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Budding-like division of all-aqueous emulsion
droplets modulated by networks of protein
nanofibrils
Yang Song 1,2, Thomas C.T. Michaels3,4, Qingming Ma1,5, Zhou Liu1,5, Hao Yuan1,5, Shuichi Takayama 2,

Tuomas P.J. Knowles3,6 & Ho Cheung Shum1,5

Networks of natural protein nanofibrils, such as cytoskeletal filaments, control the shape and

the division of cells, yet mimicking this functionality in a synthetic setting has proved chal-

lenging. Here, we demonstrate that artificial networks of protein nanofibrils can induce

controlled deformation and division of all-aqueous emulsion droplets with budding-like

morphologies. We show that this process is driven by the difference in the immersional

wetting energy of the nanofibril network, and that both the size and the number of the

daughter droplets formed during division can be controlled by modulating the fibril con-

centration and the chemical properties of the fibril network. Our results demonstrate a route

for achieving biomimetic division with synthetic self-assembling fibrils and offer an engi-

neered approach to regulate the morphology of protein gels.
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The growth of liquid protrusions from soft biological
interfaces, including membranes, is a process which
underlies many cellular processes, such as asexual repro-

duction of yeast cells1, active transport of macromolecules
through endocytosis2, as well as the blebbing during the pro-
grammed cell death3. From a thermodynamic point of view, the
formation of budding protrusions and their subsequent fission
into daughter droplets is an energetically unfavorable
processes4, 5 being associated with an increase of interfacial area.
The formation of surface protrusions in liquid droplet systems6–9,
therefore, requires interfacial engineering by means such as
incorporating proteins into the membrane surrounding the
droplet6, 7, inducing the dewetting of sub-droplets from vesicles
with multi-phase compartments8, 9, or activating chemical reac-
tions that destabilize the droplet interface10, 11. The formation of
such membrane protrusions in response to environmental sti-
muli12 can lead to the complete fission of the daughter droplets.

Living cells are able to control their shape and division using
networks of protein nanofibrils, such as the cytoskeleton13–16.
Network-mediated cellular division, such as the condensation of
the septal Z-ring17–19 in dividing bacteria, and the polymerization
(or depolymerization) of actin filaments in eukaryotic cells20, 21

are all related to the functioning of the protein networks at
variable fibril concentrations. However, mimicking natural fibril-
network-mediated division remains challenging, even though this
functionality could have significant applications in a synthetic
setting. Synthetic cytoplasmic matrices could provide a bottom-
up approach22 to unravel the role of protein networks in the
division of protocells. Water-in-water (w/w) emulsion droplets,
formed for instance by dispensing a dextran-rich aqueous phase
into an immiscible polyethylene glycol (PEG)-rich continuous
aqueous phase, have been used previously to simulate compart-
mentalized cytoplasm23, 24. All-aqueous emulsions are particu-
larly advantageous in this context, due to the characteristic ultra-
low interfacial tension25 (<1 × 10−3 Nm−1) which dramatically
lowers the energetic cost for interfacial area increase during
droplet division.

In this paper, we demonstrate that the addition of protein
nanofibrils to all-aqueous emulsions can induce the division of
the w/w emulsion droplets and that the concentration of fibrils
controls the division regimes of budding droplets. Our observa-
tions not only provide a simplified physical model for reprodu-
cing droplet division in a synthetic setting, but also inspire
engineered approaches to adjust the surface morphology of pro-
tein gels.

Results
Gelation of protein nanofibril suspensions. Protein nanofibrils
were synthesized by polymerizing lysozyme monomers at 65 °C
under acidic conditions (pH= 1.6, see Methods)26. After cooling
to room temperature, the nanofibril suspension (2 wt%) formed a
soft gel. By introducing shear forces through stirring, the nano-
fibril gel transformed into a viscoelastic fluid (see Supplementary
Fig. 1), but returned to the gel phase under quiescent conditions.
The gelation of the fibril suspension could be controlled by dis-
solving additional solutes in the aqueous medium. For example,
when the fibril suspension was injected slowly into a 10 wt%
dextran solution, it formed a gel (see Supplementary Fig. 1d).
However, when injected into a 8 wt% PEG solution, the fibrils
remained suspended in solution without undergoing gelation,
probably due to the incorporation of PEG molecules into the fibril
network.

