization; International Agency for Research on Cancer. *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 94, Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins*; International Agency for Research on Cancer: Lyon, France, 2010.
- 39. Bryan, N.S.; Alexander, D.D.; Coughlin, J.R.; Milkowski, A.L.; Boffetta, P. Ingested nitrate and nitrite and stomach cancer risk: An updated review. *Food Chem. Toxicol.* **2012**, *50*, 3646–3665. [CrossRef] [PubMed]
- 40. Loh, Y.H.; Jakszyn, P.; Luben, R.N.; Mulligan, A.A.; Mitrou, P.N.; Khaw, K.T. *N*-nitroso compounds and cancer incidence: The European prospective investigation into cancer and nutrition (EPIC)-norfolk study. *Am. J. Clin. Nutr.* **2011**, *93*, 1053–1061. [CrossRef] [PubMed]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Freedman, L.S.; Ballard-Barbash, R.; Troiano, R.P.; Bingham, S.; Schoeller, D.A.; Schatzkin, A.; Carroll, R.J. Structure of dietary measurement error: Results of the open biomarker study. *Am. J. Epidemiol.* 2003, *158*, 14–21. [CrossRef] [PubMed]
- 42. Marmot, M.; Atinmo, T.; Byers, T.; Chen, J.; Hirohata, T.; Jackson, A.; James, W. *Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective;* WCRF/AICR Expert Report; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2007.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).