Division of w/w drops loaded with protein nanofibrils. An
aqueous suspension of 1.2 wt% fibrils in 7.5 wt% dextran T500

was dispersed into an acidic PEG (8 wt%, Mw= 20,000, pH= 3)
solution via electrospray27, resulting in the formation of dextran-
in-PEG w/w emulsion droplets. Due to the higher osmolality of
the PEG-rich continuous phase, the droplets underwent dehy-
dration until a balance was established between the osmolality of
the dextran-rich phase and that of the PEG-rich phase. During
droplet shrinking, small buds were observed to form on the
droplet surface (Fig. 1a). The diameter of these buds increased
over time due to coalescence; eventually, each mother droplet
split into a well-defined number of daughter droplets. Similar
protrusions were observed to form also on flat w/w interfaces
(Fig. 1b). The formation of buds was strongly dependent on the
presence of nanofibrils in the dextran-rich droplet phase: no
protrusions were observed under the same conditions of osmotic
pressure and w/w interfacial tension without loading a sufficient
amount of fibrils into the droplet phase (Fig. 1c, d).

Mechanism of budding-like division of w/w droplets. To probe
the mechanism behind the observed budding-like division of w/w
emulsion droplets, we labeled protein nanofibrils with the fluor-
escent dye Thioflavin T (ThT)28. After homogenization of the
ThT-labeled fibril suspension in the dextran phase, the droplet
phase was immediately electrosprayed onto the continuous phase
to form w/w emulsion droplets. Water was partially extracted
from the droplet phase due to a prevailing osmotic pressure (30
mOsm kg−1) between the two immiscible aqueous phases. Since
fibrils do not permeate the w/w interface, droplet dehydration
resulted into an increase of fibril concentration in the droplet
phase. Above a critical fibril concentration, a viscoelastic fibril
network composed of fibril bundles could be seen to contract in
response to an abrupt change in osmotic pressure and then
phase-separate from the dextran-rich droplet phase (see Fig. 2a, b
and Supplementary Fig. 2). The phase separation originates from
the intrinsic incompatibility of the fibril network with the
dextran-rich phase and the consequent need to reduce the
interfacial area between the two phases. The contraction of vis-
coelastic fibril network pulls the droplet interface, leading to
buckled interfaces (Fig. 2c). After phase separation, the fibril
network underwent spontaneous dewetting from complete to
partial wetting of the network in the droplet phase (Fig. 2d, e); the
interface between the network and the dextran-rich phase is
indeed decreased during budding, as seen in Fig. 2f and g. The
dewetting transition is driven by (see Supplementary Note 1):

σPEG=net � ðσdex=net þ σw=w cos θÞ<0; ð1Þ

where σw=w is the w/w interfacial tension, and σdex=net and σPEG=net
are, respectively, the interfacial tensions between the fibril net-
work and the dextran-rich and PEG-rich phases; θ is the wetting
angle formed by the dextran-rich phase and the fibril network.
The driving force for dewetting is favorable when the expression
in Eq. (1) is negative. This condition is satisfied in our experi-
ments because σPEG=net � 0 (the fibril network does not phase
separate in the PEG-rich phase); moreover, under all the tested
experimental conditions, we measured σdex=net<σw=w (see Sup-
plementary Fig. 3), leading to a final wetting angle of θ ¼
arccosð�σdex=net=σw=wÞ>90�; in agreement with the observations
of Fig. 2f and g. Such a large wetting angle is consistent with the
higher partitioning affinity of fibrils to the PEG-rich phase
compared to the dextran-rich phase (Supplementary Fig. 4)29.

As the viscoelastic fibril network contracts under the osmotic
pressure (see Supplementary Fig. 5 and Supplementary Note 2),
the dextran-rich phase is squirted out of the porous fibril
network, resulting in the formation of liquid protrusions with
large interfacial area, in analogy to what happens when a water-
absorbing sponge is squeezed in oil. In the absence of any
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stabilizing mechanism, the protruded subdroplets are unstable
against coalescence and their average radius, R, increases over
time. The merging of the daughter droplets, however, can be
halted by the adsorption of fibrils at the w/w interface. We have
previously reported that protein nanofibrils efficiently stabilize
dextran-in-PEG emulsion droplets due to the entrapment of
fibrils at the w/w interface29. If the total amount of adsorbed
fibrils is insufficient to fully cover the w/w interface, the surface
protrusions coalesce in order to minimize the total interfacial
area, A / 1

R. However, as the daughter droplets coalesce, the w/w
surface coverage by fibrils progressively increases in proportion to
R until droplet coalescence is eventually halted. In analogy to the
physics of Pickering emulsions30, the average diameter D= 2R of
daughter droplets stabilized by adsorbed protein fibrils can be
estimated as a function of the initial concentration of fibrils in the
mother droplet, Cfibril, as (see Supplementary Note 3 and
Supplementary Fig. 6):

Ddaughter¼2Rdaughter¼
3aσw=w

ðσdex=net�σPEG=netÞηCfibril
; ð2Þ

where a is the radius of the cross-section of fibril bundles, and η is

the shrinkage ratio, i.e., the ratio between the initial volume of the
mother droplet and the total volume of daughter droplets.
Equation (2) predicts that the diameter of daughter droplets,
Ddaughter, increases in proportion to σw=w (see Fig. 3a, Supple-
mentary Fig. 7, Supplementary Note 4, and Supplementary
Table 1) and decreases in proportion to the fibril concentration,
Cfibril, and the shrinkage ratio η. Interestingly, Ddaughter is not
affected by variations in the volume of the mother droplets (see
Fig. 3a and Supplementary Fig. 8).

Effect of fibril concentration on droplet division. According to
Eq. (2), the initial concentration of fibrils in the droplet phase,
Cfibril, controls the final size of the daughter droplets by deter-
mining the availability of excess fibrils that can stabilize the w/w
interface. To test this prediction, we varied systematically the
concentration of fibrils in the droplet phase while leaving the
other parameters unchanged. When the fibril concentration was
below 0.2 wt%, no phase separation into a fibril network was
observed (Fig. 1c, d) and, as a result, droplets remained stable
over time without undergoing division. When the fibril con-
centration was above 0.3 wt%, a fibril network was observed to
phase-separate from the dextran-rich phase after droplet
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Fig. 1 Budding-like division of w/w droplets loaded with protein nanofibrils. a Optical microscope images of dividing w/w emulsion droplets preloaded with
protein nanofibrils. The droplet phase was preloaded with 7.5 wt% dextran T500 and 1.2 wt% lysozyme nanofibrils before injection into a 8 wt% PEG-10
mM HCl solution. b Optical microscope images showing the formation of protrusions on a flat w/w interface. No splitting of w/w droplets was observed
when the concentration of fibrils was c 0wt% and d 0.1 wt%. Scale bars are 200 μm
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dehydration. Under these conditions, however, the amount of
fibrils was insufficient to stabilize the surface protrusions; as a
result, the daughter droplets were observed to merge into a single
droplet before total decomposition of the fibril network into the
PEG-rich phase (single-division regime, see Fig. 2f). When the
concentration of fibrils was above a critical value C�

fibril (1.0 wt%),
the formation of multiple stable protrusions was observed
(multiple-division regime, Fig. 2g). In this regime, the total
interfacial area of the daughter droplets was significantly larger
than that of the mother droplet31. The relative increase in w/w
interfacial area was found to scale linearly with initial fibril
concentration (see Fig. 3b and Supplementary Note 5). Further-
more, the radius of the stabilized surface protrusions was found to
decrease with increasing fibril concentration (Fig. 3c), in agree-
ment with our theoretical predictions. Finally, we measured the
size distribution of dividing droplets (see Supplementary Figs. 9,
10) and found that, due to the enhanced stabilization of daughter
droplets, higher fibril concentrations were associated with a
higher degree of size monodispersity.

Effect of shrinkage ratio on droplet division. As a next step, we
investigated the role of shrinkage ratio η on droplet division. To
do so, we reduced the concentration of dextran in the droplet
phase from 13 to 4 wt%, while maintaining the initial fibril
concentration and the PEG concentration in the continuous
phase constant. With a lower concentration of dextran in the
droplet phase, a higher osmotic pressure is created to extract

water from the droplet and induce budding (Supplementary
Fig. 11). This resulted in a higher degree of dehydration and,
consequently, a denser fibril network. The average diameter of the
daughter droplets was found to decrease with increasing shrink-
age ratio η (Fig. 3d), in agreement with the prediction of Eq. (2).
The experiment was performed for two different fibril con-
centrations. Combining the effect of shrinkage ratio, η, and initial
fibril concentration, Cfibril, we define a combined parameter Χ=
ηCfibril that reflects the fibril concentration after dehydration of
the mother droplet. The average radius of the daughter droplets
was found to decrease inversely proportional to this combined
parameter Χ, confirming that the final diameter of the stabilized
dextran-rich buds can be equally modulated by changing either
the initial fibril concentration or the droplet shrinkage ratio
(Fig. 3d, e and Supplementary Note 6).

Fabrication of protein microgels with surface protrusions. The
budding-like division of w/w emulsion droplets using protein
nanofibrils demonstrated in this paper can be applied to induce
surface protrusions in protein hydrogels. We have previously
reported on a microfluidic approach to generate all-aqueous
emulsions and jets32. By incorporating fibril networks into the
dispensing phase, we could induce small protrusions on the
surface of the droplets and jets. The dextran-rich buds could be
solidified by means of osmotic dehydration in the continuous
PEG phase (>20%), and the speed of dehydration increased with
the PEG concentration (see Methods33). By balancing the speed

Phase
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Protrusion of
subdroplets

Merging of
subdroplets

Fission of
subdroplets

Stabilization
by nanofibrils

Fig. 2 Mechanism of budding-like division of w/w emulsion droplets mediated by protein nanofibrils. a–e Schematic diagram and fluorescence microscope
images describing the mechanistic steps in the budding-like division of w/w droplets. The fibril network (stained green) contracts and phase-separates
from the remaining liquid phase through a dewetting transition. In this transition, the as-formed protrusions coalesce (as pinpointed by the white arrows)
until a sufficient amount of fibrils adsorbs at the w/w interface to stabilize daughter droplets. Complete fission of dextran-rich subdroplets (faked red color)
is observed after total decomposition of the fibril networks in the PEG-rich continuous phase. Scale bars, 100 μm. Fluorescence microscope images showing
f single division (Cfibril= 0.5 wt%) and g multiple division (Cfibril= 1.0 wt%) of w/w droplets preloaded with protein nanofibrils and 8% dextran. Scale bars,
200 μm. The continuous phase consists of 8 wt% PEG dissolved in 10mM HCl
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of dehydration and the budding kinetics, the dextran-rich pro-
trusions could be immobilized on the surface of the micro-
particles and microfibers, as shown by the optical and scanning
electron microscope (SEM) images in Fig. 4. The physical
dimensions of the microparticles and fibers as well as the sizes of
the formed surface protrusions can be tuned by adjusting the
osmotic pressure or the fibril concentration in the dispersed
phase. This approach allows control of surface roughness34, 35

and design of surface patches36 of protein-based hydrogels in the
all-aqueous environment, which will be of interest for the
micropatterning of biomolecules and cells37 on the surface of
biomaterials, such as cell-laden matrices, protein-delivery vehi-
cles, and tissue engineering scaffolds38.

In this study we have suggested a possible route for achieving
division of liquid droplets by exploiting synthetic protein
fibrillization. Based on these results, we have further developed
an all-aqueous platform for controlling the morphology of
protein-rich gels, which could have important implications in
tissue engineering and cell-mimicking studies.

Methods
Fabrication of fibril networks. An aqueous solution of chicken egg white was
prepared by dissolving 2 wt% of the protein into a solution of 206 mM hydro-
chloric acid (HCl, Aladdin Trade Co. Ltd) containing 2 mM sodium chloride
(NaCl, Sigma-Aldrich). The solution was incubated at 65 °C for 70 h to induce
polymerization of protein monomers into long fibrils. To achieve complete con-
version from monomers to mature fibrils, the colloidal suspension was stirred at a
centrifugal speed of 7 × g. The fibril suspension was diluted to 0.25–2 wt% by
adding water. The dynamic viscosity of the suspension was measured using a
microfluidic viscometer (μVISC, Rheosense, Inc.).

Fabrication of w/w droplets. The emulsion phase was prepared by vortex mixing
dextran T500 (Shanghai Ryon Biological Co., Ltd.) with the fibril suspension (see
fabrication of fibril networks). The final concentration of dextran in the emulsion
phase was 5–12 wt%. The continuous phase was prepared by dissolving 8 wt% PEG
(Mw= 20,000, Aladdin Trade Co., Ltd.) in an aqueous solution of 10 mM HCl.

W/w emulsion droplets were generated by using an all-aqueous electrospray
setup27. The emulsion phase was charged positively (~2.5 kV), and subsequently
sprayed into the continuous phase through a glass capillary with a nozzle diameter
of 80 μm. A negatively charged metallic ring, with an enclosed circle of 4 cm in
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Fig. 4 Microfluidic fabrication of protein microparticles and microfibers
with surface protrusions. a Scanning electron microscope (SEM) image of
fibril networks. Scale bar, 500 nm. b Optical microscope and c SEM images
of microbeads with surface protrusions. d Optical microscope and e SEM
images of a microfiber with f surface protrusions. Scale bars: 200 μm (b, d),
100 μm (c, e), and 10 μm (f)
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diameter, was positioned 1 mm beneath the capillary nozzle. The flow rate of the
dispersed phase was maintained at 0.5 mL h−1.

Microscopy observation. The process of budding was monitored by using
fluorescence microscopy (DMIL, LED, Fluo Leica): the dextran-rich phase was
tagged by dissolving 0.3 wt% FITC-DEAE-Dextran (Mw= 70,000, Life Technology
Co., Ltd.) into the droplet phase. In separate trials, the networks of lysozyme fibrils
were stained by 15 μML−1 ThT (Shanghai Ryon Biological Co., Ltd.), followed by
incubation of the resultant mixture at 60 °C for 15 min. The fluorescence staining
was excited by using a blue laser source and the images were captured in the green
channels. We also obtained corresponding bright-field (or phase-contrast) images
of the budding droplets for measuring the volume of the w/w droplets.

Osmolarity and interfacial tension measurements. Osmolarity of the emulsion
phases before and after budding were measured using an osmometer (Model 3320,
Advanced Instrument, Inc., USA). To determine the osmotic pressure between the
droplet and continuous phases, we measured the osmolarity of dextran solutions
before and after dehydration in the PEG-rich phase without addition of lysozyme
fibrils, because the contribution of fibril networks to the osmolarity change of the
emulsion phase can be ignored. After the splitting of droplets, the equilibrium
concentration of dextran was determined from the phase diagram of dextran-PEG-
H2O reported in ref. 39. The interfacial tension between different aqueous phases
was measured using a spinning drop tensiometer (Krüss, Site 100). The protocol of
measurement is illustrated in ref. 25.

Fabrication of microparticles. An aqueous phase containing 2 wt% fibrils and
10% dextran T500 (droplet phase) was electrosprayed into the continuous phase
consisting of an aqueous mixture of 25 wt% PEG (Mw= 2000, Aladdin Trade Co.,
Ltd.) and 0.1 wt% fibrils. At such a high concentration of PEG in the continuous
phase, water was gradually extracted out of the droplet and the dextran-rich phase
was solidified into solid particles. Glutaraldehyde (2.5 wt%, Sigma) was added into
the continuous phase to cross-link the protein nanofibrils. After reacting for 12 h at
37 °C, the microparticles with budding surfaces were formed.

Fabrication of microfibers. The above emulsion and continuous phases were
separately injected through a co-flowing capillary microfluidic device, forming a
stable dextran-in-PEG w/w jet. The flow rates of the dispersed and the outer
continuous phases were maintained at 0.5 mL h−1 and 2 mL h−1, respectively.
Subsequently, the w/w jet was collected in a rotating culture dish (Φ= 8 cm, 10
rpm, ~0.004 × g). The culture dish contained a mixture solution of 30 wt% PEG
(Mw= 2000) and 2.5 wt% glutaraldehyde (Sigma). The w/w jet solidified into
microfibers after incubation at 37 °C for 4 h.

Scanning electron microscopy. Microparticles and fibers were transferred into
absolute ethanol to remove the remaining water. The particles and fibers were then
immersed into liquid carbon dioxide and dried following the protocols of critical
point drying40. The dried samples were sputtered with gold before imaging under
scanning electron microscopy (Hitachi S4800 FEG, 5 kV).

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files and
from the authors upon reasonable request.
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